1
|
Mosquera-Olano C, Quimbaya C, Rodríguez V, Vanessa-Lasso A, Correa S, Castrillón EDC, Rojas J, Ávila-Torres YP. Effects of Manganese Carbonate Addition on the Carbocatalytic Properties of Lignocellulosic Waste for Use in the Degradation of Acetaminophen. Polymers (Basel) 2024; 16:3316. [PMID: 39684064 DOI: 10.3390/polym16233316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
A carbon-based material was synthesized using potato peels (BPP) and banana pseudo-stems (BPS), both of which were modified with manganese to produce BPP-Mn and BPS-Mn, respectively. These materials were assessed for their ability to activate peroxymonosulfate (PMS) in the presence of MnCO3 to degrade acetaminophen (ACE), an emerging water contaminant. The materials underwent characterization using spectroscopic, textural, and electrochemical techniques. Manganese served a dual function: enhancing adsorption properties and facilitating the breaking of peroxide bonds. Additionally, carbonate ions played a structural role in the materials, transforming into CO2 at high temperatures and thereby increasing material porosity, which improved adsorption capabilities. This presents a notable advantage for materials that have not undergone de-lignification. Among the materials tested, BPS exhibited the highest efficiency in the carbocatalytic degradation of ACE, achieving a synergy index of 1.31 within just 5 min, with 42% ACE degradation in BPS compared to BPS-Mn, which achieved 100% ACE removal through adsorption. Reactive oxygen species such as sulfate, hydroxyl, and superoxide anion radicals were identified as the primary contributors to pollutant degradation. In contrast, no degradation was observed for BPP and BPP-Mn, which is likely linked to the lower lignin content in their precursor material. This work addressed the challenge of revalorizing lignocellulosic waste by highlighting its potential as an oxidant for emerging pollutants. Furthermore, the study demonstrated the coexistence of various reactive oxygen species, confirming the capacity of carbon-based matrices to activate PMS.
Collapse
Affiliation(s)
- Camila Mosquera-Olano
- Environmental Remediation and Biocatalysis, Institute of Chemistry, University of Antioquia UdeA, Medellín CP 050010, Colombia
| | - Carolina Quimbaya
- Environmental Remediation and Biocatalysis, Institute of Chemistry, University of Antioquia UdeA, Medellín CP 050010, Colombia
| | - Vanessa Rodríguez
- Chemistry and Biotechnology, Santiago de Cali University, Cali CP 760032, Colombia
| | - Angie Vanessa-Lasso
- Environmental Remediation and Biocatalysis, Institute of Chemistry, University of Antioquia UdeA, Medellín CP 050010, Colombia
| | - Santiago Correa
- Grupo de Investigación Cecoltec, Cecoltec Services, Medellín CP 050016, Colombia
| | - E D C Castrillón
- Environmental Remediation and Biocatalysis, Institute of Chemistry, University of Antioquia UdeA, Medellín CP 050010, Colombia
| | - John Rojas
- Environmental Remediation and Biocatalysis, Institute of Chemistry, University of Antioquia UdeA, Medellín CP 050010, Colombia
| | - Yenny P Ávila-Torres
- Environmental Remediation and Biocatalysis, Institute of Chemistry, University of Antioquia UdeA, Medellín CP 050010, Colombia
| |
Collapse
|
2
|
Chang Z, Liang D, Sun S, Zheng S, Sun K, Wang H, Chen Y, Guo D, Zhao H, Sha L, Jiang W. Innovative modification of cellulose fibers for paper-based electrode materials using metal-organic coordination polymers. Int J Biol Macromol 2024; 264:130599. [PMID: 38442834 DOI: 10.1016/j.ijbiomac.2024.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Cellulosic paper-based electrode materials have attracted increasing attention in the field of flexible supercapacitor. As a conductive polymer, polyaniline exhibits high theoretical pseudocapacitive capacitance and has been applied in paper-based electrode materials along with cellulose fibers. However, the stacking of polyaniline usually leads to poor performance of electrodes. In this study, metal-organic coordination polymers of zirconium-alizarin red S and zirconium-phytic acid are applied to modulate the polyaniline layer to obtain high-performance cellulosic paper-based electrode materials. Zirconium hydroxide is firstly loaded on cellulose fibers while alizarin red S and phytic acid are introduced to regulate the morphology of polyaniline through doping and coordination processes. The results show that the introduction of dual coordination polymers is effective to regulate the morphology of polyaniline on cellulose fibers. The performances of the paper-based electrode materials, including electrical conductivity and electrochemistry, are apparently improved. It provides a promising strategy for the potential development of economical and green electrode materials in the conventional paper-making process.
