1
|
Lu J, Li C, Guo Y, Feng Y, Song Y, Li R, Tian L, Wang J. Solid-state Ru(bpy) 32+ electrochemiluminescence sensor for trace detection of fenpropathrin using loofah sponge-like carbon nanofibers and CdS. Mikrochim Acta 2024; 191:570. [PMID: 39218927 DOI: 10.1007/s00604-024-06647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Loofah sponge-like carbon nanofibers (LF-Co,N/CNFs) were utilized as a carrier for Ru(bpy)32+, and then combined with CdS to create a novel solid-state electrochemiluminescence sensor capable of detecting trace amounts of fenpropathrin. LF-Co,N/CNFs, obtained through the high-temperature pyrolysis of ZIF-67 coaxial electrospinning fibers, were characterized by a loofah-like morphology and exhibited a significant specific surface area and porosity. Apart from serving as a carrier, LF-Co,N/CNFs also functioned as a luminescence accelerator, enhancing the system's luminescence efficiency by facilitating electron transmission and reducing the transmission distance. The inclusion of CdS in the luminescence reaction, in conjunction with Ru(bpy)32+, further boosted the sensor's luminescence signal. The resulting sensor demonstrated a satisfactory signal, with fenpropathrin causing significant quenching of the ECL signal. Under optimized conditions, a linear relationship between the signal quench value and fenpropathrin concentration in the range 1 × 10-12 to 1 × 10-6 M was observed, with a detection limit of 3.3 × 10-13 M (S/N = 3). This developed sensor is characterized by its simplicity, sensitivity, and successful application in detecting fenpropathrin in real samples. The study not only presents a straightforward detection platform for fenpropathrin but also introduces new avenues for the rapid determination of various food contaminants, thereby expanding the utility of carbon fibers in electrochemiluminescence sensors.
Collapse
Affiliation(s)
- Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China.
- Technological Innovation Laboratory for Research and Development of Economic Plants and Edible and Medicinal Fungi in Cold Region of Jilin Province, Changchun, 130032, P.R. China.
| | - Chao Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Yongjia Feng
- Zengcheng XiangJiang School, Guangzhou, 511340, P.R. China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Jing Wang
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China.
- Technological Innovation Laboratory for Research and Development of Economic Plants and Edible and Medicinal Fungi in Cold Region of Jilin Province, Changchun, 130032, P.R. China.
| |
Collapse
|
2
|
Yu W, Lin J, Zhao Z, Fang J, Wang Z, Huang J, Min Y. Polyimide-based porous carbon and cobalt nanoparticle composites as high-performance electromagnetic wave absorbers. RSC Adv 2024; 14:9716-9724. [PMID: 38525061 PMCID: PMC10958461 DOI: 10.1039/d4ra00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
This study successfully utilized a straightforward approach, choosing liquid-liquid phase separation to build a porous structure and synthesize composite absorbers based on polyimide-based porous carbon and cobalt nanoparticles (designated as PPC/Co-700 and PPC/Co-800). A fine porous structure was achieved as a result of the excellent heat resistance of polyimide resulting in an excellent electromagnetic wave absorption ability of PPC/Co composites. The results obtained clearly indicated that PPC/Co-700 and PPC/Co-800 exhibit a porous structure with coral-like pores, enhancing both impedance matching properties and microwave attenuation abilities. This improvement in impedance matching conditions and dissipation capability is attributed to the synergistic effect of dielectric loss induced by carbon and magnetic loss induced by Co nanoparticles. PPC/Co-700 showed the strongest absorption performance with a minimum reflection loss of -59.85 dB (30 wt% loading, thickness of 3.42 mm) and an effective absorption bandwidth (EABW, RL ≤ -10 dB) of 6.24 GHz (30 wt% loading, thickness of 2.78 mm). Therefore, this work provides a facile strategy for the development of a promising absorbing material with outstanding electromagnetic wave absorption performance.
