1
|
Jiao J, Yin M, Wang Z, Hu B, Chi J, Lu L, Dai F, Xue L, Wang T, Wang X, Zhao J, Zhao L, Chen Q. An oriented self-assembly biosensor with built-in error-checking for precise midkine detection in cancer diagnosis and prognosis evaluation. Biosens Bioelectron 2024; 268:116905. [PMID: 39504885 DOI: 10.1016/j.bios.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis, currently recognized as a multifaceted factor in cancer progression and drug resistance. MDK has demonstrated greater accuracy than existing biomarkers. Serum MDK is a valuable indicator for the non-invasive early detection of tumors. It dynamically changes following surgical tumor excision and prior to recurrence, facilitating prognosis and treatment response evaluation. However, existing methods struggle to achieve the sensitivity required for clinical applications. Herein, we developed a triple-mode biosensor with oriented self-construction and built-in error-checking for rapid, sensitive, and convenient MDK detection. The sensor construction adhered to the principle of achieving oriented and strong covalent connections to ensure high sensitivity. Biosynthesized quantum dots (BQDs) were introduced to orient antibodies, enhancing the exploration of active binding sites and significantly increasing antibody-capturing ability. To further enhance sensitivity and signal amplification, Au@Pt nanorods-Ab2 (MF-Probe) were used as multifunctional probes, incorporating an error-checking mechanism to minimize false results. Detection was feasible using an electrochemical workstation, a microplate reader, and even a mobile phone. The sensor exhibited a wide linear range from 5 fg/mL to 100 ng/mL and a low limit of detection (LOD) of 1.620 fg/mL. It accurately distinguished MDK levels in the serum of healthy donors and cancer patients. Compared to existing ELISA kits, it exhibited a lower LOD and a more sensitive response to trace MDK, suggesting it is a promising tool for cancer diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Jiao
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China.
| | - Mengai Yin
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Zhijie Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Bingxin Hu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Jiadong Chi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute & Hospital, Huan Hu Xi Road, He Xi District, Tianjin, 300060, China
| | - Lina Lu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Fuju Dai
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Lan Xue
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Tong Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Xiangrui Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Jie Zhao
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Li Zhao
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300070, China.
| | - Qiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China.
| |
Collapse
|
2
|
Gao F, Wu Y, Gan C, Hou Y, Deng D, Yi X. Overview of the Design and Application of Photothermal Immunoassays. SENSORS (BASEL, SWITZERLAND) 2024; 24:6458. [PMID: 39409498 PMCID: PMC11479306 DOI: 10.3390/s24196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Developing powerful immunoassays for sensitive and real-time detection of targets has always been a challenging task. Due to their advantages of direct readout, controllable sensing, and low background interference, photothermal immunoassays have become a type of new technology that can be used for various applications such as disease diagnosis, environmental monitoring, and food safety. By modification with antibodies, photothermal materials can induce temperature changes by converting light energy into heat, thereby reporting specific target recognition events. This article reviews the design and application of photothermal immunoassays based on different photothermal materials, including noble metal nanomaterials, carbon-based nanomaterials, two-dimensional nanomaterials, metal oxide and sulfide nanomaterials, Prussian blue nanoparticles, small organic molecules, polymers, etc. It pays special attention to the role of photothermal materials and the working principle of various immunoassays. Additionally, the challenges and prospects for future development of photothermal immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yike Wu
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Cui Gan
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yupeng Hou
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Dehua Deng
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Wibrianto A, Saputra YJ, Sugito SFA, Khairunisa SQ, Rachman BE, Nasronudin N, Megasari NLA, Chang JY, Fahmi MZ. Potential usage of boron modified carbon nanodots as a marker candidate for coronavirus disease (COVID-19) antibody detection. J Pharm Biomed Anal 2024; 248:116242. [PMID: 38870834 DOI: 10.1016/j.jpba.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
The global outbreak of COVID-19 in December 2019 has highlighted rapid and accurate diagnostic tools for effective intervention. While the RT-PCR test offers 86 % sensitivity, uncertainties often require supplementary screening. This research investigates how carbon dots (CDs) can be utilized as markers for COVID-19 antibodies, taking advantage of their biocompatibility and low toxicity. CDs were synthesized using citric acid (CA) and APBA with boronic acid, enabling the detection of COVID-19 IgG antibodies with increased absorbance and fluorescence. Comprehensive analyses confirmed the successful synthesis of APBA-CDs, prompting further exploration of their impact on SARS-CoV-2 RNA. Increased absorbance levels were observed in categories K1, K2, and K3, attributed to the introduction of CDs into plasma, indicating effective binding of APBA-CDs to COVID-19 antibodies. In addition, the fluorescence tests consistently showed heightened levels across all categories, emphasizing the effective binding of APBA-CDs with COVID-19 antibodies, particularly in positive plasma samples. As a part of our analysis, we conducted a PCA test to validate the data, which revealed that APBA-CDs are specific to IgG+ antibodies. The results showed a sensitivity rate of 74 % and a specificity rate of 53 %, while, when tested for IgM antibodies, the sensitivity and specificity rates were 63 % and 27 %, respectively. These findings highlight the potential of APBA-CDs as a sensitive and specific marker for COVID-19 antibody detection, offering potential for diagnostic tool development.
