1
|
Peterson A, Kelly SN, Arino T, Gunther SO, Ouellette ET, Wacker JN, Woods JJ, Teat SJ, Lukens WW, Arnold J, Abergel RJ, Minasian SG. Formation of Fully Stoichiometric, Oxidation-State Pure Neptunium and Plutonium Dioxides from Molecular Precursors. Inorg Chem 2024; 63:18417-18428. [PMID: 39284039 PMCID: PMC11445724 DOI: 10.1021/acs.inorgchem.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Amidate-based ligands (N-(tert-butyl)isobutyramide, ITA) bind κ2 to form homoleptic, 8-coordinate complexes with tetravalent 237Np (Np(ITA)4, 1-Np) and 242Pu (Pu(ITA)4, 1-Pu). These compounds complete an isostructural series from Th, U-Pu and allow for the direct comparison between many of the early actinides with stable tetravalent oxidation states by nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction (SCXRD). The molecular precursors are subjected to controlled thermolysis under mild conditions with the exclusion of exogenous air and moisture, facilitating the removal of the volatile organic ligands and ligand byproducts. The preformed metal-oxygen bond in the precursor, as well as the metal oxidation state, are maintained through the decomposition, forming fully stoichiometric, oxidation-state pure NpO2 and PuO2. Powder X-ray diffraction (PXRD), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) elemental mapping supported the evaluation of these high-purity materials. This chemistry is applicable to a wide range of metals, including actinides, with accessible tetravalent oxidation states, and provides a consistent route to analytical standards of importance to the field of nuclear nonproliferation, forensics, and fundamental studies.
Collapse
Affiliation(s)
- Appie Peterson
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sheridon N. Kelly
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Trevor Arino
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - S. Olivia Gunther
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Erik T. Ouellette
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jennifer N. Wacker
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joshua J. Woods
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Simon J. Teat
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wayne W. Lukens
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Stefan G. Minasian
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Comins MB, Kaplan U, Beam J, Navarrette A, Hixon AE. Plutonium Speciation and Oxidation State Distributions in the Presence of Citrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15766-15778. [PMID: 39163648 DOI: 10.1021/acs.est.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We explored the speciation and kinetics of the Pu(VI)-citrate and Pu(III)-citrate systems (pHm = 2.5-11.0, I = 0.1 M NaCl, T = 23 °C, O2(g) < 2 ppm) using ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometry, solvent extraction, and PHREEQC modeling. Formation constants were determined for PuO2(HcitH)(aq) (log K°1,1 = 1.09 ± 0.05) and PuO2(HcitH)(citH)3- (log K°1,2 = -0.20 ± 0.07), and evidence for (PuO2)m(citH-k)n(OH)x2m(3+k)n-x was identified under alkaline conditions. Pu(VI) species were found to be less stable in the presence of citrate than in the absence of citrate (t ≤ 168 days); the rate of reduction increased with increasing pH. The direct reduction of Pu(VI) to Pu(IV) was required to fit experimental data in the presence of citrate but did not improve the fit for Pu in the absence of citrate. We also observed increased Pu(III) stability in the presence of citrate (t ≤ 293 days), with higher concentrations of Pu(III) favored at lower pH. Finally, we provide evidence of a radiolysis-driven mechanism for the citrate-mediated reduction of plutonium that involves electron transfer from the oxidative breakdown of citrate. Our work highlights the need to investigate the redox effect of organic ligands on plutonium oxidation states under repository-relevant conditions.
Collapse
Affiliation(s)
- Matthew B Comins
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 301 Stinson-Remick, Notre Dame, Indiana 46556, United States
| | - Ugras Kaplan
- Los Alamos National Laboratory, 1400 University Drive, Carlsbad, New Mexico 88220, United States
| | - Jeremiah Beam
- Los Alamos National Laboratory, 1400 University Drive, Carlsbad, New Mexico 88220, United States
| | - Adrianne Navarrette
- Los Alamos National Laboratory, 1400 University Drive, Carlsbad, New Mexico 88220, United States
| | - Amy E Hixon
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 301 Stinson-Remick, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Margate J, Bayle S, Dumas T, Dalodière E, Tamain C, Menut D, Estevenon P, Moisy P, Nikitenko SI, Virot M. Chronicles of plutonium peroxides: spectroscopic characterization of a new peroxo compound of Pu(IV). Chem Commun (Camb) 2024; 60:6260-6263. [PMID: 38722108 DOI: 10.1039/d4cc01186d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Although hydrogen peroxide (H2O2) has been highly used in nuclear chemistry for more than 75 years, the preparation and literature description of tetravalent actinide peroxides remain surprisingly scarce. A new insight is given in this topic through the synthesis and thorough structural characterization of a new peroxo compound of Pu(IV).
