1
|
Indira M, Surendranath Reddy EC, Kamala Prasad V, Satyanarayana Swamy V, Kakarla RR, Venkata Krishna Reddy M, Attiri P, Vasu Govardhana Reddy P, Aminabhavi TM. Environmentally friendly and efficient TBHP-mediated catalytic reaction for the synthesis of substituted benzimidazole-2-ones: In-silico approach to pharmaceutical applications. ENVIRONMENTAL RESEARCH 2024; 252:118760. [PMID: 38522741 DOI: 10.1016/j.envres.2024.118760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
A novel method was used to synthesize benzimidazole-2-ones from the corresponding benzimidazolium salts. These salts were subsequently reacted with potassium tertiary butoxide (KOtBu), followed by oxidation using tertiary butyl hydrogen peroxide (TBHP) at room temperature in tetrahydrofuran (THF) to obtain the desired products in 1 h with excellent yields. After optimizing the reaction conditions, the study focused on preparing benzimidazole-2-ones with diverse substituents at N1 and N3 positions, including benzyl, 2',4',6'-trimethyl benzyl groups, and long-chain aliphatic substituents (hexyl, octyl, decyl, and dodecyl). The compounds were characterized by 1H and 13C NMR spectra, of which compound 2a is supported by single crystal XRD. Benzimidazole-2-one compounds exhibited promising anti-inflammatory and anti-cancer properties. The inhibition of mitochondrial Heat Shock Protein 60 (HSP60) of title compounds was also explored. Computational simulations were employed to assess anti-cancer properties of 19 benzimidazole-2-one derivatives (potential drugs). In-silico docking studies demonstrated promising binding interactions with HSP60, and these results were supported by molecular dynamics simulations. Notably, molecules 2b and 2d exhibited high affinity for HSP60 protein, highlighting their potential efficacy. The developed ligands were viable for the treatment of hepatocellular carcinoma (HCC). The findings provide valuable initial evidence supporting the efficacy of benzimidazole-2-ones as HSP60 inhibitors and lay the foundation for subsequent studies, including in-vitro assays.
Collapse
Affiliation(s)
- Meeniga Indira
- Department of Chemistry, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | - E C Surendranath Reddy
- Department of Biotechnology, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | | | - Vyshnava Satyanarayana Swamy
- Denisco Chemicals Pvt Ltd, D-24 Phase-1, Jeedimetla, Hyderabad, 500855, Telangana, India; Department of Biotechnology, University College of Sciences, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | - Pankaj Attiri
- Center of Plasma Nano-interface Engineering, Kyushu University, West Building 2, 744, Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | | | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248 007, India; Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|