1
|
Gao H, Wan X, Xiao W, Yang Y, Lu J, Wu S, Xu L, Wang S. Heterogeneous Organohydrogel Toward Automated and Interference-Free Gradient Feeding of Drugs in Cell Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401720. [PMID: 39167495 PMCID: PMC11516076 DOI: 10.1002/advs.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Cell-based microarrays are widely used in the fields of drug discovery and toxicology. Precise gradient generation and automated drug feeding are essential for high-throughput screening of live cells in tiny droplets. However, most existing technologies either require sophisticated robotic equipment or cause mechanical/physiological interference with cells. Here, a heterogeneous organohydrogel is presented for automated gradient drug feeding, while ensuring minimal interference with cells. The heterogeneous organohydrogel comprises three crucial components. The bottom surface can automatically generate gradients functioning as a gradient generator, the organohydrogel bulk allows unidirectional transport of drugs without backflow, and the top surface with hydrophilic arrays can firmly anchor the cell-based droplet array to evaluate the concentration-dependent bioeffects of drugs accurately. Such a unique structure enables universal screening of different cell types and drugs dissolved in different solvents, requiring neither additional accessories nor arduous drug functionalization. The heterogeneous organohydrogel with unprecedented automation and non-interference possesses the enormous potential to be a next-generation platform for drug screening.
Collapse
Affiliation(s)
- Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wu‐Yi Xiao
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Jingwei Lu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shihao Wu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Li‐Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215123P. R. China
| |
Collapse
|
2
|
Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta 2024; 1301:342413. [PMID: 38553129 DOI: 10.1016/j.aca.2024.342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.
Collapse
Affiliation(s)
- Agnieszka Żuchowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Patrycja Baranowska
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Magdalena Flont
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Zbigniew Brzózka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
3
|
Liu Y, Yu L, Chen L, Chen K, Xu H, Chen M, Yi K, Li Y, Chen T, Wang F, Wang F, Zhu J, Wang F, Xiao X, Yang Y. Gradient Hydrogels Spatially Trapped Optical Cell Profiling for Quantitative Blood Cellular Osmotic Analysis. ACS Sens 2024; 9:1592-1601. [PMID: 38477713 DOI: 10.1021/acssensors.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The quantitative exploration of cellular osmotic responses and a thorough analysis of osmotic pressure-responsive cellular behaviors are poised to offer novel clinical insights into current research. This underscores a paradigm shift in the long-standing approach of colorimetric measurements triggered by red cell lysis. In this study, we engineered a purpose-driven optofluidic platform to facilitate the goal. Specifically, creating photocurable hydrogel traps surmounts a persistent challenge─optical signal interference from fluid disturbances. This achievement ensures a stable spatial phase of cells and the acquisition of optical signals for accurate osmotic response analysis at the single-cell level. Leveraging a multigradient microfluidic system, we constructed gradient osmotic hydrogel traps and developed an imaging recognition algorithm, empowering comprehensive analysis of cellular behaviors. Notably, this system has successfully and precisely analyzed individual and clustered cellular responses within the osmotic dimension. Prospective clinical testing has further substantiated its feasibility and performance in that it demonstrates an accuracy of 92% in discriminating complete hemolysis values (n = 25) and 100% in identifying initial hemolysis values (n = 25). Foreseeably, this strategy should promise to advance osmotic pressure-related cellular response analysis, benefiting further investigation and diagnosis of related blood diseases, blood quality, drug development, etc.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Longfei Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Keyu Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hongshan Xu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Faxi Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
4
|
Dai X, Si W, Liu Y, Zhang W, Guo Z. Bubble Unidirectional Transportation on Multipath Aerophilic Surfaces by Adjusting the Surface Microstructure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11984-11996. [PMID: 38407018 DOI: 10.1021/acsami.3c15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Comprehending and controlling the behavior of bubbles on solid surfaces is of significant importance in various fields including catalysis and drag reduction, both industrially and scientifically. Herein, Inspired by the superaerophilic properties of the lotus leaf surface, a series of asymmetrically patterned aerophilic surfaces were prepared by utilizing a facile mask-spraying method for directional transport of underwater bubbles. The ability of bubbles to undergo self-driven transportation in an asymmetric pattern is attributed to the natural tendency of bubbles to move toward regions with lower surface energy. In this work, the microstructure of the aerophilic surface is demonstrated as a critical element that influences the self-driven transport of bubbles toward regions of lower surface energy. The microstructure characteristic affects the energy barrier of forming a continuous gas film on the final regions. We classify three distinct bubble behaviors on the aerophilic surface, which align with three different underwater gas film evolution states: Model I, Model II, and Model III. Furthermore, utilizing the energy difference between the energy barrier that forms a continuous gas film and the gas-gas merging, gas-liquid microreaction in a specific destination on the multiple paths can be easily realized by preinjecting a bubble in the final region. This work provides a new view of the microevolutionary process for the diffusion, transport, and merging behavior of bubbles upon contact with an aerophilic pattern surface.
