1
|
Roy A, Dhibar S, Kumar S, Karmakar K, Garg P, Ruidas P, Bhattacharjee S, Bera A, Saha B, Ray SJ. A semiconducting supramolecular Co(II)-metallogel based resistive random access memory (RRAM) design with good endurance capabilities. Sci Rep 2024; 14:26848. [PMID: 39500967 PMCID: PMC11538287 DOI: 10.1038/s41598-024-74994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
A highly efficient approach for synthesizing a supramolecular metallogel of Co(II) ions, denoted as CoA-TA, has been established under room temperature and atmospheric pressure conditions. This method employs the metal-coordinating organic ligand benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. A comprehensive analysis of the mechanical properties of the resulting supramolecular Co(II)-metallogel was conducted through rheological investigation, considering angular frequency and thixotropic study. The hierarchical rocky network structure of the supramolecular Co(II)-metallogel was unveiled using field emission scanning electron microscopy (FESEM). Transmission electron microscopic (TEM) analysis showed rod-shaped structures via low-magnification high angle annular dark field (HAADF) bright field scanning transmission electron microscopic (STEM) imaging, while energy dispersive X-ray (EDX) elemental mapping confirmed its primary chemical constituents. The formation mechanism of the metallogel was examined via fourier transform infrared spectroscopy (FTIR) spectroscopy. The nature of the synthesized CoA-TA metallogel was affirmed through powder X-ray diffraction (PXRD) analysis. Furthermore, this study involved fabrication of Schottky diode structures in a metal-semiconductor-metal geometry based on cobalt(II) metallogel (CoA-TA), enabling observation of charge transport behavior. Remarkably, a resistive random access memory (RRAM) device utilizing cobalt(II) metallohydrogel (CoA-TA) demonstrated bipolar resistive switching at room temperature and under ambient conditions. The switching mechanism was investigated, revealing the formation and rupture of conductive filaments between metal electrodes that govern the resistive switching behavior. This RRAM device exhibited an impressive ON/OFF ratio (~ 414) and exceptional endurance over 5000 switching cycles. These structures offer great potential for diverse applications such as non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics. Their advantages lie in their fabrication process, reliable resistive switching behavior and overall performance stability.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India.
| | - Saurav Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology, Jammu, J&K-181221, India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University, Asansol, 713303, West Bengal, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, 713303, West Bengal, India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology, Jammu, J&K-181221, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India.
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India.
| |
Collapse
|
2
|
Dhibaris S, Pal S, Some S, Karmakar K, Saha R, Bhattacharjee S, Roy A, Ray SJ, Ajiboye TO, Dam S, Saha B. Efficient antimicrobial applications of two novel supramolecular metallogels derived from a l(+)-tartaric acid low molecular weight gelator. RSC Adv 2024; 14:26354-26361. [PMID: 39165795 PMCID: PMC11334155 DOI: 10.1039/d4ra03451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Novel metallogels were synthesized using l(+)-tartaric acid as a gelator, along with cadmium(ii)-acetate and mercury(ii)-acetate in N,N-dimethyl formamide at room temperature. Rheological analyses confirmed the mechanical stability of Cd(ii)- and Hg(ii)-metallogels under varying conditions. Characterization through EDX mapping and FESEM imaging provided insights into their chemical constituents and microstructural features. FT-IR spectroscopy elucidated the metallogel formation mechanism. Antimicrobial assays revealed significant activity against various bacteria, including Gram-positive and Gram-negative strains. This study presents a comprehensive exploration of Cd(ii) and Hg(ii)-based l(+)-tartaric acid-mediated metallogels, highlighting their potential in combating bacterial infections. These findings suggest promising applications in both industrial and biomedical fields, offering avenues for the development of advanced materials.
