1
|
Roy A, Khatun S, Dewale PD, Rengan AK, Chinta JP. Copper-assisted anticancer activity of hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancer. Dalton Trans 2024; 53:18640-18652. [PMID: 39479915 DOI: 10.1039/d4dt02516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The development of active therapeutic agents to treat highly metastatic cancer while minimizing damage to healthy cells is of utmost importance. Due to potential antioxidant properties, hydroxycinnamic acid derivatives (caffeic acid and p-coumaric acids) were found to inhibit highly metastatic breast cancer cell growth both in vitro and in vivo without much effect on normal cells. Especially due to the structure-activity relationships, ester and amide derivatives of hydroxycinnamic acids are reported to gain much higher radical scavenging ability than their naked hydroxycinnamic acid analogs like caffeic acid and p-coumaric acid. These results prompted us to design a set of ligands by incorporating an amide moiety on caffeic acid and p-coumaric acid to achieve the least toxicity towards healthy cell lines. Further, the Cu(II) complexes of amide-coupled caffeic acid and p-coumaric acid ligands have been explored for their therapeutic activity on triple-negative breast cancer and other cancer cells like colon, and prostate cancer. The Cu(II) complexes (4 & 5) were characterized by UV-Vis spectroscopy, FTIR, and X-band EPR spectroscopy. The trigonal bipyramidal geometry of complexes was confirmed by the X-band EPR spectra recorded in solution state at liquid N2 temperature. The purity of the complexes was determined by elemental analysis and HPLC traces. Initially, Calf thymus DNA (ct-DNA) binding studies with the complexes were explored. The results suggested the complexes (4 & 5) bind majorly through an intercalative mode of binding with ct-DNA, whereas no significant binding was observed for the bare organic ligands (2 & 3). The intercalation binding modes of 4 and 5 were further supported by UV-visible spectroscopy, ct-DNA melting point analysis, and CD spectroscopy. Moreover, these complexes showed better activity towards cisplatin-resistant TNBC cell lines (4T1, a TNBC cell line derived from the mammary gland tissue of a mouse). The combination of antioxidants and Cu(II) as the metal center made the complexes more cytotoxic toward cancer cell lines (4T1) (IC50 ∼ 3.5 ± 2.5 μM) and the least toxic toward healthy cells (L929) (IC50 ∼ 15 ± 5 μM). Finally, the mechanism of cell death was studied using JC-1 staining and a cell colony formation assay. These studies might help in designing safer anticancer drugs for treating more aggressive types of cancer.
Collapse
Affiliation(s)
- Anindya Roy
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 5022854, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 5022854, India
| | - Jugun Prakash Chinta
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India.
| |
Collapse
|
2
|
Das N, Bora B, Upadhyay A, Das D, Bera A, Goswami TK. Cu(II) flavonoids as potential photochemotherapeutic agents. Dalton Trans 2024; 53:3316-3329. [PMID: 38260975 DOI: 10.1039/d3dt02663a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Flavonoids, naturally derived polyphenolic compounds, have received significant attention due to their remarkable biochemical properties that offer substantial health benefits to humans. In this work, a series of six Cu(II) flavonoid complexes of the formulation [Cu(L1)(L2)](ClO4) where L1 is 3-hydroxy flavone (HF1, 1 and 4), 4-fluoro-3-hydroxy flavone (HF2, 2 and 5), and 2,6-difluoro-3-hydroxy flavone (HF3, 3 and 6); L2 is 1,10-phenanthroline (phen, 1-3) and 2-(anthracen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (aip, 4-6) were successfully synthesized, fully characterized and also evaluated for their in vitro photo-triggered cytotoxicity in cancer cells. The single-crystal X-ray diffraction structure of complex 2 shows square pyramidal geometry around the Cu(II) center. The complexes 1-6 showed quasi-reversible cyclic voltammetric responses for the Cu(II)/Cu(I) couple at ∼-0.230 V with a very large ΔEp value of ∼350-480 mV against the Ag/AgCl reference electrode in DMF-0.1 M tetrabutylammonium perchlorate (TBAP) at a scan rate of 50 mV s-1. The complexes were found to have considerable binding propensity for human serum albumin (HSA) and calf thymus DNA (ct-DNA). The complexes displayed remarkable dose-dependent photocytotoxicity in visible light (400-700 nm) in both A549 (human lung cancer) and MCF-7 (human breast cancer) cell lines while remaining significantly less toxic in darkness. They were found to be much less toxic to HPL1D (immortalized human peripheral lung epithelial) normal cells compared to A549 and MCF-7 cancer cells. Upon exposure to visible light, they generate reactive oxygen species, which are thought to be the main contributors to the death of cancer cells. In the presence of visible light, the complexes predominantly elicit an apoptotic mode of cell death. Complex 6 preferentially localizes in the mitochondria of A549 cells.