Collapse
Affiliation(s)
- Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia; Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yudha J Saputra
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Siti F A Sugito
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia; Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Siti Q Khairunisa
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brian E Rachman
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Nasronudin Nasronudin
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ni Luh A Megasari
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Mochamad Z Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia; Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
4
|
Konieva A, Deineka V, Diedkova K, Aguilar-Ferrer D, Lyndin M, Wennemuth G, Korniienko V, Kyrylenko S, Lihachev A, Zahorodna V, Baginskiy I, Coy E, Gogotsi O, Blacha-Grzechnik A, Simka W, Kube-Golovin I, Iatsunskyi I, Pogorielov M. MXene-Polydopamine-antiCEACAM1 Antibody Complex as a Strategy for Targeted Ablation of Melanoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43302-43316. [PMID: 39111771 PMCID: PMC11345726 DOI: 10.1021/acsami.4c08129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Photothermal therapy (PTT) is a method for eradicating tumor tissues through the use of photothermal materials and photosensitizing agents that absorb light energy from laser sources and convert it into heat, which selectively targets and destroys cancer cells while sparing healthy tissue. MXenes have been intensively investigated as photosensitizing agents for PTT. However, achieving the selectivity of MXenes to the tumor cells remains a challenge. Specific antibodies (Ab) against tumor antigens can achieve homing of the photosensitizing agents toward tumor cells, but their immobilization on MXene received little attention. Here, we offer a strategy for the selective ablation of melanoma cells using MXene-polydopamine-antiCEACAM1 Ab complexes. We coated Ti3C2Tx MXene with polydopamine (PDA), a natural compound that attaches Ab to the MXene surface, followed by conjugation with an anti-CEACAM1 Ab. Our experiments confirm the biocompatibility of the Ti3C2Tx-PDA and Ti3C2Tx-PDA-antiCEACAM1 Ab complexes across various cell types. We also established a protocol for the selective ablation of CEACAM1-positive melanoma cells using near-infrared irradiation. The obtained complexes exhibit high selectivity and efficiency in targeting and eliminating CEACAM1-positive melanoma cells while sparing CEACAM1-negative cells. These results demonstrate the potential of MXene-PDA-Ab complexes for cancer therapy. They underline the critical role of targeted therapies in oncology, offering a promising avenue for the precise and safe treatment of melanoma and possibly other cancers characterized by specific biomarkers. Future research will aim to refine these complexes for clinical use, paving the way for new strategies for cancer treatment.
Collapse
Affiliation(s)
- Anastasia Konieva
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Volodymyr Deineka
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Kateryna Diedkova
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Daniel Aguilar-Ferrer
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
- Institut
Europeen des Membranes, IEM, UMR 5635, Université de Montpellier,
ENSCM, CNRS, 34730 Montpellier, France
| | - Mykola Lyndin
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Gunther Wennemuth
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Viktoriia Korniienko
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Sergiy Kyrylenko
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Alexey Lihachev
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | | | - Ivan Baginskiy
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Materials
Research Centre, 3 Krzhizhanovskogo
Str., 03142 Kyiv, Ukraine
| | - Emerson Coy
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
| | - Oleksiy Gogotsi
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Materials
Research Centre, 3 Krzhizhanovskogo
Str., 03142 Kyiv, Ukraine
| | - Agata Blacha-Grzechnik
- Faculty of
Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
| | - Wojciech Simka
- Faculty of
Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
| | - Irina Kube-Golovin
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Igor Iatsunskyi
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
| | - Maksym Pogorielov
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| |
Collapse
|
5
|
Choramle M, Verma D, Kalkal A, Pradhan R, Rai AK, Packirisamy G. L-Cysteine functionalized magnetite nanoparticle adorned Ti 3C 2-MXene nanohybrid based screen printed immunosensor for oral cancer biomarker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4938-4950. [PMID: 39007760 DOI: 10.1039/d4ay01048e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nanohybrid based non-invasive biosensing platforms are emerging as promising alternatives to detect biomarkers in complex and diverse bio-fluids toward ultrasensitive point-of-care diagnostics. Herein, we report the development of a highly sensitive, facile, non-invasive, label free, affordable, and innovative electrochemical screen printed immunosensor for identifying CYFRA 21-1, an established and crucial biomarker for oral cancer. Until now, no work has been reported utilizing a titanium carbide Ti3C2 MXene nanosheet and L-cysteine (L-Cyst) functionalized magnetite nanoparticle (MNPs) nanohybrid based immunosensor for electrochemical detection of CYFRA 21-1. The L-Cyst@MNPs/Ti3C2-MXene nanohybrid was synthesized via the co-precipitation method and later deposited on a gold screen printed electrode (GSPE) offering