1
|
Cardoso AO, Bogireddy NKR, Celaya CA, Muñiz J, Agarwal V. Experimental and theoretical approaches to unveil the interaction mechanisms of carbon dots with 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136783. [PMID: 39694012 DOI: 10.1016/j.jhazmat.2024.136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/10/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Developing a non-toxic, cost-effective, biocompatible, selective, and sensitive optical sensor for the optical detection of 4-nitrophenol (4-NP) has been challenging yet significant. Among carbon-based materials, the selectivity of carbon dots toward 4-NP is a key area of research, and a comprehensive understanding is crucial to broaden its practical application. Our unique contribution to this field involves synthesizing and testing different N-doped carbon dots (CDs) for selective 4-NP detection through absorbance and photoluminescence. We have also theoretically provided the interaction mechanism between 4-NP and N-doped CDs (H-NCDs). The optimized hydrothermally synthesized nitrogen-doped CDs demonstrate excellent specificity towards 4-NP through simultaneous quenching of the PL (98 %) and redshift of the signal (34 nm) in an aqueous medium. The density functional theory (DFT) model that was performed to understand the electronic structure properties behind the interaction of 4-NP and CD could be a predictive tool for developing CD-based materials to enhance 4-NP capture. Our study provides a mechanistic understanding of the analyte-specific CD design. It offers promising implications for the practical application of our findings, thereby contributing a unique perspective to the field and benefiting various industries and environmental monitoring efforts, sparking optimism for the future.
Collapse
Affiliation(s)
- Alan O Cardoso
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, CIICAp. Universidad Autónoma del Estado de Morelos, UAEM, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico; Instituto de Ciencias Físicas, National Autonomous University of Mexico (UNAM), Mexico C.P. 04510, Mexico
| | | | - Christian A Celaya
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos C.P. 62580, Mexico; Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, B.C. C.P. 22800, Mexico
| | - Jesús Muñiz
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos C.P. 62580, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, CIICAp. Universidad Autónoma del Estado de Morelos, UAEM, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico.
| |
Collapse
|
2
|
Fang J, Fan Z, Huang Q, Pan S, Qin C, Jie Y. Size Inhomogeneity Facilitates Exciton Dissociation in Carbon Dots. NANO LETTERS 2025; 25:2554-2560. [PMID: 39886921 DOI: 10.1021/acs.nanolett.4c06420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Organic carbon dots (CDs) exhibit tunable electronic structures and exceptional optical properties, supporting both exciton- and charge-driven applications. However, the mechanisms underlying this dual functionality are poorly understood. This study establishes the role of size inhomogeneity in exciton dissociation for the first time. Two distinct CD types were identified, each class with a size deviation. Intradot relaxation within the same type of CDs composes of a fast (∼1 ps) and a slow (∼tens of picoseconds) component among size-deviated subpopulations. Interdot exciton transfer between two types of CDs occurs with a time scale of 4.4 ps but is evident only when the CDs with higher-energy states are excited. It also facilitates exciton dissociation, generating nearly free carriers, confirmed by EPR spectra (g-value = 2.005). These findings highlight the critical role of energy level alignment and selective excitation in mediating exciton dissociation, providing key insights for optimizing CDs in light emission and energy conversion applications.
Collapse
Affiliation(s)
- Jiawen Fang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| | - Zengbo Fan
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qinxiang Huang
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Shusheng Pan
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Yanni Jie
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Pandey A, Raikwar V, Awade D. Synthesis of Carbon Dots/PVP Composite for White Light Emitting Diode (WLED) Application. J Fluoresc 2025:10.1007/s10895-025-04167-4. [PMID: 39921691 DOI: 10.1007/s10895-025-04167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Carbon dots (CDs) are extensively utilized in biomedicine, optical devices, and sensing due to their low toxicity, excellent optical properties, and ease of synthesis. Nonetheless, there is ongoing discussion over the comprehensive investigation of CDs photoluminescence (PL) process because of their intricate architectures and surface functions. Carbon dots (CDs) and CD/PVP composites were one step synthesized in a hydrothermal process using citric acid and NaOH as precursors. Due to surface defects of CDs after incorporating into Polyvinylpyrrolidone (PVP) both shift in color as well as change in emission is observed. It shows the enhancement of the luminescence property of CDs/PVP and the application of CD/PVP composite in the field of optical emission. Further for practical application, emission of white light emitting diodes (WLEDs) was demonstrated by coating a 370 nm UV-LED with CD/PVP composite. The WLED shows significant CRI, good S/P ratio, the color gamut score Rg and color fidelity score Rf which are essential features for a good light source. Our research offers a valuable reference for CD/PVP composites in a facile, low temperature and low-cost hydrothermal process and developing WLED with UV-LED and metal free phosphors.