Collapse
Affiliation(s)
- Namisha Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Bidisha Bora
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Dhananjay Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| |
Collapse
|
3
|
Ma S, Weng M, Yang T, Ge L, Yang K. Triterpenes and Pheophorbides from Camellia ptilosperma and Their Cytotoxicity, Photocytotoxicity, and Photodynamic Antibacterial Activity. Molecules 2023; 28:7058. [PMID: 37894536 PMCID: PMC10609551 DOI: 10.3390/molecules28207058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemical investigation of the leaves of Camellia ptilosperma S. Y. Liang et Q. D. Chen led to the isolation of ten undescribed compounds, including six new triterpenes (1-6) and four new pheophorbide-related compounds (7-10). Meanwhile, the cytotoxic activity of the six triterpenes against six cancer cell lines was evaluated by MTT assay. Compound 2 showed potent cytotoxicity toward HepG2 cells with an IC50 value of 2.57 μM. Compounds 4 and 5 exhibited cytotoxicity against MDA-MB231 cells, with IC50 values of 11.31 and 5.52 μM, respectively. Additionally, the cytotoxicity of four new pheophorbides against these cancer cells was evaluated both in the presence and absence of light treatment. Compound 7 exhibited exceptional photocytotoxicity against Hela, MCF-7, and A549 cells, with IC50 values of 0.43 μM, 0.28 μM, and 0.92 μM, respectively. Compound 10 demonstrated significant photodynamic cytotoxic activity against BEL-7402 and HepG2 cells with IC50 values of 0.77 μM and 0.33 μM, respectively. The photodynamic antibacterial activity of 7-10 was also tested for S. aureus, E. coli, K. pneumoniae, and P. aeruginosa under direct illumination. Compounds 8 and 10 exhibited sensitivity to E. coli and demonstrated a photodynamic antibacterial effect, with a MIC value of 0.625 μM.
Collapse
Affiliation(s)
- Siyuan Ma
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Mengling Weng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture & Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530004, China
| | - Ting Yang
- Guangxi Fangcheng Golden Camellia National Nature Reserve Management Center, Fangchenggang 538021, China
| | - Li Ge
- Medical College, Guangxi University, Nanning 530004, China
| | - Kedi Yang
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China;
- Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Mukherjee D, Krishnan A. Therapeutic potential of curcumin and its nanoformulations for treating oral cancer. World J Methodol 2023; 13:29-45. [PMID: 37456978 PMCID: PMC10348080 DOI: 10.5662/wjm.v13.i3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 06/14/2023] Open
Abstract
The global incidence of oral cancer has steadily increased in recent years and is associated with high morbidity and mortality. Oral cancer is the most common cancer in the head and neck region, and is predominantly of epithelial origin (i.e. squamous cell carcinoma). Oral cancer treatment modalities mainly include surgery with or without radiotherapy and chemotherapy. Though proven effective, chemotherapy has significant adverse effects with possibilities of tumor resistance to anticancer drugs and recurrence. Thus, there is an imperative need to identify suitable anticancer therapies that are highly precise with minimal side effects and to make oral cancer treatment effective and safer. Among the available adjuvant therapies is curcumin, a plant polyphenol isolated from the rhizome of the turmeric plant Curcuma longa. Curcumin has been demonstrated to have anti-infectious, antioxidant, anti-inflammatory, and anticarcinogenic properties. Curcumin has poor bioavailability, which has been overcome by its various analogues and nanoformulations, such as nanoparticles, liposome complexes, micelles, and phospholipid complexes. Studies have shown that the anticancer effects of curcumin are mediated by its action on multiple molecular targets, including activator protein 1, protein kinase B (Akt), nuclear factor κ-light-chain-enhancer of activated B cells, mitogen-activated protein kinase, epidermal growth factor receptor (EGFR) expression, and EGFR downstream signaling pathways. These targets play important roles in oral cancer pathogenesis, thereby making curcumin a promising adjuvant treatment modality. This review aims to summarize the different novel formulations of curcumin and their role in the treatment of oral cancer.
Collapse
Affiliation(s)
- Diptasree Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
- Department of Medicine, Apex Institute of Medical Science, Kolkata 700075, West Bengal, India
| | - Arunkumar Krishnan
- Department of Medicine Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| |
Collapse
|
5
|
Cai DH, Liang BF, Chen BH, Liu QY, Pan ZY, Le XY, He L. A novel water-soluble Cu(II) gluconate complex inhibits cancer cell growth by triggering apoptosis and ferroptosis related mechanisms. J Inorg Biochem 2023; 246:112299. [PMID: 37354603 DOI: 10.1016/j.jinorgbio.2023.112299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Metal copper complexes have attracted extensive attention as potential alternatives to platinum-based anticancer drugs due to their possible different modes of action. Herein, a new copper(II) gluconate complex, namely [Cu(DPQ)(Gluc)]·2H2O (CuGluc, DPQ = pyrazino[2,3-f][1,10]phenanthroline), with good water-solubility and high anticancer activity was synthesized by using D-gluconic acid (Gluc-2H) as an auxiliary ligand. The complex was well characterized by single-crystal X-ray diffraction analysis, elemental analysis, molar conductivity, and Fourier transform infrared spectroscopy (FTIR). The DNA-binding experiments revealed that CuGluc was bound to DNA by intercalation with end-stacking binding. CuGluc could oxidatively cleave DNA, in which 1O2 and H2O2 were involved. In addition, CuGluc was bound to the IIA subdomain of human serum albumin (HSA) through hydrophobic interaction and hydrogen bonding, showing a good affinity for HSA. The complex showed superior anticancer activity toward several cancer cells than cisplatin in vitro. Further studies indicated that CuGluc caused apoptotic cell death in human liver cancer (HepG2) cells through elevated intracellular reactive oxygen species (ROS) levels, mitochondrial dysfunction, cell cycle arrest, and caspase activation. Interestingly, CuGluc also triggered the ferroptosis mechanism through lipid peroxide accumulation and inhibition of glutathione peroxidase 4 (GPX4) activity. More importantly, CuGluc significantly inhibited tumor growth in vivo, which may benefit from the combined effects of apoptosis and ferroptosis. This work provides a promising strategy to develop highly effective antitumor copper complexes by coordinating with the glucose metabolite D-gluconic acid and exploiting the synergistic effects of apoptosis and ferroptosis mechanisms.
Collapse
Affiliation(s)
- Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bin-Fa Liang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|