enhanced surface area and electrochemical properties. The nanohybrid modified GSPE was then surface immobilized with monoclonal antibodies (anti-CYFRA-21-1) to fabricate an anti-CYFRA-21-1/L-Cyst@MNPs/Ti3C2-MXene/GSPE immunoelectrode and the non-specific locations of the immunoelectrode were covered with bovine serum albumin (BSA). The spectroscopic, morphological, and structural analyses of the synthesized nanohybrid and the fabricated electrodes were performed using different analytical techniques. The electrochemical studies of modified electrodes were evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The fabricated BSA/anti-CYFRA-21-1/L-Cyst@MNPs/Ti3C2-MXene/GSPE immunosensor has shown an excellent limit of detection of 0.023 ng mL-1, a linear detection range of (0.5-30) ng mL-1, a sensitivity of 277.28 μA (ng mL-1)-1 cm-2 and a lower limit of quantification of 0.618 ng mL-1 for electrochemical CYFRA 21-1 determination. Hence, this L-Cyst@MNPs/Ti3C2-MXene nanohybrid could also be explored as a potential candidate for determining other cancer biomarkers.
Collapse
Affiliation(s)
- Manali Choramle
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Damini Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ashish Kalkal
- Nanostructured System Laboratory, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W7TS, UK
| | - Rangadhar Pradhan
- iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
| | - Avdhesh Kumar Rai
- DBT Centre for Molecular Biology and Cancer Research, Dr Bhubaneswar Borooah Cancer Institute (Tata Memorial Centre), Gopinath Nagar, A K Azad Road, Guwahati-781016, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
6
|
Reza MS, Sharifuzzaman M, Asaduzzaman M, Islam Z, Lee Y, Kim D, Park JY. Polyaromatic Hydrocarbon-Functionalized 2D MXene-Based 3D Porous Antifouling Nanocomposite with Long Shelf Life for High-Performance Electrochemical Immunosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31610-31623. [PMID: 38853366 DOI: 10.1021/acsami.4c05685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Affinity-based electrochemical (AEC) biosensors have gained more attention in the field of point-of-care management. However, AEC sensing is hampered by biofouling of the electrode surface and degradation of the antifouling material. Therefore, a breakthrough in antifouling nanomaterials is crucial for the fabrication of reliable AEC biosensors. Herein, for the first time, we propose 1-pyrenebutyric acid-functionalized MXene to develop an antifouling nanocomposite to resist biofouling in the immunosensors. The nanocomposite consisted of a 3D porous network of bovine serum albumin cross-linked with glutaraldehyde with functionalized MXene as conductive nanofillers, where the inherited oxidation resistance property of functionalized MXene improved the electrochemical lifetime of the nanocomposite. On the other hand, the size-extruded porous structure of the nanocomposite inhibited the biofouling activity on the electrode surface for up to 90 days in real samples. As a proof of concept, the antifouling nanocomposite was utilized to fabricate a multiplexed immunosensor for the detection of C-reactive protein (CRP) and ferritin biomarkers. The fabricated sensor showed good selectivity over time and an excellent limit of detection for CRP and ferritin of 6.2 and 4.2 pg/mL, respectively. This research successfully demonstrated that functionalized MXene-based antifouling nanocomposites have great potential to develop high-performance and low-cost immunosensors.
Collapse
Affiliation(s)
- Md Selim Reza
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Md Asaduzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Zahidul Islam
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yeyeong Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dongyun Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
7
|
Huang Y, Chen S, Zhang S, Gao L, Lin F, Dai H. Self-reduced MXene-Metal interaction electrochemiluminescence support with synergistic electrocatalytic and photothermal effects for the bimodal detection of ovarian cancer biomarkers. J Colloid Interface Sci 2024; 661:793-801. [PMID: 38325177 DOI: 10.1016/j.jcis.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Novel two-dimensional MXene with unique optical and electrical properties has become a new focus in the field of sensing. In particular, their metallic conductivity, good biocompatibility and high anchoring ability to biomaterials make them attractive candidates. Despite such remarkable properties, there are certain limitations, such as low oxidative stability. MXene-Metal interactions are an effective strategy to maintain the long-term stability of MXene, while also improving the electrochemical activity and optical properties. Herein, a series of MXene/Ag nanocomposites including Ti3C2/Ag, Nb2C/Ag and V2C/Ag were designed based on the surface chemistry characteristics of MXene, where MXene served as the substrate for in-situ growth of silver nanoparticles via self-reduction of Ag(NH3)2+. The results showed that V2C MXene has the strongest self-reducing ability due to its multiple variable valence states, larger interlayer space and more reactive groups. Moreover, V2C/Ag exhibited unexpected oxygen reduction reaction catalytic activity and photothermal performance. In view of which, an electrochemiluminescence-photothermal (ECL-photothermal) immunosensor was developed using V2C/Ag as ECL anchor and photothermal reagent for ultrasensitive detection of Lipolysis stimulated lipoprotein receptor. This work not only provides a simple and effective synthesis method of MXene supported metal nanocomposites, but also provides more inspirations for exploring the efficient biosensing strategies.
