1
|
Xiong G, Cui D, Tian Y, Schwarzacher T, Heslop-Harrison JS, Liu Q. Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance. Int J Mol Sci 2024; 25:12754. [PMID: 39684466 DOI: 10.3390/ijms252312754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are membrane-bound receptor genes found in many plant species. They are involved in perceiving stresses and responding to the environment. Oat (Avena sativa; 2n = 6x = 42) are an important food and forage crop with potential in drought, saline, or alkaline soils. Here, we present a comprehensive genome-wide analysis of the LecRLK gene family in A. sativa and the crop's wild relatives A. insularis (4x) and A. longiglumis (2x), unveiling a rich diversity with a total of 390 LecRLK genes identified, comprising 219 G-types, 168 L-types, and 3 C-types in oats. Genes were unevenly distributed across the oat chromosomes. GFP constructs show that family members were predominantly located in the plasma membrane. Expression under salt stress demonstrated functional redundancy and differential expression of LecRLK gene family members in oats: 173 members of this family were involved in the response to salt stress, and the expression levels of three C-type genes in the root and leaf were significantly increased under salt stress. The results show the diversity, evolutionary dynamics, and functional implications of the LecRLK gene family in A. sativa, setting a foundation for defining its roles in plant development and stress resilience, and suggesting its potential agricultural application for crop improvement.
Collapse
Affiliation(s)
- Gui Xiong
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongli Cui
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yaqi Tian
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Trude Schwarzacher
- South China National Botanical Garden, Guangzhou 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- South China National Botanical Garden, Guangzhou 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE1 7RH, UK
| | - Qing Liu
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
2
|
Ji W, Osbourn A, Liu Z. Understanding metabolic diversification in plants: branchpoints in the evolution of specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230359. [PMID: 39343032 PMCID: PMC11439499 DOI: 10.1098/rstb.2023.0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Plants are chemical engineers par excellence. Collectively they make a vast array of structurally diverse specialized metabolites. The raw materials for building new pathways (genes encoding biosynthetic enzymes) are commonly recruited directly or indirectly from primary metabolism. Little is known about how new metabolic pathways and networks evolve in plants, or what key nodes contribute to branches that lead to the biosynthesis of diverse chemicals. Here we review the molecular mechanisms underlying the generation of biosynthetic branchpoints. We also consider examples in which new metabolites are formed through the joining of precursor molecules arising from different biosynthetic routes, a scenario that greatly increases both the diversity and complexity of specialized metabolism. Given the emerging importance of metabolic gene clustering in helping to identify new enzymes and pathways, we further cover the significance of biosynthetic gene clusters in relation to metabolic networks and dedicated biosynthetic pathways. In conclusion, an improved understanding of the branchpoints between metabolic pathways will be key in order to be able to predict and illustrate the complex structure of metabolic networks and to better understand the plasticity of plant metabolism. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Wenjuan Ji
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, UK
| | - Zhenhua Liu
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
3
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024; 8:817-832. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
4
|
Cawood GL, Ton J. Decoding resilience: ecology, regulation, and evolution of biosynthetic gene clusters. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00241-3. [PMID: 39393973 DOI: 10.1016/j.tplants.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Secondary metabolism is crucial for plant survival and can generate chemistry with nutritional, therapeutic, and industrial value. Biosynthetic genes of selected secondary metabolites cluster within localised chromosomal regions. The arrangement of these biosynthetic gene clusters (BGCs) challenges the long-held model of random gene order in eukaryotes, raising questions about their regulation, ecological significance, and evolution. In this review, we address these questions by exploring the contribution of BGCs to ecologically relevant plant-biotic interactions, while also evaluating the molecular-(epi)genetic mechanisms controlling their coordinated stress- and tissue-specific expression. Based on evidence that BGCs have distinct chromatin signatures and are enriched with transposable elements (TEs), we integrate emerging hypotheses into an updated evolutionary model emphasising how stress-induced epigenetic processes have shaped BGC formation.