Collapse
Affiliation(s)
- Archana Pandey
- Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai, 400086, India
| | - Vaishali Raikwar
- Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai, 400086, India.
| | | |
Collapse
|
4
|
Jiang Y, Han Q, Peng J, Lv Y, Ruan Y, Weng X, Milcovich G. Tailored hydrothermal platforms for fluorescent Q-dots with theranostic application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125773. [PMID: 39892358 DOI: 10.1016/j.saa.2025.125773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
This study explores the fluorescence properties of the hydrothermal reaction of citric acid and urea under different conditions, as they have attracted considerable attention in recent years. However, so far, the detailed formation process and the precise chemical structure of the resulting fluorescent products remain inadequately understood. The results reveal that under mild conditions, fluorescence is mainly due to organic molecules, identified as citrazinic acid through acid treatment with spectroscopic techniques. Moreover, the fluorescence shifts towards carbonized quantum dots (CDs) is both temperature and reaction duration-dependent. Comparative analysis versus graphene quantum dots and citrazinic acid elucidated differences in solution properties, including excitation-dependency, photobleaching and fluorescence lifetime. With reference to previous findings in literature, this study provides for an innovative, detailed understanding on the evolution of fluorescent species, by tuning the reaction conditions. Hence, they propose for excellent future strategic application in the nanotechnology and theranostic fields.
Collapse
Affiliation(s)
- Yijie Jiang
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004 PR China
| | - Qun Han
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004 PR China
| | - Jianqin Peng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004 PR China
| | - Ying Lv
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004 PR China
| | - Yongming Ruan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Xuexiang Weng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004 PR China.
| | - Gesmi Milcovich
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy.
| |
Collapse
|
5
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2025; 20:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
6
|
Maturi S, Baschieri A, Locatelli E, Buccioli M, Comes Franchini M, Sambri L. Long-chain surface-modified red-emitting carbon dots as fluorescent additives for 3D printing vat-photopolymerization. NANOSCALE ADVANCES 2025; 7:448-455. [PMID: 39640004 PMCID: PMC11615732 DOI: 10.1039/d4na00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Carbon dots have recently attracted tremendous scientific attention thanks to their enhanced luminescence properties, photostability and low toxicity. In particular, red-emitting carbon dots (RCDs) are assuming increasing importance in biomedical applications, such as bio-imaging and phototherapy. At the same time, the possibility to create functional and complex objects by means of vat-photopolymerization-based three-dimensional (3D) printing techniques is continuously growing. This work describes the synthesis of long-chain surface-modified red emitting carbon dots, L-RCDs by esterification of RCDs, obtained from green reagents with a new solvothermal synthesis, and their employment as fluorescent additives in two formulations of photopolymerizable resins. The printing process proceeded smoothly in all cases, and red-emitting objects with different mechanical properties have been successfully obtained.
Collapse
Affiliation(s)
- Simone Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR) Via Piero Gobetti 101 40129 Bologna Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Martina Buccioli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| |
Collapse
|
7
|
Rezaei A, Monfared-Hajishirkiaee R, Hosseinzadeh-Moghaddam S, Behzadi M, Shahangian SS. Enhancing leachate management with antibacterial nanocomposites incorporating plant-based carbon dots and Satureja Khuzestanica essential oils. Colloids Surf B Biointerfaces 2024; 245:114296. [PMID: 39396456 DOI: 10.1016/j.colsurfb.2024.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Landfill leachate, a complex mixture of pollutants, poses a significant environmental hazard. This study reports the synthesis and characterization of superabsorbent nanocomposites (SANs) designed for enhanced performance in waste management applications. SANs were prepared using carboxymethyl cellulose (CMC) and sodium polyacrylate (SPA) as the main components, carbon dots (CDs) to improve absorption, and Satureja Khuzestanica essential oil (SEO) for antibacterial performance. The results demonstrated that the addition of CDs significantly increased the absorption capacity and liquid retention of the samples, with a water absorption capacity reaching up to 8621 %. Furthermore, the samples exhibited high mechanical strength, with tensile strength improving by over 100 % in the presence of CDs. The inclusion of SEO provided strong antibacterial activity against Escherichia coli and Staphylococcus aureus, with inhibition zones measuring up to 26 mm. These SANs, with their high absorption capacity, mechanical robustness, and antibacterial properties, show great potential for improving waste management practices, particularly in leachate absorption strategies.