Collapse
Affiliation(s)
- Yitian Huang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China; College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Feng Lin
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| |
Collapse
|
8
|
Ye C, Wang M, Min J, Tay RY, Lukas H, Sempionatto JR, Li J, Xu C, Gao W. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. NATURE NANOTECHNOLOGY 2024; 19:330-337. [PMID: 37770648 PMCID: PMC10954395 DOI: 10.1038/s41565-023-01513-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Personalized monitoring of female hormones (for example, oestradiol) is of great interest in fertility and women's health. However, existing approaches usually require invasive blood draws and/or bulky analytical laboratory equipment, making them hard to implement at home. Here we report a skin-interfaced wearable aptamer nanobiosensor based on target-induced strand displacement for automatic and non-invasive monitoring of oestradiol via in situ sweat analysis. The reagentless, amplification-free and 'signal-on' detection approach coupled with a gold nanoparticle-MXene-based detection electrode offers extraordinary sensitivity with an ultra-low limit of detection of 0.14 pM. This fully integrated system is capable of autonomous sweat induction at rest via iontophoresis, precise microfluidic sweat sampling controlled via capillary bursting valves, real-time oestradiol analysis and calibration with simultaneously collected multivariate information (that is, temperature, pH and ionic strength), as well as signal processing and wireless communication with a user interface (for example, smartphone). We validated the technology in human participants. Our data indicate a cyclical fluctuation in sweat oestradiol during menstrual cycles, and a high correlation between sweat and blood oestradiol was identified. Our study opens up the potential for wearable sensors for non-invasive, personalized reproductive hormone monitoring.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Roland Yingjie Tay
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Juliane R Sempionatto
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Lee IC, Li YCE, Thomas JL, Lee MH, Lin HY. Recent advances using MXenes in biomedical applications. MATERIALS HORIZONS 2024; 11:876-902. [PMID: 38175543 DOI: 10.1039/d3mh01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An MXene is a novel two-dimensional transition metal carbide or nitride, with a typical formula of Mn+1XnTx (M = transition metals, X = carbon or nitrogen, and T = functional groups). MXenes have found wide application in biomedicine and biosensing, owing to their high biocompatibility, abundant reactive surface groups, good conductivity, and photothermal properties. Applications include photo- and electrochemical sensors, energy storage, and electronics. This review will highlight recent applications of MXene and MXene-derived materials in drug delivery, tissue engineering, antimicrobial activity, and biosensors (optical and electrochemical). We further elaborate on recent developments in utilizing MXenes for photothermal cancer therapy, and we explore multimodal treatments, including the integration of chemotherapeutic agents or magnetic nanoparticles for enhanced therapeutic efficacy. The high surface area and reactivity of MXenes provide an interface to respond to the changes in the environment, allowing MXene-based drug carriers to respond to changes in pH, reactive oxygen species (ROS), and electrical signals for controlled release applications. Furthermore, the conductivity of MXene enables it to provide electrical stimulation for cultured cells and endows it with photocatalytic capabilities that can be used in antibiotic applications. Wearable and in situ sensors incorporating MXenes are also included. Major challenges and future development directions of MXenes in biomedical applications are also discussed. The remarkable properties of MXenes will undoubtedly lead to their increasing use in the applications discussed here, as well as many others.
