1
|
Pilopp Y, Beer H, Bresien J, Michalik D, Villinger A, Schulz A. Designing a visible light-mediated double photoswitch: a combination of biradical and azobenzene structural motifs that can be switched independently. Chem Sci 2025; 16:876-888. [PMID: 39660294 PMCID: PMC11626401 DOI: 10.1039/d4sc07247b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
A new molecular switch is presented that combines both biradical and azobenzene motifs to perform visible light-induced constitutional and stereo-isomerisation within the same molecule. The insertion of isonitrile-functionalised azobenzenes into the four-membered biradical [˙P(μ-NTer)2P˙] (1), yielding a phosphorus-centred cyclopentane-1,3-diyl (E-4B and E-5B), represents a straightforward method to generate the desired double switches (E-4B and E-5B) in excellent yields (>90%). The switching properties are demonstrated for the fluorinated species E-5B and, interestingly, can occur either stepwise or simultaneously, depending on the order in which the sample is irradiated with red and/or green light. All possible isomerisation reactions, i.e., housane formation in the phosphorus-centred cyclopentane-1,3-diyl fragment and E/Z isomerisation at the azobenzene, can be switched by irradiation and the reaction products E-5H, Z-5H and Z-5B (when performing the thermal reverse reaction in the dark) are identified using 19F{1H} and 31P{1H} NMR spectroscopy. Results from quantum chemical calculations contribute to the understanding and visualisation of the different isomers of each of the observed compounds (E-5B, E-5H, Z-5H, and Z-5B) caused by the unique structure of the double switches.
Collapse
Affiliation(s)
- Yannic Pilopp
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Henrik Beer
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Dirk Michalik
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a Rostock D-18059 Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a Rostock D-18059 Germany
| |
Collapse
|
2
|
Kerckhoffs A, Ahmad M, Langton MJ. Transient Photoactivation of Anionophores by Using Redshifted Fast-Relaxing Azobenzenes. Chemistry 2024; 30:e202402382. [PMID: 39087671 DOI: 10.1002/chem.202402382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
Photo-regulated transmembrane ionophores enable spatial and temporal control over activity, offering promise as targeted therapeutics. Key to such applications is control using bio-compatible visible light. Herein, we report red-shifted azobenzene-derived synthetic anionophores that use amber or red light to trigger (E)-(Z) photoisomerisation and activation of transmembrane chloride transport. We demonstrate that by tuning the thermal half-life of the more active, but thermodynamically unstable, Z isomer to relax on the timescale of minutes, transient activation of ion transport can be achieved by activating solely with visible light and deactivating by thermal relaxation.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Manzoor Ahmad
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
3
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
4
|
Roßmann K, Gonzalez-Hernandez AJ, Bhuyan R, Schattenberg C, Sun H, Börjesson K, Levitz J, Broichhagen J. Deuteration as a General Strategy to Enhance Azobenzene-Based Photopharmacology. Angew Chem Int Ed Engl 2024; 63:e202408300. [PMID: 38897926 DOI: 10.1002/anie.202408300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Chemical photoswitches have become a widely used approach for the remote control of biological functions with spatiotemporal precision. Several molecular scaffolds have been implemented to improve photoswitch characteristics, ranging from the nature of the photoswitch itself (e.g. azobenzenes, dithienylethenes, hemithioindigo) to fine-tuning of aromatic units and substituents. Herein, we present deuterated azobenzene photoswitches as a general means of enhancing the performance of photopharmacological molecules. Deuteration can improve azobenzene performance in terms of light sensitivity (higher molar extinction coefficient), photoswitch efficiency (higher photoisomerization quantum yield), and photoswitch kinetics (faster macroscopic rate of photoisomerization) with minimal alteration to the underlying structure of the photopharmacological ligand. We report synthesized deuterated azobenzene-based ligands for the optimized optical control of ion channel and G protein-coupled receptor (GPCR) function in live cells, setting the stage for the straightforward, widespread adoption of this approach.