Collapse
Affiliation(s)
- Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shirong Sun
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shuo Zheng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Kexin Sun
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haiping Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wenyan Jiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
3
|
Yan B, Zhao W, Zhang Q, Kong Q, Chen G, Zhang C, Han J, Jiang S, He S. One stone for four birds: A "chemical blowing" strategy to synthesis wood-derived carbon monoliths for high-mass loading capacitive energy storage in low temperature. J Colloid Interface Sci 2024; 653:1526-1538. [PMID: 37804620 DOI: 10.1016/j.jcis.2023.09.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Biomass-derived carbon materials are promising electrode materials for capacitive energy storage. Herein, inspired by the hierarchical structure of natural wood, carbon monoliths built up by interconnected porous carbon nanosheets with enriched vertical channels were obtained via zinc nitrate (Zn(NO3)2)-assisted synthesis and served as thick electrodes for capacitive energy storage. Zn(NO3)2 is proved to function as expansion agent, activator, dopant, and precursor of the template. The dense and micron-scale thickness walls of wood were expanded by Zn(NO3)2 into porous and interconnected nanosheets. The pore volume and specific surface area were increased by more than 430 %. The initial specific capacitance and rate performance of the optimized carbon monolith was approximately three times that of the pristine dense carbon framework. The assembled symmetric supercapacitor possessed a high initial specific capacitance of 4564 mF cm-2 (0-1.7 V) at -40 °C. Impressively, the robust device could be cycled more than 100,000 times with little capacitance attenuation. The assembled zinc-ion hybrid capacitor (0.2-2 V) delivered a large specific capacitance of 4500 mF cm-2 at -40 °C, approximately 74 % of its specific capacitance at 25 °C. Our research paves a new avenue to design thick carbon electrodes with high capacitive performance by multifunctional Zn(NO3)2 for low-temperature applications.
Collapse
Affiliation(s)
- Bing Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Qinying Kong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guoqing Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Wu W, Li P, Wang M, Liu H, Zhao X, Wu C, Ren J. Comprehensive Evaluation of Polyaniline-Doped Lignosulfonate in Adsorbing Dye and Heavy Metal Ions. Int J Mol Sci 2023; 25:133. [PMID: 38203303 PMCID: PMC10779345 DOI: 10.3390/ijms25010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Lignosulfonate/polyaniline (LS/PANI) nanocomposite adsorbent materials were prepared by the chemical polymerization of lignosulfonate with an aniline monomer as a dopant and structure-directing agent, and the adsorption behavior of dyes as well as heavy metal ions was investigated. LS/PANI composites were used as dye adsorbents for the removal of different cationic dyes (malachite green, methylene blue, and crystal violet). The adsorption behavior of LS/PANI composites as dye adsorbents for malachite green was investigated by examining the effects of the adsorbent dosage, solution pH, initial concentration of dye, adsorption time, and temperature on the adsorption properties of this dye. The following conclusions were obtained. The optimum adsorption conditions for the removal of malachite green dye when LS/PANI composites were used as malachite green dye adsorbents were as follows: an adsorbent dosage of 20 mg, an initial concentration of the dye of 250 mg/L, an adsorption time of 300 min, and a temperature of 358 K. The LS/PANI composite adsorbed malachite green dye in accordance with the Langmuir adsorption model and pseudo-second-order kinetic model, which belongs to chemisorption-based monomolecular adsorption, and the equilibrium adsorption amount was 245.75 mg/g. In particular, the adsorption of heavy metal ion Pb2+ was investigated, and the removal performance was also favorable for Pb2+.