Collapse
Affiliation(s)
- I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung 81148, Taiwan.
| |
Collapse
|
10
|
Iravani S, Rabiee N, Makvandi P. Advancements in MXene-based composites for electronic skins. J Mater Chem B 2024; 12:895-915. [PMID: 38194290 DOI: 10.1039/d3tb02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
MXenes are a class of two-dimensional (2D) materials that have gained significant attention in the field of electronic skins (E-skins). MXene-based composites offer several advantages for E-skins, including high electrical conductivity, mechanical flexibility, transparency, and chemical stability. Their mechanical flexibility allows for conformal integration onto various surfaces, enabling the creation of E-skins that can closely mimic human skin. In addition, their high surface area facilitates enhanced sensitivity and responsiveness to external stimuli, making them ideal for sensing applications. Notably, MXene-based composites can be integrated into E-skins to create sensors that can detect various stimuli, such as temperature, pressure, strain, and humidity. These sensors can be used for a wide range of applications, including health monitoring, robotics, and human-machine interfaces. However, challenges related to scalability, integration, and biocompatibility need to be addressed. One important challenge is achieving long-term stability under harsh conditions such as high humidity. MXenes are susceptible to oxidation, which can degrade their electrical and mechanical properties over time. Another crucial challenge is the scalability of MXene synthesis, as large-scale production methods need to be developed to meet the demand for commercial applications. Notably, the integration of MXenes with other components, such as energy storage devices or flexible electronics, requires further developments to ensure compatibility and optimize overall performance. By addressing issues related to material stability, mechanical flexibility, scalability, sensing performance, and power supply, MXene-based E-skins can develop the fields of healthcare monitoring/diagnostics, prosthetics, motion monitoring, wearable electronics, and human-robot interactions. The integration of MXenes with emerging technologies, such as artificial intelligence or internet of things, can unlock new functionalities and applications for E-skins, ranging from healthcare monitoring to virtual reality interfaces. This review aims to examine the challenges, advantages, and limitations of MXenes and their composites in E-skins, while also exploring the future prospects and potential advancements in this field.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China.
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| |
Collapse
|
11
|
Lorencova L, Kasak P, Kosutova N, Jerigova M, Noskovicova E, Vikartovska A, Barath M, Farkas P, Tkac J. MXene-based electrochemical devices applied for healthcare applications. Mikrochim Acta 2024; 191:88. [PMID: 38206460 PMCID: PMC10784403 DOI: 10.1007/s00604-023-06163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.
Collapse
Affiliation(s)
- Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Monika Jerigova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Eva Noskovicova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Marek Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Pavol Farkas
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
12
|
Safarkhani M, Far BF, Huh Y, Rabiee N. Thermally Conductive MXene. ACS Biomater Sci Eng 2023; 9:6516-6530. [PMID: 38019724 DOI: 10.1021/acsbiomaterials.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
MXene materials, which consist of nitrides, carbides, or carbonitrides of transition metals, possess a distinctive multilayered structure resulting from the specific etching of the "A" layer from MAX phase precursors. This unique structure allows for tunable properties through intercalation and surface modification. Beyond their structural novelty, MXenes exhibit exceptional thermal conductivity, mechanical resilience, and versatile surface functionalization capabilities, rendering them highly versatile for a wide range of applications. They are particularly renowned for their multifaceted utility and are emerging as outstanding candidates in applications requiring robust thermal conductivity. MXenes, when integrated into textile, fiber, and film forms, have gained increasing relevance in fields where efficient heat management is essential. This work provides a comprehensive exploration of MXene materials, delving into their inherent structure and thermal properties. This Perspective places particular emphasis on their crucial role in efficient heat dissipation, which is vital for the development of wearable heaters and related technologies. Engineered compounds such as MXenes have become indispensable for personal and industrial heating applications, and the advancement of wearable electronic devices necessitates heaters with specific properties, including transparency, mechanical reliability, and adaptability. Recent advancements in emergent thermally conductive MXene compounds are discussed in this study, shedding light on their potential contributions across various domains, including wearable heaters and biosensors for healthcare and environmental monitoring. Furthermore, the versatile nature of MXene materials extends to their application in interfacial solar steam generation, representing a breakthrough approach for solar water desalination. This multifaceted utility underscores the vast potential of MXenes in addressing various pressing challenges.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684611367, Iran
| | - YunSuk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
13
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
14
|
Zhu J, Wang A, Miao X, Ye H, Pan S, Zhang C, Qian Q, Su F. Harnessing gradient gelatin nanocomposite hydrogels: a progressive approach to tackling antibacterial biofilms. RSC Adv 2023; 13:30453-30461. [PMID: 37854485 PMCID: PMC10580021 DOI: 10.1039/d3ra06034a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023] Open
Abstract
Infectious wounds pose significant challenges due to their susceptibility to bacterial infections, hindering tissue repair. This study introduces gradient gelatin nanocomposite hydrogels for wound healing and antibacterial biofilm management. These hydrogels, synthesized via UV light polymerization, incorporate copper-doped polydopamine nanoparticles (PDA-Cu) and GelMA (gelatin methacrylate). The hydrogels have a unique structure with a porous upper layer and a denser lower layer, ensuring superior swelling (over than 600%) and effective contact with bacterial biofilms. In vitro experiments demonstrate their remarkable antibacterial properties, inhibiting S. aureus and E. coli biofilms by over 45% and 53%, respectively. This antibacterial action is attributed to the regulation of reactive oxygen species (ROS) production, an alternative mechanism to bacterial cell wall disruption. Moreover, the hydrogels exhibit high biocompatibility with mammalian cells, making them suitable for medical applications. In vivo evaluation in a rat wound infection model shows that the gradient hydrogel treatment effectively controls bacterial biofilm infections and accelerates wound healing. The treated wounds have smaller infected areas and reduced bacterial colony counts. Histological analysis reveals reduced inflammation and enhanced granulation tissue formation in treated wounds, highlighting the therapeutic potential of these gradient nanocomposite hydrogels. In summary, gradient gelatin nanocomposite hydrogels offer promising multifunctional capabilities for wound healing and biofilm-related infections, paving the way for innovative medical dressings with enhanced antibacterial properties and biocompatibility.