Collapse
Affiliation(s)
- Subhendu Dhibaris
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan 713104 West Bengal India
| | - Sangita Some
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Ratnakar Saha
- National Institute of Science Education and Research (NISER) Bhubaneswar Odisha 752050 India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Timothy O Ajiboye
- Department of Chemistry, University of the Free State Bloemfontein 9301 South Africa
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan 713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
3
|
Roy A, Dhibar S, Karmakar K, Bhattacharjee S, Saha B, Ray SJ. Development of a novel self-healing Zn(II)-metallohydrogel with wide bandgap semiconducting properties for non-volatile memory device application. Sci Rep 2024; 14:13109. [PMID: 38849385 PMCID: PMC11161586 DOI: 10.1038/s41598-024-61870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
A rapid and effective strategy has been devised for the swift development of a Zn(II)-ion-based supramolecular metallohydrogel, termed Zn@PEH, using pentaethylenehexamine as a low molecular weight gelator. This process occurs in an aqueous medium at room temperature and atmospheric pressure. The mechanical strength of the synthesized Zn@PEH metallohydrogel has been assessed through rheological analysis, considering angular frequency and oscillator stress dependencies. Notably, the Zn@PEH metallohydrogel exhibits exceptional self-healing abilities and can bear substantial loads, which have been characterized through thixotropic analysis. Additionally, this metallohydrogel displays injectable properties. The structural arrangement resembling pebbles within the hierarchical network of the supramolecular Zn@PEH metallohydrogel has been explored using FESEM and TEM measurements. EDX elemental mapping has confirmed the primary chemical constituents of the metallohydrogel. The formation mechanism of the metallohydrogel has been analyzed via FT-IR spectroscopy. Furthermore, zinc(II) metallohydrogel (Zn@PEH)-based Schottky diode structure has been fabricated in a lateral metal-semiconductor-metal configuration and it's charge transport behavior has also been studied. Notably, the zinc(II) metallohydrogel-based resistive random access memory (RRAM) device (Zn@PEH) demonstrates bipolar resistive switching behavior at room temperature. This RRAM device showcases remarkable switching endurance over 1000 consecutive cycles and a high ON/OFF ratio of approximately 270. Further, 2 × 2 crossbar array of the RRAM devices were designed to demonstrate OR and NOT logic circuit operations, which can be extended for performing higher order computing operations. These structures hold promise for applications in non-volatile memory design, neuromorphic and in-memory computing, flexible electronics, and optoelectronic devices due to their straightforward fabrication process, robust resistive switching behavior, and overall system stability.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801103, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801103, India.
| |
Collapse
|
4
|
Dhibar S, Mohan A, Karmakar K, Mondal B, Roy A, Babu S, Garg P, Ruidas P, Bhattacharjee S, Roy S, Bera A, Ray SJ, Predeep P, Saha B. Novel supramolecular luminescent metallogels containing Tb(iii) and Eu(iii) ions with benzene-1,3,5-tricarboxylic acid gelator: advancing semiconductor applications in microelectronic devices. RSC Adv 2024; 14:12829-12840. [PMID: 38645531 PMCID: PMC11027726 DOI: 10.1039/d3ra07903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
A novel strategy was employed to create supramolecular metallogels incorporating Tb(iii) and Eu(iii) ions using benzene-1,3,5-tricarboxylic acid (TA) as a gelator in N,N-dimethylformamide (DMF). Rheological analysis demonstrated their mechanical robustness under varying stress levels and angular frequencies. FESEM imaging revealed a flake-like hierarchical network for Tb-TA and a rod-shaped architecture for Eu-TA. EDX analysis confirmed essential chemical constituents within the metallogels. FT-IR, PXRD, Raman spectroscopy, and thermogravimetric analysis assessed their gelation process and material properties, showing semiconducting characteristics, validated by optical band-gap measurements. Metal-semiconductor junction-based devices integrating Al metal with Tb(iii)- and Eu(iii)-metallogels exhibited non-linear charge transport akin to a Schottky diode, indicating potential for advanced electronic device development. Direct utilization of benzene-1,3,5-tricarboxylic acid and Tb(iii)/Eu(iii) sources underscores their suitability as semiconducting materials for device fabrication. This study explores the versatile applications of Tb-TA and Eu-TA metallogels, offering insights for material science researchers.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Saranya Babu
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Sanjay Roy
- Department of Chemistry, School of Science, Netaji Subhas Open University, Kalyani Regional Centre Kolkata 741251 India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
5
|
Singh S, Sharma AK, Gade HM, Agarwal V, Nasani R, Verma N, Sharma B. Stimuli-responsive and self-healing supramolecular Zn(II)-guanosine metal-organic gel for Schottky barrier diode application. SOFT MATTER 2024; 20:1025-1035. [PMID: 38197513 DOI: 10.1039/d3sm01405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spontaneous formation of a supramolecular metal-organic hydrogel using unsubstituted guanosine as a ligand and Zn2+ ions is reported. Guanosine, in the presence of NaOH, self-assembled into a stable G-quadruplex structure, which underwent crosslinking through Zn2+ ions to afford a stable hydrogel. The gel has been characterized using several spectroscopic as well as microscopic studies. The hydrogel demonstrated excellent stimuli responsiveness towards various chemicals and pH. Furthermore, the gel exhibited intrinsic thixotropic behavior and showed self-healing and injectable properties. The optical properties of the Zn-guanosine metallo-hydrogel suggested a semiconducting nature of the gel, which has been exploited for fabricating a thin film device based on a Schottky diode interface between metal and a semiconductor. The fabricated device shows excellent charge transport characteristics and linear rectifying behavior. The findings are likely to pave the way for newer research in the area of soft electronic devices fabricated using materials synthesized by employing simple biomolecules.
