1
|
Noguchi S, Ueno I. Quantitative analysis of particle behavior constituting multiple coherent structures in liquid bridges. J Colloid Interface Sci 2025; 684:29-42. [PMID: 39817977 DOI: 10.1016/j.jcis.2024.12.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 01/18/2025]
Abstract
HYPOTHESIS Coherent structures by low-Stokes-number particles are induced within a closed flow, in which ordered flow regions known as Kolmogorov-Arnold-Moser (KAM) tori emerge. A variety of structures with different spatial characteristics has been predicted by varying the Stokes number, whereas the coexistence of structures in flow suspending various types of particles has not been hitherto demonstrated. EXPERIMENTS Half-zone liquid bridges of O () are prepared as a closed system to induce thermocapillary-driven time-dependent flow under normal gravity conditions. By suspending single or multiple types of particles of O () in diameter, we track the particle trajectories with two synchronized high-speed cameras and count the particles forming coherent structures. FINDINGS The coexistence of various coherent structures is unveiled in systems where particle groups of different diameters are simultaneously suspended. We demonstrate the constitution of multiple coherent structures in the reference frame rotating with traveling wave: Some structures are dominated by a single type of particles, whereas some others are composed by various type of particles. Through a quantitative evaluation of the number of particles forming each manifested coherent structure, "the attractivity" of structures is discussed.
Collapse
Affiliation(s)
- Shin Noguchi
- Division of Mechanical and Aerospace Engineering, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Chiba, Japan.
| | - Ichiro Ueno
- Department of Mechanical and Aerospace Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Chiba, Japan.
| |
Collapse
|
2
|
Chung YD, Tsai YC, Wang CH, Lee GB. Aptamer selection via versatile microfluidic platforms and their diverse applications. LAB ON A CHIP 2025. [PMID: 39774569 DOI: 10.1039/d4lc00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, in vivo-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and in vivo-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.
Collapse
Affiliation(s)
- Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chi-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
4
|
Lin SH, Tsai YJ, Su TC, Lai SL, Jen CP. Separation of Lung Cancer Cells From Mixed Cell Samples Using Aptamer-Modified Magnetic Beads and Permalloy Micromagnets. Electrophoresis 2024; 45:2054-2064. [PMID: 39498696 DOI: 10.1002/elps.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
This study involved the design and fabrication of a microfluidic chip integrated with permalloy micromagnets. The device was used with aptamer-modified magnetic beads (MBs) of various sizes to successfully separate lung cancer cells from a mixture of other cells. The overall separation efficiency was evaluated based on the ratios of cells in the different outlets and inlets of the chip. The results showed efficiencies ranging from 43.4% to 50.2% for MB sizes between 1.36 and 4.50 µm. Interestingly, efficiency slightly decreased as the size of the MBs increased, contrary to predictions. Further examination revealed that larger MBs exerted gravitational force on the cell-bound MBs at low flow rates, causing the targets to settle before reaching the main microchannel region. This was attributed to fluidic resistance caused by a size mismatch between the inlet tube and the microfluidic conduit. An increase in cell accumulation at the inlet was observed with larger MB sizes due to gravity. Therefore, the definition of effective separation efficiency was revised to exclude the effect of cell accumulation at the inlet. Effective separation efficiencies were found to be 71.6%, 76.4%, and 79.4% for MB sizes of 1.36, 3.00, and 4.50 µm, respectively. The study concluded that larger MBs interacted more with the magnetic force, resulting in better separation. However, cells with smaller MBs were more likely to evade the magnetic force. The investigation provides valuable insights into isolating lung cancer cells using this method, with the potential for clinical application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan (ROC)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (ROC)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan (ROC)
| | - Yun-Jung Tsai
- Translational Pathology Core Laboratory, Changhua Christian Hospital, Changhua, Taiwan (ROC)
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan (ROC)
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan (ROC)
| | - Shih-Lun Lai
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan (ROC)
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan (ROC)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC)
| |
Collapse
|
5
|