Collapse
Affiliation(s)
- Jiawei Zhu
- Infectious Disease Department, Wenzhou Central Hospital Wenzhou 325099 Zhejiang People's Republic of China
| | - Anli Wang
- Infectious Disease Department, Wenzhou Central Hospital Wenzhou 325099 Zhejiang People's Republic of China
| | - Xingguo Miao
- Infectious Disease Department, Wenzhou Central Hospital Wenzhou 325099 Zhejiang People's Republic of China
| | - Hui Ye
- Infectious Disease Department, Wenzhou Central Hospital Wenzhou 325099 Zhejiang People's Republic of China
| | - Shuo Pan
- Wenzhou Medical University Wenzhou 325000 Zhejiang People's Republic of China
| | - Chengxi Zhang
- School of Materials Science and Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Qiuping Qian
- Infectious Disease Department, Wenzhou Central Hospital Wenzhou 325099 Zhejiang People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325000 Zhejiang People's Republic of China
- Departamento de Química Física, Biomedical Research Center (CINBIO), Universidade de Vigo 36310 Vigo Spain
| | - Feifei Su
- Infectious Disease Department, Wenzhou Central Hospital Wenzhou 325099 Zhejiang People's Republic of China
| |
Collapse
|
15
|
Abstract
MXenes with their unique electronic, optical, chemical, and mechanical properties have shown great promise in soft robotics. MXene-based soft actuators have been designed to display ultrafast actuations and recovery speeds as well as angle-independent structural colors in response to vapor. Several studies have developed soft actuators by combining MXenes with other materials to mimic the movement of natural organisms. Thus, MXene-based soft actuators have the potential to revolutionize the field of soft robotics and flexible electronics (e.g., wearable devices and artificial muscles). MXene-based artificial muscles have been explored for use in kinetic soft robotics as actuators in microsystems requiring exceptional compliance. MXene-based sensors and actuators have already been developed for human-like sensors and photodetection. However, there are still challenges that need to be addressed in such applications, such as the design of stretchable and compliant robotic skins with a high-level functional integration for soft robotics. The integration of various devices, such as power sources, sensors, and actuators, into soft robotics is another crucial challenge. Despite the excellent stretchability and tensile strength of MXene-based composites, there is a vital need to develop their mechanical and electrochemical features and grant them multi-functionalities. Herein, recent developments pertaining to the applications of MXenes and their composites in soft robotics are discussed with a focus on the important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
16
|
Kizhepat S, Rasal AS, Chang JY, Wu HF. Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091520. [PMID: 37177065 PMCID: PMC10180329 DOI: 10.3390/nano13091520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
New possibilities for the development of biosensors that are ready to be implemented in the field have emerged thanks to the recent progress of functional nanomaterials and the careful engineering of nanostructures. Two-dimensional (2D) nanomaterials have exceptional physical, chemical, highly anisotropic, chemically active, and mechanical capabilities due to their ultra-thin structures. The diversity of the high surface area, layered topologies, and porosity found in 2D nanomaterials makes them amenable to being engineered with surface characteristics that make it possible for targeted identification. By integrating the distinctive features of several varieties of nanostructures and employing them as scaffolds for bimolecular assemblies, biosensing platforms with improved reliability, selectivity, and sensitivity for the identification of a plethora of analytes can be developed. In this review, we compile a number of approaches to using 2D nanomaterials for biomolecule detection. Subsequently, we summarize the advantages and disadvantages of using 2D nanomaterials in biosensing. Finally, both the opportunities and the challenges that exist within this potentially fruitful subject are discussed. This review will assist readers in understanding the synthesis of 2D nanomaterials, their alteration by enzymes and composite materials, and the implementation of 2D material-based biosensors for efficient bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Shamsa Kizhepat
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Ismail SNA, Nayan NA, Mohammad Haniff MAS, Jaafar R, May Z. Wearable Two-Dimensional Nanomaterial-Based Flexible Sensors for Blood Pressure Monitoring: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:852. [PMID: 36903730 PMCID: PMC10005058 DOI: 10.3390/nano13050852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Flexible sensors have been extensively employed in wearable technologies for physiological monitoring given the technological advancement in recent years. Conventional sensors made of silicon or glass substrates may be limited by their rigid structures, bulkiness, and incapability for continuous monitoring of vital signs, such as blood pressure (BP). Two-dimensional (2D) nanomaterials have received considerable attention in the fabrication of flexible sensors due to their large surface-area-to-volume ratio, high electrical conductivity, cost effectiveness, flexibility, and light weight. This review discusses the transduction mechanisms, namely, piezoelectric, capacitive, piezoresistive, and triboelectric, of flexible sensors. Several 2D nanomaterials used as sensing elements for flexible BP sensors are reviewed in terms of their mechanisms, materials, and sensing performance. Previous works on wearable BP sensors are presented, including epidermal patches, electronic tattoos, and commercialized BP patches. Finally, the challenges and future outlook of this emerging technology are addressed for non-invasive and continuous BP monitoring.