Collapse
Affiliation(s)
- Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | | | - Rahul Bhuyan
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Caspar Schattenberg
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| |
Collapse
|
5
|
Goual N, Métivier R, Laurent G, Retailleau P, Nakatani K, Xie J. Tuning the Thermal Stability of Tetra-o-chloroazobenzene Derivatives by Transforming Push-Pull to Push-Push Systems. Chemistry 2024; 30:e202401737. [PMID: 39224068 DOI: 10.1002/chem.202401737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 09/04/2024]
Abstract
Molecular photoswitches provide interesting tools to reversibly control various biological functions with light. Thanks to its small size and easy introduction into the biomolecules, azobenzene derivatives have been widely employed in the field of photopharmacology. All visible-light switchable azobenzenes with controllable thermostability are highly demanded. Based on the reported tetra-o-chloroazobenzenes, we synthesized push-pull systems, by introducing dialkyl amine and nitro groups as strong electron-donating and electron-withdrawing groups on the para-positions, and then transformed to push-push systems by a simple reduction step. The developed push-pull and push-push tetra-o-chloroazobenzene derivatives displayed excellent photoswitching properties, as previously reported. The half-life of the Z-isomers can be tuned from milliseconds for the push-pull system to several hours for the push-push system. The n-π* and π-π* transitions have better resolution in the push-push molecules, and excitation at different wavelengths can tune the E/Z ratio at the photostationary state. For one push-pull molecule, structure and absorption spectra obtained from theoretical calculations are compared with experimental data, along with data on the push-push counterpart.
Collapse
Affiliation(s)
- Nawel Goual
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Rémi Métivier
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Guillaume Laurent
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Pascal Retailleau
- University Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France
| | - Keitaro Nakatani
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Juan Xie
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
6
|
Scheiner S. Anions as Lewis Acids in Noncovalent Bonds. Chemistry 2024; 30:e202402267. [PMID: 38975959 DOI: 10.1002/chem.202402267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The ability of an anion to serve as electron-accepting Lewis acid in a noncovalent bond is assessed via DFT calculations. NH3 is taken as the common base, and is paired with a host of ACln - anions, with central atom A=Ca, Sr, Mg, Te, Sb, Hg, Zn, Ag, Ga, Ti, Sn, I, and B. Each anion reacts through its σ or π-hole although the electrostatic potential of this hole is quite negative in most cases. Despite the contact between this negative hole and the negative region of the approaching nucleophile, the electrostatic component of the interaction energy of each bond is highly favorable, and accounts for more than half of the total attractive energy. The double negative charge of dianions precludes a stable complex with NH3.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| |
Collapse
|
7
|
Simms CH, Nielsen VRM, Sørensen TJ, Faulkner S, Langton MJ. Photoswitchable luminescent lanthanide complexes controlled and interrogated by four orthogonal wavelengths of light. Phys Chem Chem Phys 2024; 26:18683-18691. [PMID: 38922672 DOI: 10.1039/d4cp02243b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Optical information storage requires careful control of excitation and emission wavelengths in a reversible and orthogonal manner to enable efficient reading, writing, and erasing of information. Photochromic systems, in which a photoswitch is typcially coupled to an emissive organic fluorophore, have much promise in this regard. However, these suffer from considerable spectral overlap between the switch and fluorophore, such that their emissive and photoswitchable properties are not orthogonal. Here, we overcome this limitation by coupling visible/NIR emissive lanthanide complexes with molecular photoswitches, enabling reversible and orthogonal photoswitching with visible light. Crucially, photoswitching does not lead to sensitised emission from the lanthanide, while excitation of the lanthanide does not induce photoswitching, enabling the state of the system to be probed without perturbation of the switch. This opens up the possibility of developing multi-colour read-write methods for information storage using emissive photoswitches.
Collapse
Affiliation(s)
- Charlie H Simms
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| | - Villads R M Nielsen
- Nano-Science Centre and Department of Chemistry University of Copenhagen Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Centre and Department of Chemistry University of Copenhagen Universitetsparken 5, 2100 København Ø, Denmark
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| |
Collapse
|
8
|
Fink M, Stäuble J, Weisgerber M, Carreira EM. Aryl Azocyclopropeniums: Minimalist, Visible-Light Photoswitches. J Am Chem Soc 2024; 146:9519-9525. [PMID: 38547006 PMCID: PMC11010232 DOI: 10.1021/jacs.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
We report convenient syntheses of aryl azocyclopropeniums and a study of their photochemical properties. Incorporation of the smallest arene leads to pronounced redshift of the π-π* absorbance band, compared to azobenzenes. Photoisomerization under purple or green light irradiation affords Z- or E-isomers in ratios up to 94% Z or 90% E, and the switches proved stable over multiple irradiation cycles. Thermal half-lives of metastable Z-isomers range from minutes to hours in acetonitrile and water. These properties together with the concise, versatile syntheses render aryl azocyclopropeniums exciting additions to the tool kit of readily available molecular photoswitches for wide ranging applications.