Collapse
Affiliation(s)
- Xin Dai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Wen Si
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Yifan Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
5
|
Man Y, Yu K, Tan H, Jin X, Tao J, Pan L. A microfluidic concentration gradient colorimetric system for rapid detection of nitrite in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133133. [PMID: 38043431 DOI: 10.1016/j.jhazmat.2023.133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
A microfluidic concentration gradient colorimetric detection system consisting of a microfluidic concentration gradient colorimetric detection chip, a self-built colorimetric signal acquisition box and a self-written smartphone APP was constructed for the rapid, in-field and visual quantitative detection of nitrite. Specifically, nitrite with initial concentration of C0 can be automatically diluted into 8 concentration gradients characterized by arithmetic series, and the concentrations are 0, 0.20 C0, 0.33 C0, 0.46 C0, 0.59 C0, 0.72 C0, 0.86 C0 and C0. The colorimetric signal acquisition box avoided the interference of light spots on data acquisition. Under the optimal experimental conditions, the quantitative detection of nitrite was achieved by the proposed two-step colorimetric method based on the inhibition of AuNPs signal amplification, and the limit of detection (LOD) was 0.14 mg/L. The microfluidic concentration gradient colorimetric detection system was able to detect nitrite as low as 0.43 mg/L and showed a good specificity. The practical application was investigated by analyzing 10 actual samples of river and lake water, pure water and tap water. The recoveries of the microfluidic concentration gradient colorimetric detection system ranged from 94.92% to 105.60%, which indicates that the method had a good application prospect in the detection of practical samples.
Collapse
Affiliation(s)
- Yan Man
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China.
| | - Kaijia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, China
| | - Huimin Tan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| | - Xinxin Jin
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| | - Jing Tao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
6
|
Lu Y, Tan W, Mu S, Zhu G. Vortex-Enhanced Microfluidic Chip for Efficient Mixing and Particle Capturing Combining Acoustics with Inertia. Anal Chem 2024; 96:3859-3869. [PMID: 38318710 DOI: 10.1021/acs.analchem.3c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Vortex-based microfluidics has received significant attention for its unique characteristics of high efficiency, flexible control, and label-free properties for the past decades. Herein, we present a vortex-based acousto-inertial chip that allows both fluid and particle manipulation within a significantly wider flow range and lower excitation voltage. Composed of contraction-expansion array structures and vibrating microstructures combined with bubbles and sharp edges, such a configuration results in more vigorous vortical fluid motions. The overall improvement in device performance comes from the synergistic effect of acoustics and inertia, as well as the positive feedback loop formed by vibrating bubbles and sharp edges. We characterize flow patterns in the microchannels by fluorescence particle tracer experiments and uncover single- and double-vortex modes over a range of sample flow rates and excitation voltages. On this basis, the ability of rapid and efficient sample homogenization up to a flow rate of 200 μL/min under an excitation voltage of 15 Vpp is verified by a two-fluid fluorescence mixing experiment. Moreover, the recirculation motion of particles in microvortices is investigated by using a high-speed imaging system. We also quantitatively measure the particle velocity variation on the trajectory and illustrate the capturing mechanism, which results from the interaction of the microvortices, particle dynamics, and composite microstructure perturbations. Further utilizing the shear forces derived by microvortices, our acousto-inertial chip is demonstrated to lysis red blood cells (RBCs) in a continuous, reagent-free manner. The high controllability and multifunction of this technology allow for the development of multistep miniaturized "lab-on-chip" analytical systems, which could significantly broaden the application of microvortex technology in biological, chemical, and clinical applications.