Bayramoglu G, Ozalp VC, Arica MY. Aptamer-based magnetic isolation and specific detection system for Listeria monocytogenes from food samples. Microchem J 2024; 203:110892. [DOI: 10.1016/j.microc.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
7
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
8
|
Beyazit F, Arica MY, Acikgoz-Erkaya I, Ozalp C, Bayramoglu G. Quartz crystal microbalance-based aptasensor integrated with magnetic pre-concentration system for detection of Listeria monocytogenes in food samples. Mikrochim Acta 2024; 191:235. [PMID: 38570380 PMCID: PMC10990998 DOI: 10.1007/s00604-024-06307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
A fast and accurate identification of Listeria monocytogenes. A new quartz crystal microbalance (QCM) aptasensor was designed for the specific and rapid detection of L. monocytogenes. Before detection of the target bacterium from samples in the QCM aptasensor, a magnetic pre-enrichment system was used to eliminate any contaminant in the samples. The prepared magnetic system was characterized using ATR-FTIR, SEM, VSM, BET, and analytical methods. The saturation magnetization values of the Fe3O4, Fe3O4@PDA, and Fe3O4@PDA@DAPEG particles were 57.2, 40.8, and 36.4 emu/g, respectively. The same aptamer was also immobilized on the QCM crystal integrated into QCM flow cell and utilized to quantitatively detect L. monocytogenes cells from the samples. It was found that a specific aptamer-magnetic pre-concentration system efficiently captured L. monocytogenes cells in a short time (approximately 10 min). The Fe3O4@PDA@DA-PEG-Apt particles provided selective isolation of L. monocytogenes from the bacteria-spiked media up to 91.8%. The immobilized aptamer content of the magnetic particles was 5834 µg/g using 500 ng Apt/mL. The QCM aptasensor showed a very high range of analytical performance to the target bacterium from 1.0 × 102 and 1.0 × 107 CFU/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were 148 and 448 CFU/mL, respectively, from the feeding of the QCM aptasensor flow cell with the eluent of the magnetic pre-concentration system. The reproducibility of the aptasensor was more than 95%. The aptasensor was very specific to L. monocytogenes compared to the other Listeria species (i.e., L. ivanovii, L. innocua, and L. seeligeri) or other tested bacteria such as Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The QCM aptasensor was regenerated with NaOH solution, and the system was reused many times.
Collapse
Affiliation(s)
- Fatma Beyazit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - Ilkay Acikgoz-Erkaya
- Department of Environmental Science, Faculty of Engineering and Architecture, Ahi Evran University, Kırsehir, Turkey
| | - Cengiz Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| |
Collapse
|
9
|
Zhou H, Abudureheman T, Zheng W, Yang L, Zhu J, Liang A, Duan C, Chen K. CAR-Aptamers Enable Traceless Enrichment and Monitoring of CAR-Positive Cells and Overcome Tumor Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305566. [PMID: 38148412 PMCID: PMC10933668 DOI: 10.1002/advs.202305566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jian‐Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ai‐Bin Liang
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFuzhouFujian350122China
| | - Kaiming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| |
Collapse
|
10
|
Toudeshkchouei MG, Abdoos H. Magnetic nanoparticles fabricated/integrated with microfluidics for biological applications: A review. Biomed Microdevices 2024; 26:13. [PMID: 38270676 DOI: 10.1007/s10544-023-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Nanostructured materials have gained significant attention in recent years for their potential in biological applications, such as cell and biomolecular sorting, as well as early detection of metastatic cancer. Among these materials, magnetic nanoparticles (MNPs) stand out for their easy functionalization, high specific surface area, chemical stability, and superparamagnetic properties. However, conventional fabrication methods can lead to inconsistencies in MNPs' characteristics and performance, highlighting the need for a cost-effective, controllable, and reproducible synthesis approach. In this review, we will discuss the utilization of microfluidic technology as a cutting-edge strategy for the continuous and regulated synthesis of MNPs. This approach has proven effective in producing MNPs with a superior biomedical performance by offering precise control over particle size, shape, and surface properties. We will examine the latest research findings on developing and integrating MNPs synthesized through continuous microfluidic processes for a wide range of biological applications. By providing an overview of the current state of the field, this review aims to showcase the advantages of microfluidics in the fabrication and integration of MNPs, emphasizing their potential to revolutionize diagnostic and therapeutic methods within the realm of biotechnology.