Collapse
Affiliation(s)
- Moritz Fink
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Jannik Stäuble
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Maïté Weisgerber
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M. Carreira
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Jia S, Ye H, He P, Lin X, You L. Selection of isomerization pathways of multistep photoswitches by chalcogen bonding. Nat Commun 2023; 14:7139. [PMID: 37932318 PMCID: PMC10628202 DOI: 10.1038/s41467-023-43013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Multistep photoswitches are able to engage in different photoisomerization pathways and are challenging to control. Here we demonstrate a multistep sequence of E/Z isomerization and photocyclization/cycloreversion of photoswitches via manipulating the strength and mechanism of noncovalent chalcogen bonding interactions. The incorporation of chalcogens and the formyl group on open ethene bridged dithienylethenes offers a versatile skeleton for single photochromic molecules. While bidirectional E/Z photoswitching is dominated by neutral tellurium arising from enhanced resonance-assisted chalcogen bonding, the creation of cationic telluronium enables the realization of photocyclization/cycloreversion. The reversible nucleophilic substitution reactions further allow interconversion between neutral tellurium and cationic telluronium and selection of photoisomerization mechanisms on purpose. By leveraging unique photoswitching patterns and dynamic covalent reactivity, light and pH stimuli-responsive multistate rewritable materials were constructed, triggered by an activating reagent for additional control. The results should provide ample opportunities to molecular recognition, intelligent switches, information encryption, and smart materials.
Collapse
Affiliation(s)
- Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Peng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China.
| |
Collapse
|
11
|
Zhu J, Sun XW, Yang X, Yu SN, Liang L, Chen YZ, Zheng X, Yu M, Yan L, Tang J, Zhao W, Yang XJ, Wu B. In Situ Photoisomerization of an Azobenzene-Based Triple Helicate with a Prolonged Thermal Relaxation Time. Angew Chem Int Ed Engl 2023:e202314510. [PMID: 37926915 DOI: 10.1002/anie.202314510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The phosphate-coordination triple helicates A2 L3 (A=anion) with azobenzene-spaced bis-bis(urea) ligands (L) have proven to undergo a rare in situ photoisomerization (without disassembly of the structure) rather than the typically known, stepwise "disassembly-isomerization-reassembly" process. This is enabled by the structural self-adaptability of the "aniono" assembly arising from multiple relatively weak and flexible hydrogen bonds between the phosphate anion and bis(urea) units. Notably, the Z→E thermal relaxation rate of the isomerized azobenzene unit is significantly decreased (up to 20-fold) for the triple helicates compared to the free ligands. Moreover, the binding of chiral guest cations inside the cavity of the Z-isomerized triple helicate can induce optically pure diastereomers, thus demonstrating a new strategy for making light-activated chiroptical materials.
Collapse
Affiliation(s)
- Jiajia Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiao-Wen Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xintong Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Shu-Na Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Lin Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Ya-Zhi Chen
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyan Zheng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Meng Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Li Yan
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiao-Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
12
|
Dolai A, Box SM, Bhunia S, Bera S, Das A, Samanta S. Photoisomerization of 2-Arylazoimidazoles under Visible Light: Identifying a Predictive Tool to Anticipate and Tune Likely Photoswitching Performance and Cis Half-Life. J Org Chem 2023. [PMID: 37368413 DOI: 10.1021/acs.joc.3c00211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Azopyrazoles are an emerging class of photoswitches, whereas analogous azoimidazole-based switches are unable to draw much attention because of their short cis half-lives, poor cis-trans photoreversion yields, and toxic ultraviolet (UV) light-assisted isomerization. A series of 24 various aryl-substituted N-methyl-2-arylazoimidazoles were synthesized, and their photoswitching performances and cis-trans isomerization kinetics were thoroughly investigated experimentally and theoretically. Para-π-donor-substituted azoimidazoles with highly twisted T-shaped cis conformations showed nearly complete bidirectional photoswitching, whereas di-o-substituted switches exhibited very long cis half-lives (days-years) with nearly ideal T-shaped conformations. This study demonstrates how the electron density in the aryl ring affects cis half-life and cis-trans photoreversion via twisting of the NNAr dihedral angle that can be used as a predictive metric for envisaging and tuning the likely switching performance and half-life of any given 2-arylazoimidazole. By applying this tool, two better-performing azoimidazole photoswitches were engineered. All switches permitted irradiation by violet (400-405 nm) and orange (>585 nm) light for forward and reverse isomerization, respectively, and displayed comparatively high quantum yields and impressive resistance to photobleaching.