Collapse
Affiliation(s)
- Siti Nor Ashikin Ismail
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
| | - Nazrul Anuar Nayan
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
- Institute Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
| | | | - Rosmina Jaafar
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
| | - Zazilah May
- Electrical and Electronic Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
18
|
Tran VA, Tran NT, Doan VD, Nguyen TQ, Thi HHP, Vo GNL. Application Prospects of MXenes Materials Modifications for Sensors. MICROMACHINES 2023; 14:247. [PMID: 36837947 PMCID: PMC9959414 DOI: 10.3390/mi14020247] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 06/01/2023]
Abstract
The first two-dimensional (2D) substance sparked a boom in research since this type of material showed potential promise for applications in field sensors. A class of 2D transition metal nitrides, carbides, and carbonitrides are referred to as MXenes. Following the 2011 synthesis of Ti3C2 from Ti3AlC2, much research has been published. Since these materials have several advantages over conventional 2D materials, they have been extensively researched, synthesized, and studied by many research organizations. To give readers a general understanding of these well-liked materials, this review examines the structures of MXenes, discusses various synthesis procedures, and analyzes physicochemistry properties, particularly optical, electronic, structural, and mechanical properties. The focus of this review is the analysis of modern advancements in the development of MXene-based sensors, including electrochemical sensors, gas sensors, biosensors, optical sensors, and wearable sensors. Finally, the opportunities and challenges for further study on the creation of MXenes-based sensors are discussed.
Collapse
Affiliation(s)
- Vy Anh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Quang Nguyen
- Department of External Relations and Project Development, Institute of Applied Science and Technology (IAST), Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Hai Ha Pham Thi
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Giang N. L. Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
19
|
Azeem MM, Shafa M, Aamir M, Zubair M, Souayeh B, Alam MW. Nucleotide detection mechanism and comparison based on low-dimensional materials: A review. Front Bioeng Biotechnol 2023; 11:1117871. [PMID: 36937765 PMCID: PMC10018150 DOI: 10.3389/fbioe.2023.1117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The recent pandemic has led to the fabrication of new nucleic acid sensors that can detect infinitesimal limits immediately and effectively. Therefore, various techniques have been demonstrated using low-dimensional materials that exhibit ultrahigh detection and accuracy. Numerous detection approaches have been reported, and new methods for impulse sensing are being explored. All ongoing research converges at one unique point, that is, an impetus: the enhanced limit of detection of sensors. There are several reviews on the detection of viruses and other proteins related to disease control point of care; however, to the best of our knowledge, none summarizes the various nucleotide sensors and describes their limits of detection and mechanisms. To understand the far-reaching impact of this discipline, we briefly discussed conventional and nanomaterial-based sensors, and then proposed the feature prospects of these devices. Two types of sensing mechanisms were further divided into their sub-branches: polymerase chain reaction and photospectrometric-based sensors. The nanomaterial-based sensor was further subdivided into optical and electrical sensors. The optical sensors included fluorescence (FL), surface plasmon resonance (SPR), colorimetric, and surface-enhanced Raman scattering (SERS), while electrical sensors included electrochemical luminescence (ECL), microfluidic chip, and field-effect transistor (FET). A synopsis of sensing materials, mechanisms, detection limits, and ranges has been provided. The sensing mechanism and materials used were discussed for each category in terms of length, collectively forming a fusing platform to highlight the ultrahigh detection technique of nucleotide sensors. We discussed potential trends in improving the fabrication of nucleotide nanosensors based on low-dimensional materials. In this area, particular aspects, including sensitivity, detection mechanism, stability, and challenges, were addressed. The optimization of the sensing performance and selection of the best sensor were concluded. Recent trends in the atomic-scale simulation of the development of Deoxyribonucleic acid (DNA) sensors using 2D materials were highlighted. A critical overview of the challenges and opportunities of deoxyribonucleic acid sensors was explored, and progress made in deoxyribonucleic acid detection over the past decade with a family of deoxyribonucleic acid sensors was described. Areas in which further research is needed were included in the future scope.