Collapse
Affiliation(s)
| | - Hassan Abdoos
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P.O. Box 35131-19111, Semnan, Iran.
| |
Collapse
|
11
|
Uğurlu Ö, Man E, Gök O, Ülker G, Soytürk H, Özyurt C, Evran S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal Chim Acta 2024; 1287:342001. [PMID: 38182359 DOI: 10.1016/j.aca.2023.342001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction. However, they lack selectivity and thus need to be functionalized with target-capturing molecules. Antibodies and molecularly imprinted polymers (MIPs) can be used for this purpose, but they have some problems that limit their practical applications. Hence, functionalization of nanomaterials for selectivity remains a problem. RESULTS Nucleic acid aptamers are affinity reagents that can provide superiority to antibodies since they can be selected in vitro and at a lower cost. Moreover, aptamers can be chemically synthesized and easily modified with different functional groups. Hence, aptamers are good candidates to impart selectivity to the nanomaterials. Recent studies focus on the integration of aptamers with magnetic nanoparticles, carbon-based nanomaterials, metal-organic frameworks, gold nanoparticles, gold nanorods, silica nanomaterials, and nanofibers. The unique properties of nanomaterials and aptamers make the aptamer-conjugated nanomaterials attractive for use in sample preparation. Aptamer-functionalized nanomaterials have been successfully used for selective extraction of proteins, small molecules, and cells from different types of complex samples such as serum, urine, and milk. In particular, magnetic nanoparticles have a wider use due to the rapid extraction of the sample under magnetic field. SIGNIFICANCE In this review, we aim to emphasize how beneficial features of nanomaterials and aptamers could be combined for extraction or enrichment of the analytes from complex samples. We aim to highlight that the benefits are twofold in terms of selectivity and efficiency when employing nanomaterials and aptamers together as a single platform.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya, Hatay, Turkey; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey; EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, İzmir, Turkey
| | - Oğuz Gök
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Gözde Ülker
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Hakan Soytürk
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey.
| |
Collapse
|
12
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
13
|
Ikemoto S, Sakurai F, Tokuoka S, Yamashita T, Takayama K, Hoshi K, Okabe T, Sumiyoshi I, Togo S, Takahashi K, Tachibana M, Mizuguchi H. Novel conditionally replicating adenovirus-mediated efficient detection of circulating tumor cells in lung cancer patients. PLoS One 2023; 18:e0286323. [PMID: 37856461 PMCID: PMC10586684 DOI: 10.1371/journal.pone.0286323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 10/21/2023] Open
Abstract
Circulating tumor cells (CTCs) are present in the blood of cancer patients from the early stage of cancer development, and their presence has been correlated with patient prognosis and treatment responses. Accordingly, CTCs have been attracting attention as a novel biomarker for early detection of cancer and monitoring of treatment responses. However, since patients typically have only a few CTCs per milliliter of blood, development of an accurate and highly sensitive CTC detection method is crucial. We previously developed a CTC detection method using a novel conditionally replicating adenovirus (Ad) that expresses green fluorescence protein (GFP) in a tumor cell-specific manner by expressing the E1 gene using a tumor-specific human telomerase reverse transcriptase (hTERT) promoter (rAdF35-142T-GFP). CTCs were efficiently detected using rAdF35-142T-GFP, but GFP expression levels in the CTCs and production efficiencies of rAdF35-142T-GFP were relatively low. In this study, in order to overcome these problems, we developed four types of novel GFP-expressing conditionally replicating Ads and examined their ability to visualize CTCs in the blood samples of lung cancer patients. Among the four types of novel recombinant Ads, the novel conditionally replicating Ad containing the 2A peptide and the GFP gene downstream of the E1A gene and the adenovirus death protein (ADP) gene in the E3 region (rAdF35-E1-2A-GFP-ADP) mediated the highest number of GFP-positive cells in the human cultured tumor cell lines. Titers of rAdF35-E1-2A-GFP-ADP were significantly higher (about 4-fold) than those of rAdF35-142T-GFP. rAdF35-E1-2A-GFP-ADP and rAdF35-142T-GFP efficiently detected CTCs in the blood of lung cancer patients at similar levels. GFP+/CD45- cells (CTCs) were found in 10 of 17 patients (58.8%) for both types of recombinant Ads.
Collapse
Affiliation(s)
- Sena Ikemoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sora Tokuoka
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kosuke Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuaki Hoshi
- Department of Minimally Invasive Next-generation Cancer Diagnosis by TelomeScan, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University, Tokyo, Japan
| | - Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University, Tokyo, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Shinsaku Togo
- Department of Minimally Invasive Next-generation Cancer Diagnosis by TelomeScan, Tokyo, Japan
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Minimally Invasive Next-generation Cancer Diagnosis by TelomeScan, Tokyo, Japan
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, Center for Drug Discovery Resources Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| |
Collapse
|