1
|
Ren G, He Y, Liu L, Wu Y, Jiao Q, Liu J, Cai X, Zhu Y, Huang Y, Huang M, Xie H. Effects of collagen hydrolysate on the stability of anthocyanins: Degradation kinetics, conformational change and interactional characteristics. Food Chem 2025; 464:141513. [PMID: 39395336 DOI: 10.1016/j.foodchem.2024.141513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Anthocyanins are desirable compounds in the food industry owing to their attractive color and high biological activity; however, their poor stability remains a substantial challenge. Here, we show that low-concentration (15 mg/mL) collagen hydrolysate (CH) exhibits a potent stabilization effect on red cabbage anthocyanins (RCAs). CH extended the half-life of RCA by 6.2-fold from 40.7 to 251.1 h. Dynamic light scattering and transmission electron microscopy confirmed the formation of CH-RCA complexes, which exhibited stronger antioxidant activity than RCA alone. Ultraviolet-vis and infrared spectra demonstrated that RCA binding resulted in a more open and disordered CH structure. Centaureidin-3-O-glucoside (C3G) exhibited high affinity for CH, with a binding ratio close to 1.5:1. 1H nuclear magnetic resonance confirmed that the main interaction sites with CH were at the C3G A- and C-rings. This study clarifies how protein hydrolysates protect against anthocyanin degradation from experimental and theoretical aspects.
Collapse
Affiliation(s)
- Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Lei Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yingjie Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Qingbo Jiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jiacheng Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xinpei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Yang X, Zou Y, Zhang H, Zhou Y, Zhu Q, Liu Y, Wang Z. Effects of different white nanomaterials on pH response ability and physicochemical performance of anthocyanin-loaded carboxymethyl cellulose-polyvinyl alcohol films. Food Chem X 2025; 25:102137. [PMID: 39844963 PMCID: PMC11750485 DOI: 10.1016/j.fochx.2024.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films. The results revealed that some nanomaterials showed capability in improving the polymer molecular interactions and enhancement in mechanical properties, barrier ability, and antioxidant activity. However, nanomaterials containing Zn was not suitable for anthocyanin-loaded film modification, because it could destroy the pH responsiveness of anthocyanin. The nano Al2O3 could increase the sensitivity of anthocyanin-loaded film in pH-response, which achieved the highest performance score during pork storage. This investigation will provide theoretical support for the development of more optimized pH-responsive anthocyanin-loaded films in the future.
Collapse
Affiliation(s)
- Yuqian Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xue Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yunfei Zou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Huixuan Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zhengcong Wang
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
3
|
Guo J, Yao L, Wang X, Song R, Yang B, Jin D, Guo J, Wu G. Dual-Responsive Antibacterial Hydrogel Patch for Chronic-Infected Wound Healing. Biomacromolecules 2024; 25:7283-7297. [PMID: 39418536 DOI: 10.1021/acs.biomac.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bacterial infections in chronic wounds, such as bedsores and diabetic ulcers, present significant healthcare challenges. Excessive antibiotic use leads to drug resistance and lacks precision for targeted wound treatment. Our study introduces an innovative solution: a near-infrared (NIR) and pH dual-responsive hydrogel patch incorporating regenerated silk fibroin (RSF) and molybdenum dioxide (MoO2) nanoparticles (NPs), offering enhanced mechanical properties, precise drug release, and superior antibacterial efficacy. The dual-responsive hydrogel patch allows for precise control over antibiotic release triggered by NIR light and pH fluctuations, enabling tailored treatment for infected wounds. First, the pH-responsive characteristic matches the alkaline environment of the infected wound, ensuring on-demand antibiotic release. Second, NIR exposure accelerates antibiotic release, enhancing wound healing and providing additional antibacterial effects. Additionally, the patch further blocks bacterial infection, promotes wound repair, and degrades in sync with the healing process, further bolstering the efficacy against wound infections.
Collapse
Affiliation(s)
- Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
- College of Agriculture, Anshun University, Anshun 561000, P. R. China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Liang Yao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Bo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
| | - Guohua Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| |
Collapse
|
4
|
Zhang K, Tian X, Xu P, Zhu Y, Guang S, Xu H. Multi-ion detection chemosensor based on rhodamine for turn-on fluorescence sensing and bioimaging of Fe 3+, Al 3+, Cr 3+, and Hg 2+ under different channels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124484. [PMID: 38788504 DOI: 10.1016/j.saa.2024.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
A novel rhodamine-based multi-ion fluorescent sensor, RGN, was designed and synthesized for the highly selective detection of mercury ions (Hg2+) in ethanol and water systems, as well as trivalent cations (Fe3+, Al3+, and Cr3+) in acetonitrile and water systems using a two-step Schiff base reaction method. Nuclear magnetic titration experiments and theoretical calculations demonstrated that the sensor achieved the detection of the aforementioned metal ions through the fluorescence turn-on phenomenon induced by lactam ring-opening. Density functional theory (DFT) calculation results showed decreased HOMO-LUMO energy gaps and increased dipole moments, indicating the effective coordination of the sensor with the corresponding metal ions to form more stable complexes, thereby achieving detection objectives. Furthermore, the fluorescence turn-on sensor RGN exhibited relatively low detection limits, with limits of detection (LOD) for Fe3+, Al3+, Cr3+, and Hg2+ being 10.20 nM, 14.66 nM, 58.78 nM, and 73.33 nM, respectively. Finally, practical applications of sensor RGN in environmental water samples, L929 cells, and zebrafish were demonstrated, indicating its potential for detecting and tracking Fe3+, Al3+, Cr3+, and Hg2+ in environmental samples and biological systems, with prospects for biomedical applications in the diagnosis and treatment of heavy metal ion-induced diseases.