Collapse
Affiliation(s)
- M. Mustafa Azeem
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Shafa
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Devices, Kunming University, Kunming, Yunnan, China
| | - Muhammad Aamir
- Department of Basic Science, Deanship of Preparatory Year, King Faisal University, Hofuf, Saudi Arabia
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Zubair
- Mechanical and Nuclear Engineering Department, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
20
|
Iravani S, Varma RS. MXene-based composites against antibiotic-resistant bacteria: current trends and future perspectives. RSC Adv 2023; 13:9665-9677. [PMID: 36968045 PMCID: PMC10038123 DOI: 10.1039/d3ra01276j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Today, finding novel nanomaterial-based strategies to combat bacterial resistance is an important field of science. MXene-based composites have shown excellent antimicrobial potential owing to their fascinating properties such as excellent photothermal effects, highly active sites, large interlayer spacing, unique chemical structures, and hydrophilicity; they have great potential to damage the bacterial cells by rupturing the bacterial cell membranes, enhancing the permeability across the membrane, causing DNA damages, reducing the metabolic activity, and generating oxidative stress. After inserting into or attaching on the surface of pathogenic bacteria, these two-dimensional structures can cause bacterial membrane disruption and cell content leakage owing to their sharp edges. Remarkably, MXenes and their composites with excellent photothermal performance have been studied in photothermal antibacterial therapy to combat antibiotic-resistant bacteria and suppress chronic wound infections, thus providing new opportunities for multidrug-resistant bacteria-infected wound healing. But, details about the possible interactions between MXene-based nanosystems and bacterial cell membranes are rather scarce. Also, the mechanisms of photothermal antibacterial therapy as well as synergistic tactics including photothermal, photodynamic or chemo-photothermal therapy still need to be uncovered. This review endeavors to delineate critical issues pertaining to the application of MXene-based composites against antibiotic-resistant bacteria, focusing on their photocatalytic inactivation, physical damage, and photothermal antibacterial therapy. This review endeavors to delineate critical issues pertaining to the application of MXene-based composites against antibiotic-resistant bacteria.![]()
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences81746-73461IsfahanIran
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL)Studentská 1402/2Liberec 1 461 17Czech Republic
| |
Collapse
|
21
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Rahmanian V, Gholami A, Chiang WH, Lai CW. Biomedical Applications of an Ultra-Sensitive Surface Plasmon Resonance Biosensor Based on Smart MXene Quantum Dots (SMQDs). BIOSENSORS 2022; 12:743. [PMID: 36140128 PMCID: PMC9496527 DOI: 10.3390/bios12090743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
In today's world, the use of biosensors occupies a special place in a variety of fields such as agriculture and industry. New biosensor technologies can identify biological compounds accurately and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in the development of biosensors based on their optical properties, which allow for very sensitive and specific measurements of biomolecules without time delay. Therefore, various nanomaterials have been introduced for the development of SPR biosensors to achieve a high degree of selectivity and sensitivity. The diagnosis of deadly diseases such as cancer depends on the use of nanotechnology. Smart MXene quantum dots (SMQDs), a new class of nanomaterials that are developing at a rapid pace, are perfect for the development of SPR biosensors due to their many advantageous properties. Moreover, SMQDs are two-dimensional (2D) inorganic segments with a limited number of atomic layers that exhibit excellent properties such as high conductivity, plasmonic, and optical properties. Therefore, SMQDs, with their unique properties, are promising contenders for biomedicine, including cancer diagnosis/treatment, biological sensing/imaging, antigen detection, etc. In this review, SPR biosensors based on SMQDs applied in biomedical applications are discussed. To achieve this goal, an introduction to SPR, SPR biosensors, and SMQDs (including their structure, surface functional groups, synthesis, and properties) is given first; then, the fabrication of hybrid nanoparticles (NPs) based on SMQDs and the biomedical applications of SMQDs are discussed. In the next step, SPR biosensors based on SMQDs and advanced 2D SMQDs-based nanobiosensors as ultrasensitive detection tools are presented. This review proposes the use of SMQDs for the improvement of SPR biosensors with high selectivity and sensitivity for biomedical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nano-Materials and Polymer Nano-Composites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Masoomeh Yari Kalashgrani
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Vahid Rahmanian
- The Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ahmad Gholami
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (MU), Kuala Lumpur 50603, Malaysia
| |
Collapse
|