Collapse
Affiliation(s)
- Ali Rezaei
- Polyean Technology Inc., Toronto, Canada.
| | | | | | | | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
8
|
Kasprzyk W, Romańczyk PP, Kurek SS, Świergosz T. A switchable green emitting dye and its phenomenal properties: implications for the photoluminescence features of carbon dots. NANOSCALE 2024; 16:17079-17089. [PMID: 39189364 DOI: 10.1039/d4nr02517b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
New molecular fluorophores are constantly being discovered in post-synthetic mixtures of carbon dots (CDs), prompting researchers to elucidate their role in the optical properties of these nanomaterials. It has been reported that the green-emitting fluorophore that forms during the synthesis of popular citric acid/urea CDs is HPPT (4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione). However, due to the low concentration of HPPT-like molecules within the structure of CDs, their actual binding and contribution to the optical properties of CDs has not so far been convincingly confirmed. In this joint experimental and quantum chemical study, we show that HPPT is a strong acid and only its anionic form, HPPT-, present in solutions of pH 0-10, is emissive. Next, its fluorescence can be switched off rapidly in strongly alkaline environments as a result of HPPT- hydrolysis, leading to the opening of its pyrrole ring and formation of CDPC (3-carbamoyl-2,6-dihydroxypyridine-4-carboxylic acid), existing as the CDPC2- dianion under these conditions. Eventually, we found that the ring opening hydrolysis is reversible and the green emission may be restored in acidic environments. The kinetics and mechanism of this hydrolysis were also revealed. The optical features of citric acid (CA)-urea CDs under various conditions were compared with a simpler CD system prepared by treating the CDs obtained from CA solely with HPPT- (HPPT@CDs). Our results indicate the feasibility of the post-synthetic modification of HPPT- present in the structures of CA-urea CDs and HPPT@CDs. Without HPPT- they emit blue fluorescence only. Thus, this makes the nanosystem switch the PL emission colour reversibly from green to blue owing to the opening and closing of the pyrrole ring in HPPT-like molecules. More importantly, the latter process may be considered a first step toward genuine fine tuning of the PL emission colour from CDs. These findings are of general importance to the further development of citric acid-based CDs with tailored properties.
Collapse
Affiliation(s)
- Wiktor Kasprzyk
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Piotr P Romańczyk
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Stefan S Kurek
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Tomasz Świergosz
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| |
Collapse
|
9
|
Lee SJ, Zheng YY, Chen WM, Hsueh YH. Nitrogen-Doped Carbon Dots: A New Powerful Fluorescent Dye with Substantial Effect on Bacterial Cell Labeling. ACS OMEGA 2024; 9:36453-36463. [PMID: 39220540 PMCID: PMC11359637 DOI: 10.1021/acsomega.4c04273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Carbon dots (CDs)-minute carbon nanoparticles with remarkable luminescent properties, photostability, and low toxicity-show potential for various applications. CDs synthesized using citric acid and urea are the least toxic to biological environments. Here, we aimed to explore the effect of CDs synthesized using citric acid and urea at 50, 33, and 25% (CDs 1/1, 1/2, and 1/3, respectively) weight ratios in a microwave on bacterial cell fluorescence sensing and labeling. The nanoscale properties of CDs were investigated via transmission electron microscopy and dynamic light scattering particle size analysis. X-ray powder diffraction confirmed the graphitic structures of CDs. X-ray photoelectron spectroscopy revealed that the nitrogen content increased gradually with increasing urea ratios, indicating functional group changes. Transient photoluminescence decay periods demonstrated superior fluorescence intensity of CDs 1/3 under blue, green, and red lights. The use of CDs was notably more efficient than traditional methods in staining bacterial cells. Fluorescence microscopy of 10 g-positive and 10 g-negative bacteria revealed enhanced staining of Gram-positive strains, with CDs 1/3 presenting the best results. The CDs exhibited excellent photostability, maintaining poststaining fluorescence for 100 min, surpassing the performance of conventional dyes. CDs could serve as potential fluorescent dyes for the rapid discrimination of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Sin-Jen Lee
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| | - Ya-Yun Zheng
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| | - Wen-Ming Chen
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| | - Yi-Huang Hsueh
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| |
Collapse
|
10
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
11
|
Nguyen KG, Huš M, Baragau IA, Bowen J, Heil T, Nicolaev A, Abramiuc LE, Sapelkin A, Sajjad MT, Kellici S. Engineering Nitrogen-Doped Carbon Quantum Dots: Tailoring Optical and Chemical Properties through Selection of Nitrogen Precursors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310587. [PMID: 38546418 DOI: 10.1002/smll.202310587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Indexed: 06/13/2024]
Abstract
The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.