Collapse
Affiliation(s)
- George Lister Cawood
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
5
|
Smit SJ, Whitehead C, James SR, Jeffares DC, Godden G, Peng D, Sun H, Lichman BR. Pseudomolecule-scale genome assemblies of Drepanocaryum sewerzowii and Marmoritis complanata. G3 (BETHESDA, MD.) 2024; 14:jkae172. [PMID: 39047060 DOI: 10.1093/g3journal/jkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The Nepetoideae, a subfamily of Lamiaceae (mint family), is rich in aromatic plants, many of which are sought after for their use as flavors and fragrances or for their medicinal properties. Here, we present genome assemblies for two species in Nepetiodeae: Drepanocaruym sewerzowii and Marmoritis complanata. Both assemblies were generated using Oxford Nanopore Q20 + reads with contigs anchored to nine pseudomolecules that resulted in 335 Mb and 305 Mb assemblies, respectively, and BUSCO scores above 95% for both the assembly and annotation. We furthermore provide a species tree for the Lamiaceae using only genome-derived gene models, complementing existing transcriptome and marker-based phylogenies.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Caragh Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Sally R James
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Grant Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Deli Peng
- School of Life Science, Yunnan Normal University, Kunming 650092, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Ahmad Z, Shareen, Ganie IB, Firdaus F, Ramakrishnan M, Shahzad A, Ding Y. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2171. [PMID: 39124289 PMCID: PMC11313931 DOI: 10.3390/plants13152171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Withanolides are naturally occurring steroidal lactones found in certain species of the Withania genus, especially Withania somnifera (commonly known as Ashwagandha). These compounds have gained considerable attention due to their wide range of therapeutic properties and potential applications in modern medicine. To meet the rapidly growing demand for withanolides, innovative approaches such as in vitro culture techniques and synthetic biology offer promising solutions. In recent years, synthetic biology has enabled the production of engineered withanolides using heterologous systems, such as yeast and bacteria. Additionally, in vitro methods like cell suspension culture and hairy root culture have been employed to enhance withanolide production. Nevertheless, one of the primary obstacles to increasing the production of withanolides using these techniques has been the intricacy of the biosynthetic pathways for withanolides. The present article examines new developments in withanolide production through in vitro culture. A comprehensive summary of viable traditional methods for producing withanolide is also provided. The development of withanolide production in heterologous systems is examined and emphasized. The use of machine learning as a potent tool to model and improve the bioprocesses involved in the generation of withanolide is then discussed. In addition, the control and modification of the withanolide biosynthesis pathway by metabolic engineering mediated by CRISPR are discussed.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Shareen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Irfan Bashir Ganie
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Fatima Firdaus
- Chemistry Department, Lucknow University, Lucknow 226007, India;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Anwar Shahzad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Yulong Ding
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| |
Collapse
|
8
|
Swamidatta SH, Lichman BR. Beyond co-expression: pathway discovery for plant pharmaceuticals. Curr Opin Biotechnol 2024; 88:103147. [PMID: 38833915 DOI: 10.1016/j.copbio.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Plant natural products have been an important source of medicinal molecules since ancient times. To gain access to the whole diversity of these molecules for pharmaceutical applications, it is important to understand their biosynthetic origins. Whilst co-expression is a reliable tool for identifying gene candidates, a variety of complementary methods can aid in screening or refining candidate selection. Here, we review recently employed plant biosynthetic pathway discovery approaches, and highlight future directions in the field.
Collapse
Affiliation(s)
- Sandesh H Swamidatta
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
9
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
10
|
Jiang L, Chen S, Wang X, Sen L, Dong G, Song C, Liu Y. An improved genome assembly of Chrysanthemum nankingense reveals expansion and functional diversification of terpene synthase gene family. BMC Genomics 2024; 25:593. [PMID: 38867153 PMCID: PMC11170872 DOI: 10.1186/s12864-024-10498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, 430022, People's Republic of China
| | - Shi Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Xu Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Lin Sen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Gangqiang Dong
- Amway (China) Botanical R&D Center, Wuxi, 214115, P.R. China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People's Republic of China.
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
- Hubei Provincial Key Laboratory of Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Hubei, 430065, People's Republic of China.
| |
Collapse
|
11
|
Gao Y, Xu D, Hu Z. Telomere-to-telomere genome assembly of Oldenlandia diffusa. DNA Res 2024; 31:dsae012. [PMID: 38600880 DOI: 10.1093/dnares/dsae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024] Open
Abstract
We report the complete telomere-to-telomere genome assembly of Oldenlandia diffusa which renowned in traditional Chinese medicine, comprising 16 chromosomes and spanning 499.7 Mb. The assembly showcases 28 telomeres and minimal gaps, with a total of only five. Repeat sequences constitute 46.41% of the genome, and 49,701 potential protein-coding genes have been predicted. Compared with O. corymbosa, O. diffusa exhibits chromosome duplication and fusion events, diverging 20.34 million years ago. Additionally, a total of 11 clusters of terpene synthase have been identified. The comprehensive genome sequence, gene catalog, and terpene synthase clusters of O. diffusa detailed in this study will significantly contribute to advancing research in this species' genetic, genomic, and pharmacological aspects.