Collapse
Affiliation(s)
- Wentao Yu
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Jiahui Lin
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Zhaozhang Zhao
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Jiyong Fang
- Midea Corporate Research Cente Foshan 528000 Guangdong China
| | - Ziqing Wang
- Visionox Technology Co., Ltd Guangzhou 51000 Guangdong China
| | - Jintao Huang
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Yonggang Min
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| |
Collapse
|
3
|
Du B, Shi X, Zhu H, Xu J, Bai Y, Wang Q, Wang X, Zhou J. Preparation and characterization of bifunctional wolfsbane-like magnetic Fe 3O 4 nanoparticles-decorated lignin-based carbon nanofibers composites for electromagnetic wave absorption and electrochemical energy storage. Int J Biol Macromol 2023; 246:125574. [PMID: 37385319 DOI: 10.1016/j.ijbiomac.2023.125574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Recently, with the pursuit of high-efficiency electromagnetic wave absorption (EMWA) and electrochemical energy storage (EES) materials, multifunctional lignin-based composites have attracted significant interest due to their low cost, vast availability, and sustainability. In this work, lignin-based carbon nanofibers (LCNFs) was first prepared by electrospinning, pre-oxidation and carbonization processes. Then, different content of magnetic Fe3O4 nanoparticles were deposited on the surface of LCNFs via the facile hydrothermal way to produce a series of bifunctional wolfsbane-like LCNFs/Fe3O4 composites. Among them, the synthesized optimal sample (using 12 mmol of FeCl3·6H2O named as LCNFs/Fe3O4-2) displayed excellent EMWA ability. When the minimum reflection loss (RL) value achieved -44.98 dB at 6.01 GHz with an thickness of 1.5 mm, and the effective absorption bandwidth (EAB) was up to 4.19 GHz ranging from 5.10 to 7.21 GHz. For supercapacitor electrode, the highest specific capacitance of LCNFs/Fe3O4-2 reached 538.7 F/g at the current density of 1 A/g, and the capacitance retention remained at 80.3 %. Moreover, an electric double layer capacitor of LCNFs/Fe3O4-2//LCNFs/Fe3O4-2 also showed a remarkable power density of 7755.29 W/kg, outstanding energy density of 36.62 Wh/kg and high cycle stability (96.89 % after 5000 cycles). In short, the construction of this multifunctional lignin-based composites has potential applications in electromagnetic wave (EMW) absorbers and supercapacitor electrodes.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaojuan Shi
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yating Bai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
4
|
Wang Z, Min Y, Fang J, Yu W, Huang W, Lu X, Wang B. Polyimide aerogel-derived amorphous porous carbon/crystalline carbon composites for high-performance microwave absorption. RSC Adv 2023; 13:7055-7062. [PMID: 36875881 PMCID: PMC9977443 DOI: 10.1039/d3ra00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
High-performance polyimide-based porous carbon/crystalline composite absorbers (PIC/rGO and PIC/CNT) were prepared by vacuum freeze-drying and high-temperature pyrolysis. The excellent heat resistance of polyimides (PIs) ensured the integrity of their pore structure during high-temperature pyrolysis. The complete porous structure improves the interfacial polarization and impedance-matching conditions. Furthermore, adding appropriate rGO or CNT can improve the dielectric losses and obtain good impedance-matching conditions. The stable porous structure and strong dielectric loss enable fast attenuation of electromagnetic waves (EMWs) inside PIC/rGO and PIC/CNT. The minimum reflection loss (RLmin) for PIC/rGO is -57.22 dB at 4.36 mm thickness. The effective absorption bandwidth (EABW, RL below -10 dB) for PIC/rGO is 3.12 GHz at 2.0 mm thickness. The RLmin for PIC/CNT is -51.20 dB at 2.02 mm thickness. The EABW for PIC/CNT is 4.08 GHz at 2.4 mm thickness. The PIC/rGO and PIC/CNT absorbers designed in this work have simple preparations and excellent EMW absorption performances. Therefore, they can be used as candidate materials in EMW absorbing materials.
Collapse
Affiliation(s)
- Ziqing Wang
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Jiyong Fang
- Midea Corporate Research Center Foshan China
| | - Wentao Yu
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Wanjun Huang
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Xiaochuang Lu
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Bolin Wang
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
5
|
Li W, Guo F, Zhao Y, Liu Y. A Sustainable and Low-Cost Route to Design NiFe 2O 4 Nanoparticles/Biomass-Based Carbon Fibers with Broadband Microwave Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4063. [PMID: 36432351 PMCID: PMC9693991 DOI: 10.3390/nano12224063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Carbon-based microwave-absorbing materials with a low cost, simple preparation process, and excellent microwave absorption performance have important application value. In this paper, biomass-based carbon fibers were prepared using cotton fiber, hemp fiber, and bamboo fiber as carbon sources. Then, the precise loading of NiFe2O4 nanoparticles on biomass-based carbon fibers with the loading amount in a wide range was successfully realized through a sustainable and low-cost route. The effects of the composition and structure of NiFe2O4/biomass-based carbon fibers on electromagnetic parameters and electromagnetic absorption properties were systematically studied. The results show that the impedance matching is optimized, and the microwave absorption performance is improved after loading NiFe2O4 nanoparticles on biomass-based carbon fibers. In particular, when the weight percentage of NiFe2O4 nanoparticles in NiFe2O4/carbonized cotton fibers is 42.3%, the effective bandwidth of NiFe2O4/carbonized cotton fibers can reach 6.5 GHz with a minimum reflection loss of -45.3 dB. The enhancement of microwave absorption performance is mainly attributed to the appropriate electromagnetic parameters with the ε' ranging from 9.2 to 4.8, and the balance of impedance matching and electromagnetic loss. Given the simple synthesis method, low cost, high output, and excellent microwave absorption performance, the NiFe2O4/biomass-based carbon fibers have broad application prospects as an economic and broadband microwave absorbent.
Collapse
|