Collapse
Affiliation(s)
- Yuwen Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Wei Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shuoshuo Mu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Guorui Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
7
|
Chen L, Yu L, Chen M, Liu Y, Xu H, Wang F, Zhu J, Tian P, Yi K, Zhang Q, Xiao H, Duan Y, Li W, Ma L, Zhou F, Cheng Y, Bai L, Wang F, Xiao X, Zhu Y, Yang Y. A microfluidic hemostatic diagnostics platform: Harnessing coagulation-induced adaptive-bubble behavioral perception. Cell Rep Med 2023; 4:101252. [PMID: 37879336 PMCID: PMC10694630 DOI: 10.1016/j.xcrm.2023.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/10/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Clinical viscoelastic hemostatic assays, which have been used for decades, rely on measuring biomechanical responses to physical stimuli but face challenges related to high device and test cost, limited portability, and limited scalability.. Here, we report a differential pattern using self-induced adaptive-bubble behavioral perception to refresh it. The adaptive behaviors of bubble deformation during coagulation precisely describe the transformation of viscoelastic hemostatic properties, being free of the precise and complex physical devices. And the integrated bubble array chip allows microassays and enables multi-bubble tests with good reproducibility. Recognition of the developed bubble behaviors empowers automated and user-friendly diagnosis. In a prospective clinical study (clinical model development [n = 273]; clinical assay [n = 44]), we show that the diagnostic accuracies were 99.1% for key viscoelastic hemostatic assay indicators (reaction time [R], kinetics time [K], alpha angle [Angle], maximum amplitude [MA], lysis at 30 min [LY30]; n = 220) and 100% (n = 44) for hypercoagulation, healthy, and hypocoagulation diagnoses. This should provide fresh insight into existing paradigms and help more clinical needs.
Collapse
Affiliation(s)
- Longfei Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yantong Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Hongshan Xu
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Pengfu Tian
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yongwei Duan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Wei Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yanxiang Cheng
- School of Medicine, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Long Bai
- School of Medicine, Zhejiang University, Zhejiang 310002, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Zhejiang 310002, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China.
| |
Collapse
|
8
|
Mu G, Qiao Y, Sui M, Grattan KTV, Dong H, Zhao J. Acoustic-propelled micro/nanomotors and nanoparticles for biomedical research, diagnosis, and therapeutic applications. Front Bioeng Biotechnol 2023; 11:1276485. [PMID: 37929199 PMCID: PMC10621749 DOI: 10.3389/fbioe.2023.1276485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Acoustic manipulation techniques have gained significant attention across various fields, particularly in medical diagnosis and biochemical research, due to their biocompatibility and non-contact operation. In this article, we review the broad range of biomedical applications of micro/nano-motors that use acoustic manipulation methods, with a specific focus on cell manipulation, targeted drug release for cancer treatment and genetic disease diagnosis. These applications are facilitated by acoustic-propelled micro/nano-motors and nanoparticles which are manipulated by acoustic tweezers. Acoustic systems enable high precision positioning and can be effectively combined with magnetic manipulation techniques. Furthermore, acoustic propulsion facilitates faster transportation speeds, making it suitable for tasks in blood flow, allowing for precise positioning and in-body manipulation of cells, microprobes, and drugs. By summarizing and understanding these acoustic manipulation methods, this review aims to provide a summary and discussion of the acoustic manipulation methods for biomedical research, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Guanyu Mu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yu Qiao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Kenneth T. V. Grattan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- School of Science and Technology, University of London, London, United Kingdom
| | - Huijuan Dong
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|