Collapse
Affiliation(s)
- Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Mingkang Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Huijun Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
| | - Xiufu Zhao
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Jianpeng Ren
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| |
Collapse
|
5
|
Wu W, Li P, Su W, Yan Z, Wang X, Xu S, Wei Y, Wu C. Polyaniline as a Nitrogen Source and Lignosulfonate as a Sulphur Source for the Preparation of the Porous Carbon Adsorption of Dyes and Heavy Metal Ions. Polymers (Basel) 2023; 15:4515. [PMID: 38231908 PMCID: PMC10708433 DOI: 10.3390/polym15234515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Using agricultural and forestry wastes as raw materials, adsorbent materials were prepared for dye adsorption in wastewater, which can minimize the environmental load and fully realize sustainability by treating waste with waste. Taking lignosulfonate as a raw material, due to its molecular structure having more reactive groups, it is easy to form composite materials via a chemical oxidation reaction with an aniline monomer. After that, using a sodium lignosulfonate/polyaniline composite as the precursor, the activated high-temperature pyrolysis process is used to prepare porous carbon materials with controllable morphology, structure, oxygen, sulfur, and nitrogen content, which opens up a new way for the preparation of functional carbon materials. When the prepared O-N-S co-doped activated carbon materials (SNC) were used as adsorbents, the adsorption study of cationic dye methylene blue was carried out, and the removal rate of SNC could reach up to 99.53% in a methylene blue solution with an initial concentration of 100 mg/L, which was much higher than that of undoped lignocellulosic carbon materials, and the kinetic model conformed to the pseudo-second-order kinetic model. The adsorption equilibrium amount of NC (lignosulfonate-free) and SNC reached 478.30 mg/g and 509.00 mg/g, respectively, at an initial concentration of 500 mg/L, which was consistent with the Langmuir adsorption isothermal model, and the adsorption of methylene blue on the surface of the carbon material was a monomolecular layer. The adsorption of methylene blue dye on the carbon-based adsorbent was confirmed to be a spontaneous and feasible adsorption process by thermodynamic parameters. Finally, the adsorption of SNC on methylene blue, rhodamine B, Congo red, and methyl orange dyes were compared, and it was found that the material adsorbed cationic dyes better. Furthermore, we also studied the adsorption of SNC on different kinds of heavy metal ions and found that its adsorption selectivity is better for Cr3+ and Pb2+ ions.
Collapse
Affiliation(s)
- Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Zifei Yan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Xinyan Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Siyu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| |
Collapse
|
6
|
Zhang Q, Feng L, Liu Z, Jiang L, Lan T, Zhang C, Liu K, He S. High Rate Performance Supercapacitors Based on N, O Co-Doped Hierarchical Porous Carbon Foams Synthesized via Chemical Blowing and Dual Templates. Molecules 2023; 28:6994. [PMID: 37836840 PMCID: PMC10574032 DOI: 10.3390/molecules28196994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
N, O Co-Doped porous carbon materials are promising electrode materials for supercapacitors. However, it is still a challenge to prepare high capacitance performance N, O Co-Doped porous carbon materials with balanced pore structure. In this work, a simple chemical blowing method was developed to produce hierarchal porous carbon materials with Zn(NO3)2·6H2O and Fe(NO3)3·9H2O as the foaming agents and precursors of dual templates. Soybean protein isolate served as a self-doping carbon source. The amount of Fe(NO3)3·9H2O influenced the microstructure, element content and capacitance performance of the obtained porous carbon materials. The optimized sample CZnFe-5 with the addition of 5% Fe(NO3)3·9H2O displayed the best capacitance performance. The specific capacitance reached 271 F g-1 at 0.2 A g-1 and retained 133 F g-1 at 100 A g-1. The CZnFe-5//CZnFe-5 symmetric supercapacitors delivered a maximum energy density of 16.83 Wh kg-1 and good stability with capacitance retention of 86.33% after 40,000 cycles tests at 50 A g-1. The symmetric supercapacitors exhibited potential applications in lighting LED bulbs with a voltage of 3 V. This work provides a new strategy for the synthesis of hierarchical porous carbon materials for supercapacitors from low-cost biomass products.
Collapse
Affiliation(s)
- Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
| | - Li Feng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.F.); (Z.L.)
| | - Zhenlu Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.F.); (Z.L.)
| | - Longjun Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
| | - Tiancheng Lan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.F.); (Z.L.)