Collapse
Affiliation(s)
- Yubang Gao
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
- Henan Province Artemisia Argyi Development and Utilization Engineering Technology Research Center, Nanyang, Henan 473061, China
| | - DanDan Xu
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Zehua Hu
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
12
|
Lv W, Zhu L, Tan L, Gu L, Wang H, Du X, Zhu B, Zeng T, Wang C. Genome-Wide Identification Analysis of GST Gene Family in Wild Blueberry Vaccinium duclouxii and Their Impact on Anthocyanin Accumulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1497. [PMID: 38891305 PMCID: PMC11174658 DOI: 10.3390/plants13111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Vaccinium duclouxii, a wild blueberry species native to the mountainous regions of southwestern China, is notable for its exceptionally high anthocyanin content, surpassing that of many cultivated varieties and offering significant research potential. Glutathione S-transferases (GSTs) are versatile enzymes crucial for anthocyanin transport in plants. Yet, the GST gene family had not been previously identified in V. duclouxii. This study utilized a genome-wide approach to identify and characterize the GST gene family in V. duclouxii, revealing 88 GST genes grouped into seven distinct subfamilies. This number is significantly higher than that found in closely related species, with these genes distributed across 12 chromosomes and exhibiting gene clustering. A total of 46 members are classified as tandem duplicates. The gene structure of VdGST is relatively conserved among related species, showing closer phylogenetic relations to V. bracteatum and evidence of purifying selection. Transcriptomic analysis and qRT-PCR indicated that VdGSTU22 and VdGSTU38 were highly expressed in flowers, VdGSTU29 in leaves, and VdGSTF11 showed significant expression in ripe and fully mature fruits, paralleling trends seen with anthocyanin accumulation. Subcellular localization identified VdGSTF11 primarily in the plasma membrane, suggesting a potential role in anthocyanin accumulation in V. duclouxii fruits. This study provides a foundational basis for further molecular-level functional analysis of the transport and accumulation of anthocyanins in V. duclouxii, enhancing our understanding of the molecular mechanisms underlying anthocyanin metabolism in this valuable species.
Collapse
Affiliation(s)
- Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lifa Tan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
13
|
Gaudet M, Pollegioni P, Ciolfi M, Mattioni C, Cherubini M, Beritognolo I. Identification of a Unique Genomic Region in Sweet Chestnut ( Castanea sativa Mill.) That Controls Resistance to Asian Chestnut Gall Wasp Dryocosmus kuriphilus Yasumatsu. PLANTS (BASEL, SWITZERLAND) 2024; 13:1355. [PMID: 38794426 PMCID: PMC11125237 DOI: 10.3390/plants13101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The Asian chestnut gall wasp (ACGW) (Hymenoptera Dryocosmus kuriphilus Yasumatsu) is a severe pest of sweet chestnut (Castanea sativa Mill.) with a strong impact on growth and nut production. A comparative field trial in Central Italy, including provenances from Spain, Italy, and Greece, was screened for ACGW infestation over consecutive years. The Greek provenance Hortiatis expressed a high proportion of immune plants and was used to perform a genome-wide association study based on DNA pool sequencing (Pool-GWAS) by comparing two DNA pools from 25 susceptible and 25 resistant plants. DNA pools were sequenced with 50X coverage depth. Sequence reads were aligned to a C. mollissima reference genome and the pools were compared to identify SNPs associated with resistance. Twenty-one significant SNPs were identified and highlighted a small genomic region on pseudochromosome 3 (Chr 3), containing 12 candidate genes of three gene families: Cytochrome P450, UDP-glycosyltransferase, and Rac-like GTP-binding protein. Functional analyses revealed a putative metabolic gene cluster related to saccharide biosynthesis in the genomic regions associated with resistance that could be involved in the production of a toxic metabolite against parasites. The comparison with previous genetic studies confirmed the involvement of Chr 3 in the control of resistance to ACGW.