Collapse
Affiliation(s)
- Anirban Dolai
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
13
|
Jiang J, Chen Q, Xu M, Chen J, Wu S. Photoresponsive Diarylethene-Containing Polymers: Recent Advances and Future Challenges. Macromol Rapid Commun 2023:e2300117. [PMID: 37183270 DOI: 10.1002/marc.202300117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Photoresponsive polymers have attracted increasing interest owing to their potential applications in anticounterfeiting, information encryption, adhesives, etc. Among them, diarylethene (DAE)-containing polymers are one of the most promising photoresponsive polymers and have unique thermal stability and fatigue resistance compared to azobenzene- and spiropyran-containing polymers. Herein, the design of DAE-containing polymers based on different types of structures, including main chain polymers, side-chain polymers, and crosslinked polymers, is introduced. The mechanism and applications of DAE-containing polymers in anti-counterfeiting, information encryption, light-controllable adhesives, and photoinduced healable materials are reviewed. In addition, the remaining challenges of DAE-containing polymers are also discussed.
Collapse
Affiliation(s)
- Jiawei Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qing Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muhuan Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Kuntze K, Viljakka J, Virkki M, Huang CYD, Hecht S, Priimagi A. Red-light photoswitching of indigos in polymer thin films. Chem Sci 2023; 14:2482-2488. [PMID: 36908950 PMCID: PMC9993840 DOI: 10.1039/d2sc06790k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Through simple synthetic derivatisation, the parent indigo dye becomes a red-light E-Z photoswitch exhibiting negative photochromism and tuneable thermal isomerisation kinetics. These attributes make indigo derivatives extremely attractive for applications related to materials and living systems. However, there is a lack of knowledge in translating indigo photoswitching dynamics from solution to solid state - the environment crucial for most applications. Herein, we study the photoswitching performance of six structurally distinct indigo derivatives in five polymers of varying rigidity. Three key strategies are identified to enable efficient photoswitching under red (660 nm) light: (i) choosing a soft polymer matrix to minimise its resistance toward the isomerisation, (ii) creating free volume around the indigo molecules through synthetic modifications, and (iii) applying low dye loading (<1% w/w) to inhibit aggregation. These strategies are shown to improve both photostationary state distributions and the thermal stability of the Z isomer. When all three strategies are implemented, the isomerisation performance (>80% Z form in the photostationary state) is nearly identical to that in solution. These findings thus pave the way for designing new red-light photochromic materials based on indigos.
Collapse
Affiliation(s)
- Kim Kuntze
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| | - Jani Viljakka
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| | - Matti Virkki
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| | - Chung-Yang Dennis Huang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany .,DWI - Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| |
Collapse
|
15
|
Kerckhoffs A, Moss I, Langton MJ. Photo-switchable anion binding and catalysis with a visible light responsive halogen bonding receptor. Chem Commun (Camb) 2022; 59:51-54. [PMID: 36440635 DOI: 10.1039/d2cc05199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photo-switchable receptors allow for photo-control over guest binding and release with spatial and temporal precision. Here we report the first halogen bonding photo-switchable anion receptors in which chloride binding may be reversibly modulated by irradiation with red and blue light, with over a 50-fold enhancement in chloride binding affinity observed for the Z isomer. We demonstrate that this switchable binding enables unprecedented photo-controlled catalysis of XB-mediated halide abstractions and a Mukaiyama Aldol reaction.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Isabelle Moss
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|