1
|
Thanapongpibul C, Rifaie-Graham O, Ojansivu M, Najer A, Kim H, Bakker SE, Chami M, Peeler DJ, Liu C, Yeow J, Stevens MM. Unlocking Intracellular Protein Delivery by Harnessing Polymersomes Synthesized at Microliter Volumes using Photo-PISA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408000. [PMID: 39417762 DOI: 10.1002/adma.202408000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Efficient delivery of therapeutic proteins and vaccine antigens to intracellular targets is challenging due to generally poor cell membrane permeation and endolysosomal entrapment causing degradation. Herein, these challenges are addressed by developing an oxygen-tolerant photoinitiated polymerization-induced self-assembly (Photo-PISA) process, allowing for the microliter-scale (10 µL) synthesis of protein-loaded polymersomes directly in 1536-well plates. High-resolution techniques capable of analysis at a single particle level are employed to analyze protein encapsulation and release mechanisms. Using confocal microscopy and super-resolution stochastic optical reconstruction microscopy (STORM) imaging, their ability to deliver proteins into the cytosol following endosomal escape is subsequently visualized. Lastly, the adaptability of these polymersomes is exploited to encapsulate and deliver a prototype vaccine antigen, demonstrating its ability to activate antigen-presenting cells and support antigen cross-presentation for applications in subunit vaccines and cancer immunotherapy. This combination of ultralow volume synthesis and efficient intracellular delivery holds significant promise for unlocking the high throughput screening of a broad range of otherwise cost-prohibitive or early-stage therapeutic protein and vaccine antigen candidates that can be difficult to obtain in large quantities. The versatility of this platform for rapid screening of intracellular protein delivery can result in significant advancements across the fields of nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Omar Rifaie-Graham
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Saskia E Bakker
- Advanced Bioimaging Research Technology Platform, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Basel, 4058, Switzerland
| | - David J Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chenchen Liu
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Department of Engineering Science, University of Oxford, Oxford, OX1 3QU, UK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
- Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Department of Engineering Science, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
2
|
Kim S, Lee SN, Melvin AA, Choi JW. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers (Basel) 2024; 16:2660. [PMID: 39339124 PMCID: PMC11436224 DOI: 10.3390/polym16182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Polymer actuators are promising, as they are widely used in various fields, such as sensors and soft robotics, for their unique properties, such as their ability to form high-quality films, sensitivity, and flexibility. In recent years, advances in structural and fabrication processes have significantly improved the reliability of polymer sensing-based actuators. Polymer actuators have attracted considerable attention for use in artificial or biohybrid systems, as they have the potential to operate under diverse conditions with high durability. This review briefly describes different types of polymer actuators and provides an understanding of their working mechanisms. It focuses on actuation modes controlled by diverse or multiple stimuli. Furthermore, it discusses the fabrication processes of polymer actuators; the fabrication process is an important consideration in the development of high-quality actuators with sensing properties for a wide range of applications in soft robotics. Additionally, the high potential of polymer actuators for use in sensing technology is examined, and the latest developments in the field of polymer actuators, such as the development of biohybrid polymers and the use of polymer actuators in 4D printing, are briefly described.
Collapse
Affiliation(s)
- Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Ambrose Ashwin Melvin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
3
|
Lin W, Jia S, Li Y, Zhang L, Liu H, Tan J. Aqueous RAFT Dispersion Polymerization Mediated by an ω,ω-Macromolecular Chain Transfer Monomer: An Efficient Approach for Amphiphilic Branched Block Copolymers and the Assemblies. ACS Macro Lett 2024; 13:1022-1030. [PMID: 39074066 DOI: 10.1021/acsmacrolett.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Herein, an ω,ω-macromolecular chain transfer monomer (macro-CTM) containing a RAFT (reversible addition-fragmentation chain transfer) group and a methacryloyl group was synthesized and used to mediate photoinitiated RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA) in water. The macro-CTM undergoes a self-condensing vinyl polymerization (SCVP) mechanism under RAFT dispersion polymerization conditions, leading to the formation of amphiphilic branched block copolymers and the assemblies. Compared with RAFT solution polymerization, it was found that the SCVP process was promoted under RAFT dispersion polymerization conditions. Morphologies of branched block copolymer assemblies could be controlled by varying the monomer concentration and the [HPMA]/[macro-CTM] ratio. The branched block copolymer vesicles could be used as seeds for seeded RAFT emulsion polymerization, and framboidal vesicles were successfully obtained. Finally, degrees of branching of branched block copolymers could be further controlled by using a binary mixture of the macro-CTM and a linear macro-RAFT agent or a small molecule CTM. We believe that this study not only provides a versatile strategy for the preparation of branched block copolymer assemblies but also offers important insights into polymer synthesis via heterogeneous RAFT polymerization.