Collapse
Affiliation(s)
- Muriel Gaudet
- CNR Istituto di Ricerca Sugli Ecosistemi Terrestri IRET, Via Guglielmo Marconi, 2, 05010 Porano, TR, Italy; (P.P.); (M.C.); (C.M.); (M.C.)
| | | | | | | | | | - Isacco Beritognolo
- CNR Istituto di Ricerca Sugli Ecosistemi Terrestri IRET, Via Guglielmo Marconi, 2, 05010 Porano, TR, Italy; (P.P.); (M.C.); (C.M.); (M.C.)
| |
Collapse
|
14
|
Kerwin RE, Hart JE, Fiesel PD, Lou YR, Fan P, Jones AD, Last RL. Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. SCIENCE ADVANCES 2024; 10:eadn3991. [PMID: 38657073 PMCID: PMC11094762 DOI: 10.1126/sciadv.adn3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.
Collapse
Affiliation(s)
- Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jaynee E. Hart
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Dias SL, Chuang L, Liu S, Seligmann B, Brendel FL, Chavez BG, Hoffie RE, Hoffie I, Kumlehn J, Bültemeier A, Wolf J, Herde M, Witte CP, D'Auria JC, Franke J. Biosynthesis of the allelopathic alkaloid gramine in barley by a cryptic oxidative rearrangement. Science 2024; 383:1448-1454. [PMID: 38547266 DOI: 10.1126/science.adk6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.
Collapse
Affiliation(s)
- Sara Leite Dias
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Ling Chuang
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Shenyu Liu
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Benedikt Seligmann
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Fabian L Brendel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Robert E Hoffie
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Iris Hoffie
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Arne Bültemeier
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Johanna Wolf
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
16
|
Leng L, Xu Z, Hong B, Zhao B, Tian Y, Wang C, Yang L, Zou Z, Li L, Liu K, Peng W, Liu J, An Z, Wang Y, Duan B, Hu Z, Zheng C, Zhang S, Li X, Li M, Liu Z, Bi Z, He T, Liu B, Fan H, Song C, Tong Y, Chen S. Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery. Nat Commun 2024; 15:1537. [PMID: 38378731 PMCID: PMC10879537 DOI: 10.1038/s41467-024-45690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.
Collapse
Affiliation(s)
- Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Ya Tian
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lulu Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Zhoujie An
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yalin Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Sanyin Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaodong Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianxing He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baimei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Sun W, Yin Q, Wan H, Gao R, Xiong C, Xie C, Meng X, Mi Y, Wang X, Wang C, Chen W, Xie Z, Xue Z, Yao H, Sun P, Xie X, Hu Z, Nelson DR, Xu Z, Sun X, Chen S. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis. Nat Commun 2023; 14:6470. [PMID: 37833361 PMCID: PMC10576086 DOI: 10.1038/s41467-023-42253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- School of Life Science and Technology, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Chong Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xiaotong Wang
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ziyan Xie
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Peng Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xuehua Xie
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, 150040, Harbin, China.
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| |
Collapse
|
19
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
20
|
Wang Z, Peters RJ. Dynamic evolution of terpenoid biosynthesis in the Lamiaceae. MOLECULAR PLANT 2023; 16:963-965. [PMID: 37118894 PMCID: PMC11414413 DOI: 10.1016/j.molp.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
21
|
Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, Payne RME, Serna Guerrero DA, Gase K, Yamamoto K, Vaillancourt B, Caputi L, O'Connor SE, Robin Buell C. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat Chem Biol 2023:10.1038/s41589-023-01327-0. [PMID: 37188960 PMCID: PMC10374443 DOI: 10.1038/s41589-023-01327-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
Advances in omics technologies now permit the generation of highly contiguous genome assemblies, detection of transcripts and metabolites at the level of single cells and high-resolution determination of gene regulatory features. Here, using a complementary, multi-omics approach, we interrogated the monoterpene indole alkaloid (MIA) biosynthetic pathway in Catharanthus roseus, a source of leading anticancer drugs. We identified clusters of genes involved in MIA biosynthesis on the eight C. roseus chromosomes and extensive gene duplication of MIA pathway genes. Clustering was not limited to the linear genome, and through chromatin interaction data, MIA pathway genes were present within the same topologically associated domain, permitting the identification of a secologanin transporter. Single-cell RNA-sequencing revealed sequential cell-type-specific partitioning of the leaf MIA biosynthetic pathway that, when coupled with a single-cell metabolomics approach, permitted the identification of a reductase that yields the bis-indole alkaloid anhydrovinblastine. We also revealed cell-type-specific expression in the root MIA pathway.