Collapse
Affiliation(s)
- Kezhen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peipei Xu
- School of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yan Zhu
- School of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shanyi Guang
- School of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Brookstein O, Shimoni E, Eliaz D, Kaplan-Ashiri I, Carmel I, Shimanovich U. Metal ions guide the production of silkworm silk fibers. Nat Commun 2024; 15:6671. [PMID: 39107276 PMCID: PMC11303403 DOI: 10.1038/s41467-024-50879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Silk fibers' unique mechanical properties have made them desirable materials, yet their formation mechanism remains poorly understood. While ions are known to support silk fiber production, their exact role has thus far eluded discovery. Here, we use cryo-electron microscopy coupled with elemental analysis to elucidate the changes in the composition and spatial localization of metal ions during silk evolution inside the silk gland. During the initial protein secretion and storage stages, ions are homogeneously dispersed in the silk gland. Once the fibers are spun, the ions delocalize from the fibroin core to the sericin-coating layer, a process accompanied by protein chain alignment and increased feedstock viscosity. This change makes the protein more shear-sensitive and initiates the liquid-to-solid transition. Selective metal ion doping modifies silk fibers' mechanical performance. These findings enhance our understanding of the silk fiber formation mechanism, laying the foundations for developing new concepts in biomaterial design.
Collapse
Affiliation(s)
- Ori Brookstein
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Itay Carmel
- Department of Chemical and Structural Biology, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
6
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
7
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
8
|
Xing C, Chen P, Zhang L. Computational insight into stability-enhanced systems of anthocyanin with protein/peptide. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100168. [PMID: 36923156 PMCID: PMC10009195 DOI: 10.1016/j.fochms.2023.100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Anthocyanins, which belong to the flavonoid group, are commonly found in the organs of plants native to South and Central America. However, these pigments are unstable under conditions of varying pH, heat, etc., which limits their potential applications. One method for preserving the stability of anthocyanins is through encapsulation using proteins or peptides. Nevertheless, the complex and diverse structure of these molecules, as well as the limitation of experimental technologies, have hindered a comprehensive understanding of the encapsulation processes and the mechanisms by which stability is enhanced. To address these challenges, computational methods, such as molecular docking and molecular dynamics simulation have been used to study the binding affinity and dynamics of interactions between proteins/peptides and anthocyanins. This review summarizes the mechanisms of interaction between these systems, based on computational approaches, and highlights the role of proteins and peptides in the stability enhancement of anthocyanins. It also discusses the current limitations of these methods and suggests possible solutions.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
- School of Science, Beijing Jiaotong University, 100044 Beijing, China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
9
|
Ju Y, Song P, Wang P, Chen X, Chen T, Yao X, Zhao W, Zhang D. Cartilage structure-inspired elastic silk nanofiber network hydrogel for stretchable and high-performance supercapacitors. Int J Biol Macromol 2023; 242:124912. [PMID: 37207750 DOI: 10.1016/j.ijbiomac.2023.124912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Flexible supercapacitors are an important portable energy storage but suffer from low capacitance, inability to stretch, etc. Therefore, flexible supercapacitors must achieve higher capacitance, energy density, and mechanical robustness to expand the applications. Herein, a hydrogel electrode with excellent mechanical strength was created by simulating the collagen fiber network and proteoglycan in cartilage using silk nanofiber (SNF) network and polyvinyl alcohol (PVA). The Young's modulus and breaking strength of the hydrogel electrode increased by 205 % and 91 % compared with PVA hydrogel owing to the enhanced effect of the bionic structure, respectively, which are 1.22 MPa and 1.3 MPa. The fracture energy and fatigue threshold reached 1813.5 J/m2 and 1585.2 J/m2, respectively. The SNF network effectively connected carbon nanotubes (CNTs) and polypyrrole (PPy) in series, affording a capacitance of 13.62 F/cm2 and energy density of 1.2098 mWh/cm2. This capacitance is the highest among currently reported PVA hydrogel capacitors, which can maintain >95.2 % after 3000 charge-discharge cycles. This capacitance Notably, the cartilage-like structure endowed the supercapacitor with high resilience; thus, the capacitance remained >92.1 % under 150 % deformation and >93.35 % after repeated stretching (3000 times), which was far superior to that of other PVA-based supercapacitors. Overall, this effective bionic strategy can endow supercapacitors with ultrahigh capacitance and effectively ensure the mechanical reliability of flexible supercapacitors, which will help expand the applications of supercapacitors.
Collapse
Affiliation(s)
- Yuxiong Ju
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Peng Song
- College of Chemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Pingyue Wang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Xinxin Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Tao Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Xiaohui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Weiguo Zhao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Dongyang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
| |
Collapse
|