Collapse
Affiliation(s)
- Surbhi Singh
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Atul Kumar Sharma
- Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Hrushikesh M Gade
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Rajendar Nasani
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Nisha Verma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| |
Collapse
|
6
|
Karmakar K, Roy A, Dhibar S, Majumder S, Bhattacharjee S, Rahaman SKM, Saha R, Chatterjee P, Ray SJ, Saha B. Exploration of a wide bandgap semiconducting supramolecular Mg(II)-metallohydrogel derived from an aliphatic amine: a robust resistive switching framework for brain-inspired computing. Sci Rep 2023; 13:22318. [PMID: 38102201 PMCID: PMC10724216 DOI: 10.1038/s41598-023-48936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Shantanu Majumder
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India.
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
7
|
Dhibar S, Pal B, Karmakar K, Roy S, Hafiz SA, Roy A, Bhattacharjee S, Ray SJ, Ray PP, Saha B. A 5-aminoisophthalic acid low molecular weight gelator based novel semiconducting supramolecular Zn(ii)-metallogel: unlocking an efficient Schottky barrier diode for microelectronics. NANOSCALE ADVANCES 2023; 5:6714-6723. [PMID: 38024309 PMCID: PMC10662173 DOI: 10.1039/d3na00671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
A novel method has been successfully developed for creating supramolecular metallogels using zinc(ii) ions and 5-aminoisophthalic acid as the gelator (low molecular weight gelator) in a dimethylformamide (DMF) solvent at room temperature. Comprehensive rheological investigations confirm the robust mechanical strength of the resulting zinc(ii)-metallogel. Microstructural analysis conducted through field-emission scanning electron microscopy (FESEM) unveils a unique flake-like morphology, with energy-dispersive X-ray (EDX) elemental mapping confirming the prevalence of zinc as the primary constituent of the metallogel. To understand the formation mechanism of this metallogel, Fourier-transform infrared (FT-IR) spectroscopy was employed. Notably, these supramolecular zinc(ii)-metallogel assemblies exhibit electrical conductivity reminiscent of metal-semiconductor (MS) junction electronic components. Surprisingly, the metallogel-based thin film device showcases an impressive electrical conductivity of 1.34 × 10-5 S m-1. The semiconductor characteristics of the synthesized zinc(ii)-metallogel devices, including their Schottky barrier diode properties, have been extensively investigated. This multifaceted study opens up a promising avenue for designing functional materials tailored for electronic applications. It harnesses the synergistic properties of supramolecular metallogels and highlights their significant potential in the development of semiconductor devices. This work represents a novel approach to the creation of advanced materials with unique electronic properties, offering exciting prospects for future innovations in electronic and semiconductor technologies.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Baishakhi Pal
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Kalyani Regional Centre, Netaji Subhas Open University West Bengal India
| | - Sk Abdul Hafiz
- Department of Chemistry, KaziNazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | | | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
8
|
Dhibar S, Pal S, Karmakar K, Hafiz SA, Bhattacharjee S, Roy A, Rahaman SKM, Ray SJ, Dam S, Saha B. Two novel low molecular weight gelator-driven supramolecular metallogels efficient in antimicrobial activity applications. RSC Adv 2023; 13:32842-32849. [PMID: 38025858 PMCID: PMC10630960 DOI: 10.1039/d3ra05019j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
A remarkable ultrasonication technique was successfully employed to create two novel metallogels using citric acid as a low molecular weight gelator, in combination with cadmium(ii)-acetate and mercury(ii)-acetate dissolved in N,N-dimethyl formamide at room temperature and under ambient conditions. The mechanical properties of the resulting Cd(ii)- and Hg(ii)-metallogels were rigorously examined through rheological analyses, which revealed their robust mechanical stability under varying angular frequencies and shear strains. Detailed characterization of the chemical constituents within these metallogels was accomplished through EDX mapping experiments, while microstructural features were visualized using field emission scanning electron microscope (FESEM) images. Additionally, FT-IR spectroscopic analysis was employed to elucidate the metallogel formation mechanism. Significantly, the antimicrobial efficacy of these novel metallogels was assessed against a panel of bacteria, including Gram-positive strains such as Bacillus subtilis and Staphylococcus epidermidis, as well as Gram-negative species like Escherichia coli and Pseudomonas aeruginosa. The results demonstrated substantial antibacterial activity, highlighting the potential of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels as effective agents against a broad spectrum of bacteria. In conclusion, this study provides a comprehensive exploration of the synthesis, characterization, and antimicrobial properties of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels, shedding light on their promising applications in combating both Gram-positive and Gram-negative bacterial infections. These findings open up exciting prospects for the development of advanced materials with multifaceted industrial and biomedical uses.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|