Collapse
Affiliation(s)
- Chenxin Li
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Anh Hai Vu
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Richard M E Payne
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich, UK
| | | | - Klaus Gase
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kotaro Yamamoto
- School of Science, Association of International Arts and Science, Yokohama City University, Yokohama, Japan
| | | | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
22
|
Liu C, Smit SJ, Dang J, Zhou P, Godden GT, Jiang Z, Liu W, Liu L, Lin W, Duan J, Wu Q, Lichman BR. A chromosome-level genome assembly reveals that a bipartite gene cluster formed via an inverted duplication controls monoterpenoid biosynthesis in Schizonepeta tenuifolia. MOLECULAR PLANT 2023; 16:533-548. [PMID: 36609143 DOI: 10.1016/j.molp.2023.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/09/2023]
Abstract
Biosynthetic gene clusters (BGCs) are regions of a genome where genes involved in a biosynthetic pathway are in proximity. The origin and evolution of plant BGCs as well as their role in specialized metabolism remain largely unclear. In this study, we have assembled a chromosome-scale genome of Japanese catnip (Schizonepeta tenuifolia) and discovered a BGC that contains multiple copies of genes involved in four adjacent steps in the biosynthesis of p-menthane monoterpenoids. This BGC has an unprecedented bipartite structure, with mirrored biosynthetic regions separated by 260 kilobases. This bipartite BGC includes identical copies of a gene encoding an old yellow enzyme, a type of flavin-dependent reductase. In vitro assays and virus-induced gene silencing revealed that this gene encodes the missing isopiperitenone reductase. This enzyme evolved from a completely different enzyme family to isopiperitenone reductase from closely related Mentha spp., indicating convergent evolution of this pathway step. Phylogenomic analysis revealed that this bipartite BGC has emerged uniquely in the S. tenuifolia lineage and through insertion of pathway genes into a region rich in monoterpene synthases. The cluster gained its bipartite structure via an inverted duplication. The discovered bipartite BGC for p-menthane biosynthesis in S. tenuifolia has similarities to the recently described duplicated p-menthane biosynthesis gene pairs in the Mentha longifolia genome, providing an example of the convergent evolution of gene order. This work expands our understanding of plant BGCs with respect to both form and evolution, and highlights the power of BGCs for gene discovery in plant biosynthetic pathways.
Collapse
Affiliation(s)
- Chanchan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Jingjie Dang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peina Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Zheng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Licheng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
23
|
Li H, Wu S, Lin R, Xiao Y, Malaco Morotti AL, Wang Y, Galilee M, Qin H, Huang T, Zhao Y, Zhou X, Yang J, Zhao Q, Kanellis AK, Martin C, Tatsis EC. The genomes of medicinal skullcaps reveal the polyphyletic origins of clerodane diterpene biosynthesis in the family Lamiaceae. MOLECULAR PLANT 2023; 16:549-570. [PMID: 36639870 DOI: 10.1016/j.molp.2023.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 06/09/2023]
Abstract
The presence of anticancer clerodane diterpenoids is a chemotaxonomic marker for the traditional Chinese medicinal plant Scutellaria barbata, although the molecular mechanisms behind clerodane biosynthesis are unknown. Here, we report a high-quality assembly of the 414.98 Mb genome of S. barbata into 13 pseudochromosomes. Using phylogenomic and biochemical data, we mapped the plastidial metabolism of kaurene (gibberellins), abietane, and clerodane diterpenes in three species of the family Lamiaceae (Scutellaria barbata, Scutellaria baicalensis, and Salvia splendens), facilitating the identification of genes involved in the biosynthesis of the clerodanes, kolavenol, and isokolavenol. We show that clerodane biosynthesis evolved through recruitment and neofunctionalization of genes from gibberellin and abietane metabolism. Despite the assumed monophyletic origin of clerodane biosynthesis, which is widespread in species of the Lamiaceae, our data show distinct evolutionary lineages and suggest polyphyletic origins of clerodane biosynthesis in the family Lamiaceae. Our study not only provides significant insights into the evolution of clerodane biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the production of anticancer clerodanes through future metabolic engineering efforts.
Collapse
Affiliation(s)
- Haixiu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxi Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiren Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meytal Galilee
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haowen Qin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Huang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yong Zhao
- Novogene Bioinformatics Institute, Beijing, China
| | - Xun Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Lab. of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai 200032, China.
| |
Collapse
|
24
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
25
|
Wu Y, Gong FL, Li S. Leveraging yeast to characterize plant biosynthetic gene clusters. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102314. [PMID: 36463029 PMCID: PMC10664738 DOI: 10.1016/j.pbi.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Plant biosynthetic gene clusters (BGCs) contain multiple physically clustered non-homologous genes that encode enzymes catalyzing diverse reactions in one plant natural product biosynthetic pathway. A growing number of plant BGCs have emerged as an underlying resource for understanding plant specialized metabolism and evolution, but the characterization remains challenging. Recent studies have demonstrated that baker's yeast can serve as a versatile platform for the characterization of plant BGCs, from single-gene characterization to multiple genes and hitherto unknown putative BGC validation and elucidation. In this review, we will summarize the strategies and examples of the applications of yeast in plant BGC characterization and share our perspective on the development of a systematic pipeline to fully leverage yeast to advance the understanding of plant BGCs and plant natural product biomanufacturing.