| |
Collapse
|
7
|
Liang D, Chang Z, Chen Y, Chen J, Zhao H, Sha L, Guo D. High mass loading paper-based electrode material with cellulose fibers under coordination of zirconium oxyhydroxide nanoparticles and sulfosalicylic acid. Int J Biol Macromol 2023; 244:125414. [PMID: 37327930 DOI: 10.1016/j.ijbiomac.2023.125414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
With the rapid expansion of the flexible electronics market, it is critical to develop high-performance flexible energy storage electrode materials. Cellulose fibers, which are sustainable, low cost, and flexible, fully meet the requirements of flexible electrode materials, but they are electrically insulating and cause a decrease in energy density. In this study, high-performance paper-based flexible electrode materials (PANI:SSA/Zr-CFs) were prepared with cellulose fibers and polyaniline. A high mass loading of polyaniline was wrapped on zirconia hydroxide-modified cellulose fibers under metal-organic acid coordination through a facile in situ chemical polymerization process. The increase in mass loading of PANI on cellulose fibers not only improves the electrical conductivity but also enhances the area-specific capacitance of the flexible electrodes. The results of electrochemical tests show that the area specific capacitance of the PANI:SSA/Zr-CFs electrode is 4181 mF/cm2 at 1 mA/cm2, which is more than two times higher than that of the electrode with PANI on pristine CFs. This work provides a new strategy for the design and manufacture of high-performance flexible electronic electrodes based on cellulose fibers.
Collapse
Affiliation(s)
- Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Jianbin Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China; Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
8
|
Li P, Yu J, Wang M, Su W, Yang C, Jiang B, Wu W. Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity. Int J Mol Sci 2023; 24:ijms24108661. [PMID: 37240006 DOI: 10.3390/ijms24108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
As a natural polymer, lignin is only less abundant in nature than cellulose. It has the form of an aromatic macromolecule, with benzene propane monomers connected by molecular bonds such as C-C and C-O-C. One method to accomplish high-value lignin conversion is degradation. The use of deep eutectic solvents (DESs) to degrade lignin is a simple, efficient and environmentally friendly degradation method. After degradation, the lignin is broken due to β-O-4 to produce phenolic aromatic monomers. In this work, lignin degradation products were evaluated as additives for the preparation of polyaniline conductive polymers, which not only avoids solvent waste but also achieves a high-value use of lignin. The morphological and structural characteristics of the LDP/PANI composites were investigated using 1H NMR, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and elemental analysis. The LDP/PANI nanocomposite provides a specific capacitance of 416.6 F/g at 1 A/g and can be used as a lignin-based supercapacitor with good conductivity. Assembled as a symmetrical supercapacitor device, it provides an energy density of 57.86 Wh/kg, an excellent power density of 952.43 W/kg and, better still, a sustained cycling stability. Thus, the combination of polyaniline and lignin degradate, which is environmentally friendly, amplifies the capacitive function on the basis of polyaniline.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangdong Yu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mingkang Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Abd Elhamid AEM, Shawkey H, Khalil AA, Azzouz IM. Collaborated nanosecond lasers processing of crude graphene oxide for superior supercapacitive performance. JOURNAL OF ENERGY STORAGE 2023; 60:106669. [DOI: 10.1016/j.est.2023.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Li P, Yang C, Wu C, Wei Y, Jiang B, Jin Y, Wu W. Bio-Based Carbon Materials for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2931. [PMID: 36079969 PMCID: PMC9457592 DOI: 10.3390/nano12172931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 05/20/2023]
Abstract
Lignin, one of the components of natural plant biomass, is a rich source of carbon and has excellent potential as a valuable, sustainable source of carbon material. Low-cost lignosulfonate (LS) doped with polyaniline (PANI) has been used as a precursor to produce porous carbon. LS has a highly dispersed and sparse microstructure and can be accidentally doped with S atoms. N and S double-doped carbon can be directly synthesized with abundant mesopores and high surface area in a lamellar network using PANI as another doping source. This study explored the optimal conditions of LS/PANI material with different amounts of lignosulfonate and different carbonization temperatures. When the amount of lignosulfonate was 4 g and the carbonization temperature was 700 °C, graded porous carbon was obtained, and the electrochemical performance was the best. At 0.5 A/g, the specific capacitance reached 333.50 F/g (three-electrode system) and 242.20 F/g (two-electrode system). After 5000 charge/discharge cycles at 5 A/g, the material maintained good cycling stability and achieved a capacitance retention rate of 95.14% (three-electrode system) and 97.04% (two-electrode system). The energy and power densities of the SNC700 samples were 8.33 Wh/kg and 62.5 W/kg at 0.25 A/g, respectively, values that meet the requirements of today's commercially available supercapacitor electrode materials, further demonstrating their good practicality. This paper provides an efficient double-doping method to prepare layered structures. Porous carbon is used for electrochemical energy storage devices.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|