Collapse
Affiliation(s)
- Weihong Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Jia
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxiang Li
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
4
|
Lukáš Petrova S, Sincari V, Pavlova E, Pokorný V, Lobaz V, Hrubý M. Microfluidic Controlled Self-Assembly of Polylactide (PLA)-Based Linear and Graft Copolymers into Nanoparticles with Diverse Morphologies. ACS POLYMERS AU 2024; 4:331-341. [PMID: 39156556 PMCID: PMC11328328 DOI: 10.1021/acspolymersau.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 08/20/2024]
Abstract
This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers-triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and N-(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide-b-poly(triethylene glycol methacrylate) (PLA-b-PTEGMA), graft pseudothermoresponsive poly[N-(2-hydroxypropyl)] methacrylate-g-polylactide (PHPMA-g-PLA), and graft amphiphilic poly[N-(2-hydroxypropyl)] methacrylamide-g-polylactide (PHPMAA-g-PLA). The MF technology was utilized for the controlled self-assembly of these PLA-based BCs in a solution, resulting in a range of nanoparticle (NP) morphologies. The thermoresponsive PLA-b-PTEGMA diblock copolymer formed thermodynamically stable micelles (Ms) through kinetically controlled assemblies. Similarly, employing MF channels led to the self-assembly of PHPMA-g-PLA, yielding polymersomes (PSs) with adjustable sizes under the same solution conditions. Conversely, the PHPMAA-g-PLA copolymer generated worm-like particles (Ws). The analysis of resulting nano-objects involves techniques such as transmission electron microscopy, dynamic light scattering investigations (DLS), and small-angle X-ray scattering (SAXS). More specifically, the thermoresponsive behavior of PLA-b-PTEGMA and PHPMA-g-PLA nano-objects is validated through variable-temperature DLS, TEM, and SAXS methods. Furthermore, the study explored the specific interactions between the formed Ms, PSs, and/or Ws with proteins in human blood plasma, utilizing isothermal titration calorimetry.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| |
Collapse
|
5
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
6
|
Effenberg C, Gaitzsch J. Stretched or wrinkled? Looking into the polymer conformation within polymersome membranes. SOFT MATTER 2024; 20:4127-4135. [PMID: 38726767 DOI: 10.1039/d4sm00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Self-assembly of amphiphilic block-copolymers into polymersomes is a well-established concept. In this membrane, the hydrophilic part is considered to be loosely assembled towards the solvent, and the hydrophobic part on the inside of the membrane is considered to be more densely packed. Within the membrane, this hydrophobic part could now have a stretched conformation or be a random coil, depending on the available space and also on the chemical nature of the polymer. We now analysed the literature for works on polymersomes that determined the membrane thickness via cryo-TEM and analysed the hydrophobic part of their polymers for their conformation. Over all available block-copolymers, a variety of trends became obvious: the longer a hydrophobic block, the more coiled the conformation and the bulkier the side chains, the more stretched the polymer became. Polymers with less conformational freedom like semi-crystalline ones were present in a more stretched conformation. Both trends could be exemplified on various occasions in this cross-literature meta-study. This overview hence provides additional insight into the physical chemistry of block-copolymer membranes.
Collapse
Affiliation(s)
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e. V., Germany.
| |
Collapse
|
7
|
Filipek K, Otulakowski Ł, Jelonek K, Utrata-Wesołek A. Degradable Nanogels Based on Poly[Oligo(Ethylene Glycol) Methacrylate] (POEGMA) Derivatives through Thermo-Induced Aggregation of Polymer Chain and Subsequent Chemical Crosslinking. Polymers (Basel) 2024; 16:1163. [PMID: 38675081 PMCID: PMC11054481 DOI: 10.3390/polym16081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polymer nanogels-considered as nanoscale hydrogel particles-are attractive for biological and biomedical applications due to their unique physicochemical flexibility. However, the aggregation or accumulation of nanoparticles in the body or the occurrence of the body's defense reactions still pose a research challenge. Here, we demonstrate the fabrication of degradable nanogels using thermoresponsive, cytocompatible poly[oligo(ethylene glycol) methacrylate]s-based copolymers (POEGMA). The combination of POEGMA's beneficial properties (switchable affinity to water, nontoxicity, non-immunogenicity) along with the possibility of nanogel degradation constitute an important approach from a biological point of view. The copolymers of oligo(ethylene glycol) methacrylates were partially modified with short segments of degradable oligo(lactic acid) (OLA) terminated with the acrylate group. Under the influence of temperature, copolymers formed self-assembled nanoparticles, so-called mesoglobules, with sizes of 140-1000 nm. The thermoresponsive behavior of the obtained copolymers and the nanostructure sizes depended on the heating rate and the presence of salts in the aqueous media. The obtained mesoglobules were stabilized by chemical crosslinking via thiol-acrylate Michael addition, leading to nanogels that degraded over time in water, as indicated by the DLS, cryo-TEM, and AFM measurements. Combining these findings with the lack of toxicity of the obtained systems towards human fibroblasts indicates their application potential.
Collapse
Affiliation(s)
| | | | | | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
8
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Alexakis AE, Wilson OR, Malmström E. Bimodal nanolatexes prepared via polymerization-induced self-assembly: losing control in a controlled manner. Polym Chem 2023. [DOI: 10.1039/d3py00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In this paper we demonstrate the potential advantages of reproducible bimodal nanolatexes prepared by the combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization with polymerization-induced self-assembly (PISA).
Collapse
|
10
|
Xiong W, Wang X, Liu Y, Luo C, Lu X, Cai Y. Polymerization-Induced Electrostatic Self-Assembly Governed by Guanidinium Ionic Hydrogen Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weixing Xiong
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanyuan Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Caihui Luo
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Archer WR, Dinges GE, MacNicol PL, Schulz MD. Synthesis of bottlebrush polymers based on poly( N-sulfonyl aziridine) macromonomers. Polym Chem 2022. [DOI: 10.1039/d2py01125e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We synthesized bottlebrush polymers with polyaziridine brushes and a polynorbornene backbone by a grafting-through approach. The polyaziridine macromonomer aggregates in solution, but these aggregates disperse over the course of the polymerization.
Collapse
Affiliation(s)
- William R. Archer
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Grace E. Dinges
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Piper L. MacNicol
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael D. Schulz
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|