Collapse
Affiliation(s)
- Kiem G Nguyen
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Matej Huš
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, SI-1001, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, Ljubljana, 1000, Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia (ZVKDS), Poljanska 40, Ljubljana, 1000, Slovenia
| | - Ioan-Alexandru Baragau
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - James Bowen
- School of Engineering and Innovation, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Tobias Heil
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Adela Nicolaev
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Laura Elena Abramiuc
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Andrei Sapelkin
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Muhammad Tariq Sajjad
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Suela Kellici
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| |
Collapse
|
12
|
Onishi BSD, Carneiro Neto AN, Bortolleto-Santos R, Masterlaro VR, Carlos LD, Ferreira RAS, Ribeiro SJL. Carbon dots on LAPONITE® hybrid nanocomposites: solid-state emission and inter-aggregate energy transfer. NANOSCALE 2024; 16:6286-6295. [PMID: 38451238 DOI: 10.1039/d3nr06336d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This study delves into the photoluminescent characteristics of solid-state hybrid carbon dots/LAPONITE® (CDLP). These hybrid materials were synthesized using the hydrothermal method with a precise pH control set at 8.5. The LAPONITE® structure remains intact without structural collapse, and we detected the possible deposition of carbon dots (CDs) aggregates on the clay mineral's edges. The use of different concentrations of citric acid (10-, 6-, 2- and 1-times weight/weight of LAPONITE® mass, maintaining the 1 : 1 molar ratio with ethylenediamine) during synthesis results in different CDs concentrations in CDLP-A (low precursors concentration) and CDLP-D (high concentration) with an amorphous structure and average size around 2.8-3.0 nm. The CDLP displayed visible photoluminescence emission in aqueous and powder, which the last underwent quenching according to lifetimes and quantum yield measurements. Low-temperature measurements revealed an enhancement of the non-radiative pathways induced by aggregation. Energy transfer modelling based on Förster-Dexter suggests an approximate mean distance of 9.5 nm between clusters of CDs.
Collapse
Affiliation(s)
- Bruno S D Onishi
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
- Institute of Chemistry, São Paulo State University-UNESP, São Paulo, Araraquara, 14800-060, Brazil.
| | - Albano N Carneiro Neto
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ricardo Bortolleto-Santos
- Postgraduate Program in Environmental Technology, University of Ribeirão Preto-UNAERP, São Paulo, Ribeirão Preto, 14096-900, Brazil
| | - Valmor R Masterlaro
- São Carlos Institute of Chemistry, University of São Paulo-USP, São Paulo, São Carlos, 13566-590, Brazil
| | - Luís D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rute A S Ferreira
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University-UNESP, São Paulo, Araraquara, 14800-060, Brazil.
| |
Collapse
|
13
|
Stepanidenko EA, Vedernikova AA, Miruschenko MD, Dadadzhanov DR, Feferman D, Zhang B, Qu S, Ushakova EV. Red-Emissive Center Formation within Carbon Dots Based on Citric Acid and Formamide. J Phys Chem Lett 2023; 14:11522-11528. [PMID: 38091348 DOI: 10.1021/acs.jpclett.3c02837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.