Collapse
Affiliation(s)
- Julien Margate
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Simon Bayle
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Marcoule, France
| | | | | | - Denis Menut
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, France
| | - Paul Estevenon
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Marcoule, France
| | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Marcoule, France
| | | | - Matthieu Virot
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| |
Collapse
|
4
|
Yin JF, Amidani L, Chen J, Li M, Xue B, Lai Y, Kvashnina K, Nyman M, Yin P. Spatiotemporal Studies of Soluble Inorganic Nanostructures with X-rays and Neutrons. Angew Chem Int Ed Engl 2024; 63:e202310953. [PMID: 37749062 DOI: 10.1002/anie.202310953] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.
Collapse
Affiliation(s)
- Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Lucia Amidani
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- Institute of Advanced Science Facilities, Shenzhen, 518107, China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Kristina Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Daronnat L, Holfeltz V, Boubals N, Dumas T, Guilbaud P, Martinez DM, Moisy P, Sauge-Merle S, Lemaire D, Solari PL, Berthon L, Berthomieu C. Investigation of the Plutonium(IV) Interactions with Two Variants of the EF-Hand Ca-Binding Site I of Calmodulin. Inorg Chem 2023; 62:8334-8346. [PMID: 37184364 DOI: 10.1021/acs.inorgchem.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to its presence in the nuclear industry and its strong radiotoxicity, plutonium is an actinide of major interest in the event of internal contamination. To improve the understanding of its mechanisms of transport and accumulation in the body, the complexation of Pu(IV) to the most common protein calcium-binding motif found in cells, the EF-hand motif of calmodulin, was investigated. Visible and X-ray absorption spectroscopies (XAS) in solution made it possible to investigate the speciation of plutonium at physiological pH (pH 7.4) and pH 6 in two variants of the calmodulin Ca-binding site I and using Pu(IV) in different media: carbonate, chloride, or nitrate solutions. Three different species of Pu were identified in the samples, with formation of 1:1 Pu(IV):calmodulin peptide complexes, Pu(IV) reduction, and formation of peptide-mediated Pu(IV) hexanuclear cluster.
Collapse
Affiliation(s)
- Loïc Daronnat
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Vanessa Holfeltz
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Nathalie Boubals
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Philippe Guilbaud
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Sandrine Sauge-Merle
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| | - David Lemaire
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint Aubin 91190, France
| | - Laurence Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Catherine Berthomieu
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| |
Collapse
|
6
|
Cot-Auriol M, Virot M, Dumas T, Diat O, Le Goff X, Moisy P, Nikitenko SI. Ultrasonically controlled synthesis of UO 2+x colloidal nanoparticles. Dalton Trans 2023; 52:2135-2144. [PMID: 36722900 DOI: 10.1039/d2dt03721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Actinide colloids and nanoparticles (NPs) currently constitute a topic of strong interest due to their potential role in advanced nuclear energetics and the environmental migration of radioactivity. A better understanding of the physico-chemical properties of nanoscale actinide oxides requires robust synthesis approaches. In this work, UO2+x NPs were successfully prepared by sonochemistry from U(IV) solutions previously stabilised in a hydrochloric medium (20 kHz, 65 °C, Ar/(10%)CO). Colloidal suspensions were found to be composed of crystalline and spherical NPs showing a UO2-like structure and measuring 18.0 ± 0.1 nm (SAXS, HR-TEM and PXRD techniques). In comparison with the controlled hydrolysis approach used as a reference, sonochemistry appears to be a simple and original synthesis route providing larger, better defined and more crystalline UO2+x NPs with a narrower size distribution. These well-defined NPs offer new opportunities for the preparation of reference actinide materials devoted to fundamental, technological and environmental studies.
Collapse
Affiliation(s)
| | - Matthieu Virot
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Xavier Le Goff
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | | |
Collapse
|
7
|
Baumann V, Popa K, Walter O, Rivenet M, Senentz G, Morel B, Konings RJ. Synthesis of Nanocrystalline PuO 2 by Hydrothermal and Thermal Decomposition of Pu(IV) Oxalate: A Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:340. [PMID: 36678093 PMCID: PMC9865700 DOI: 10.3390/nano13020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the hydrothermal conversion of actinide (IV) oxalates into nanometric actinide dioxides (AnO2) has begun to be investigated as an alternative to the widely implemented thermal decomposition method. We present here a comparison between the hydrothermal and the conventional thermal decomposition of Pu(IV) oxalate in terms of particle size, morphology and residual carbon content. A parametric study was carried out in order to define the temperature and time applied in the hydrothermal conversion of tetravalent Pu-oxalate into PuO2 and to optimize the reaction conditions.
Collapse
Affiliation(s)
- Viktoria Baumann
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- European Commission, Joint Research Centre, 76344 Karlsruhe, Germany
| | - Karin Popa
- European Commission, Joint Research Centre, 76344 Karlsruhe, Germany
| | - Olaf Walter
- European Commission, Joint Research Centre, 76344 Karlsruhe, Germany
| | - Murielle Rivenet
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | | | | | - Rudy J.M. Konings
- European Commission, Joint Research Centre, 76344 Karlsruhe, Germany
| |
Collapse
|