Collapse
Affiliation(s)
- Yinan Wu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Franklin L Gong
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Méteignier LV, Nützmann HW, Papon N, Osbourn A, Courdavault V. Emerging mechanistic insights into the regulation of specialized metabolism in plants. NATURE PLANTS 2023; 9:22-30. [PMID: 36564633 DOI: 10.1038/s41477-022-01288-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Plants biosynthesize a broad range of natural products through specialized and species-specific metabolic pathways that are fuelled by core metabolism, together forming a metabolic network. Specialized metabolites have important roles in development and adaptation to external cues, and they also have invaluable pharmacological properties. A growing body of evidence has highlighted the impact of translational, transcriptional, epigenetic and chromatin-based regulation and evolution of specialized metabolism genes and metabolic networks. Here we review the forefront of this research field and extrapolate to medicinal plants that synthetize rare molecules. We also discuss how this new knowledge could help in improving strategies to produce useful plant-derived pharmaceuticals.
Collapse
Affiliation(s)
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Nicolas Papon
- IRF, SFR ICAT, Université Angers and Université de Bretagne-Occidentale, Angers, France
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK.
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France.
| |
Collapse
|
27
|
Wu D, Hu Y, Akashi S, Nojiri H, Guo L, Ye C, Zhu Q, Okada K, Fan L. Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1354-1367. [PMID: 35781905 PMCID: PMC9544640 DOI: 10.1111/tpj.15893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 05/31/2023]
Abstract
Momilactone A, an important plant labdane-related diterpenoid, functions as a phytoalexin against pathogens and an allelochemical against neighboring plants. The genes involved in the biosynthesis of momilactone A are found in clusters, i.e., momilactone A biosynthetic gene clusters (MABGCs), in the rice and barnyardgrass genomes. In addition, we know little about the origin and evolution of MABGCs. Here, we integrated results from comprehensive phylogeny and comparative genomic analyses of the core genes of MABGC-like clusters and MABGCs in 40 monocot plant genomes, providing convincing evidence for the birth and evolution of MABGCs in grass species. The MABGCs found in the PACMAD clade of the core grass lineage (including Panicoideae and Chloridoideae) originated from a MABGC-like cluster in Triticeae (BOP clade) via lateral gene transfer (LGT) and followed by recruitment of MAS1/2 and CYP76L1 genes. The MABGCs in Oryzoideae originated from PACMAD through another LGT event and lost CYP76L1 afterwards. The Oryza MABGC and another Oryza diterpenoid cluster c2BGC are two distinct clusters, with the latter originating from gene duplication and relocation within Oryzoideae. Further comparison of the expression patterns of the MABGC genes between rice and barnyardgrass in response to pathogen infection and allelopathy provides novel insights into the functional innovation of MABGCs in plants. Our results demonstrate LGT-mediated origination of MABGCs in grass and shed lights into the evolutionary innovation and optimization of plant biosynthetic pathways.
Collapse
Affiliation(s)
- Dongya Wu
- Hainan Institute of Zhejiang UniversityYonyou Industrial ParkSanya572025China
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Yiyu Hu
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Shota Akashi
- Biotechnology Research CenterUniversity of Tokyo113‐8657TokyoJapan
| | - Hideaki Nojiri
- Biotechnology Research CenterUniversity of Tokyo113‐8657TokyoJapan
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Chu‐Yu Ye
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Qian‐Hao Zhu
- CSIRO Agriculture and Food, Black Mountain LaboratoriesCanberraACT2601Australia
| | - Kazunori Okada
- Biotechnology Research CenterUniversity of Tokyo113‐8657TokyoJapan
| | - Longjiang Fan
- Hainan Institute of Zhejiang UniversityYonyou Industrial ParkSanya572025China
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| |
Collapse
|
28
|
Nguyen TD, Dang TTT. Old path, new frontier. Nat Chem Biol 2022; 18:582-583. [PMID: 35606557 DOI: 10.1038/s41589-022-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| |
Collapse
|