Collapse
Affiliation(s)
- Evgeniia A Stepanidenko
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Anna A Vedernikova
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Mikhail D Miruschenko
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Daler R Dadadzhanov
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel Feferman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Elena V Ushakova
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| |
Collapse
|
14
|
Bosu S, Rajamohan N, Sagadevan S, Raut N. Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. CHEMOSPHERE 2023; 345:140471. [PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
Collapse
Affiliation(s)
- Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nitin Raut
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| |
Collapse
|
15
|
Schneider H, Strauss V, Vogl S, Antonietti M, Filonenko S. Eutectic Media Open a Synthetic Route to Oligocitrazinic Acid Fluorophores of Purple Hue. Chemphyschem 2023; 24:e202300180. [PMID: 37358187 DOI: 10.1002/cphc.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Under isochoric and solvent-free conditions, the reaction between ammonium formate and citric acid results in a deeply purple reaction product with fluorescent properties. This brings this reaction in the realm of bio-based fluorophores and bottom-up carbon nanodots from citric acid. The reaction conditions are optimized in terms of UV-vis spectroscopic properties and, subsequently, the main reaction product is separated. While the structural analysis does not give any indication for carbon nanodots in a general sense, it points towards the formation of molecular fluorophores that consist of oligomerized citrazinic acid derivatives. Furthermore, EPR spectroscopy reveals the presence of stable free radicals in the product. We hypothesize that such open-shell structures may play a general role in molecular fluorophores from citric acid and are not yet sufficiently explored. Therefore, we believe that analysis of these newly discovered fluorophores may contribute to a better understanding of the properties of fluorophores and CND from citric acid in general.
Collapse
Affiliation(s)
- Helen Schneider
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Volker Strauss
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sarah Vogl
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Markus Antonietti
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Svitlana Filonenko
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
16
|
Du F, Yang LP, Wang LL. Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. J Mater Chem B 2023; 11:8117-8135. [PMID: 37555267 DOI: 10.1039/d3tb01329d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, carbon dots (CDs) as newly developed carbon-based nanomaterials due to advantages such as excellent photostability and easy surface functionalization have generated wide application prospects in fields such as biological imaging and chemical sensing. The multicolor emission carbon dots (M-CDs) were acquired through the selection of different carbon source precursors, change of synthesis conditions and synthesis environment. Therefore, the aim of this review is to summarize the latest research progress in polychromatic CDs from the perspectives of synthesis strategies, luminescent mechanisms, luminescent properties and applications. This review focuses on how to prepare MCDs by changing raw materials and synthesis conditions such as reaction temperature, synthesis time, synthesis pH, and synthesis solvent. This review also presents the optical properties of MCDs, concentration effects, solvent effects, pH effects, elemental doping, and surface passivation on them, as well as their creative applications in the field of sensing applications. It is anticipated that this review will serve as a guide for the development of multifunctional M-CDs and inspire future research on controllable design and preparation of M-CDs.
Collapse
Affiliation(s)
- Fangfang Du
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Liu-Pan Yang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Li-Li Wang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
17
|
Guo Z, Wang Z, Liu Y, Wu H, Zhang Q, Han J, Liu J, Zhang C. Carbon Dots from Lycium barbarum Attenuate Radiation-Induced Bone Injury by Inhibiting Senescence via METTL3/Clip3 in an m 6A-Dependent Manner. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20726-20741. [PMID: 37088945 DOI: 10.1021/acsami.3c01322] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Radiation-induced bone injury management remains a challenge in clinical practice, and there is no effective medicine. Recently, biomass-derived carbon dots (CDs) have attracted attention in biomedical engineering due to the advantages of abundant heteroatoms, low toxicity, and no need to drug loading. Here, we report that CDs, synthesized from Lycium barbarum via hydrothermal strategy, can effectively alleviate radiation-induced bone injury. CCK-8, apoptosis analysis, β-galactosidase staining, quantitative polymerase chain reaction, and western blots demonstrate that CDs can mediate radiation-induced damage and senescence of bone marrow mesenchymal stem cells (BMSCs). CDs regulate osteogenic- and adipogenic-balance after irradiation, shown by alizarin red and oil red O staining. In vivo experiments reveal that CDs prevent the occurrence of osteoradionecrosis in rats, demonstrated by micro-CT and histology examination. The osseointegration of titanium implants installed in irradiated bone is promoted by CDs. Mechanistically, CDs increase the N6-methyladenosine (m6A) level of irradiated BMSCs via the increased methyltransferase-like 3 (METTL3). High-throughput sequencing facilitates detection of increased m6A levels located in the 3'-untranslated regions (UTR) of the CAP-Gly domain containing linker protein 3 (Clip3) mRNA. The dual-luciferase reporter assay shows that 3'UTR is the direct target of METTL3. Subsequently, the increased m6A modification led to enhanced degradation of mRNA and downregulated CLIP3 expression, eventually resulting in the alleviation of radiation-induced bone injury. Interfering with the METTL3/Clip3 axis can antagonize the effect of CDs, indicating that CDs mediate radiation-induced bone injury via the METTL3/Clip3 axis. Taken together, CDs from L. barbarum alleviate radiation-induced bone injury by inhibiting senescence via regulation of m6A modification of Clip3. The present study paves a new pathway for the management of radiation-induced bone injury.
Collapse
Affiliation(s)
- Zhiyong Guo
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zilin Wang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yige Liu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hao Wu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Qiaoyu Zhang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Han
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiannan Liu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenping Zhang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
18
|
Flis A, Trávníčková M, Koper F, Knap K, Kasprzyk W, Bačáková L, Pamuła E. Poly(octamethylene citrate) Modified with Glutathione as a Promising Material for Vascular Tissue Engineering. Polymers (Basel) 2023; 15:polym15051322. [PMID: 36904563 PMCID: PMC10006902 DOI: 10.3390/polym15051322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
One of the major goals of vascular tissue engineering is to develop much-needed materials that are suitable for use in small-diameter vascular grafts. Poly(1,8-octamethylene citrate) can be considered for manufacturing small blood vessel substitutes, as recent studies have demonstrated that this material is cytocompatible with adipose tissue-derived stem cells (ASCs) and favors their adhesion and viability. The work presented here is focused on modifying this polymer with glutathione (GSH) in order to provide it with antioxidant properties, which are believed to reduce oxidative stress in blood vessels. Cross-linked poly(1,8-octamethylene citrate) (cPOC) was therefore prepared by polycondensation of citric acid and 1,8-octanediol at a 2:3 molar ratio of the reagents, followed by in-bulk modification with 0.4, 0.8, 4 or 8 wt.% of GSH and curing at 80 °C for 10 days. The chemical structure of the obtained samples was examined by FTIR-ATR spectroscopy, which confirmed the presence of GSH in the modified cPOC. The addition of GSH increased the water drop contact angle of the material surface and lowered the surface free energy values. The cytocompatibility of the modified cPOC was evaluated in direct contact with vascular smooth-muscle cells (VSMCs) and ASCs. The cell number, the cell spreading area and the cell aspect ratio were measured. The antioxidant potential of GSH-modified cPOC was measured by a free radical scavenging assay. The results of our investigation indicate the potential of cPOC modified with 0.4 and 0.8 wt.% of GSH to produce small-diameter blood vessels, as the material was found to: (i) have antioxidant properties, (ii) support VSMC and ASC viability and growth and (iii) provide an environment suitable for the initiation of cell differentiation.
Collapse
Affiliation(s)
- Agata Flis
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
- Correspondence: (A.F.); (E.P.)
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Filip Koper
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Kraków, Poland
| | - Karolina Knap
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
| | - Wiktor Kasprzyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Kraków, Poland
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
- Correspondence: (A.F.); (E.P.)
| |
Collapse
|
19
|
Wang T, Chen Y, Wang B, Wu M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front Physiol 2023; 14:1126805. [PMID: 36895633 PMCID: PMC9990761 DOI: 10.3389/fphys.2023.1126805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Visualizing biological tissues in vivo at a cellular or subcellular resolution to explore molecular signaling and cell behaviors is a crucial direction for research into biological processes. In vivo imaging can provide quantitative and dynamic visualization/mapping in biology and immunology. New microscopy techniques combined with near-infrared region fluorophores provide additional avenues for further progress in vivo bioimaging. Based on the development of chemical materials and physical optoelectronics, new NIR-II microscopy techniques are emerging, such as confocal and multiphoton microscopy, light-sheet fluorescence microscopy (LSFM), and wide-field microscopy. In this review, we introduce the characteristics of in vivo imaging using NIR-II fluorescence microscopy. We also cover the recent advances in NIR-II fluorescence microscopy techniques in bioimaging and the potential for overcoming current challenges.
Collapse
Affiliation(s)
- Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|