1
|
Ban X, Cao Q, Zhang W, Bian W, Yang C, Wang J, Qian Y, Xu H, Tao C, Jiang W. Encapsulated TADF macrocycles for high-efficiency solution-processed and flexible organic light-emitting diodes. Chem Sci 2024:d4sc04487h. [PMID: 39309084 PMCID: PMC11409165 DOI: 10.1039/d4sc04487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Macrocyclic thermally activated delayed fluorescence (TADF) emitters have been demonstrated to realize high efficiency OLEDs, but the design concept was still confined to rigid π-conjugated structures. In this work, two macrocyclic TADF emitters, Cy-BNFu and CyEn-BNFu, with a flexible alkyl chain as a linker and bulky aromatic hydrocarbon wrapping units were designed and synthesized. The detailed photophysical analysis demonstrates that the flexible linker significantly enhances the solution-processibility and flexibility of the parent TADF core without sacrificing the radiative transition and high PLQY. Moreover, benefiting from sufficient encapsulation of both horizontal and vertical space, the macrocyclic CyEn-BNFu further isolated the TADF core and inhibited the aggregation caused quenching, which benefits the utilization of triplet excitons. As a result, the non-doped solution-processed OLEDs based on CyEn-BNFu exhibit high maximum external quantum efficiencies (EQE) up to 32.3%, which were 3 times higher than those of the devices based on the parent molecule. In particular, these macrocyclic TADF emitters ensure the fabrication of flexible OLEDs with higher brightness, color purity and bending resistance. This work opens a way to construct macrocyclic TADF emitters with a flexible alkyl chain linker and highlights the benefits of such encapsulated macrocycles for optimizing the performance of flexible solution-processed devices.
Collapse
Affiliation(s)
- Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
- School of Chemistry and Chemical Engineering, Southeast University Nanjing Jiangsu China
| | - Qingpeng Cao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wenhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wenzhong Bian
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Caixia Yang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Jiayi Wang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Youqiang Qian
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Hui Xu
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Chuanzhou Tao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Southeast University Nanjing Jiangsu China
| |
Collapse
|
2
|
Shao Y, He X, Xin Y, Zhang Y, Zhang D, Duan L, Zou Y. New Application of Multiresonance Organic Delayed Fluorescence Dyes: High-Performance Photoinitiating Systems for Acrylate and Epoxy Photopolymerization and Photoluminescent Pattern Preparation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30344-30354. [PMID: 38819945 DOI: 10.1021/acsami.4c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The primary focus of photopolymerization research is to advance highly efficient visible photoinitiating systems (PISs) as alternatives to conventional ultraviolet (UV) photoinitiators. We developed four multiresonance emitters (BIC-pCz, BNO1, BO-DICz, and TPABO-DICz) to sensitize iodonium salt (Iod) and initiate free-radical and cationic photopolymerization under visible light for the first time. The TPABO-DICz/Iod system achieved a double-bond conversion of over 70% within just 4 s of exposure to green light (520 nm), while the BNO1/Iod system achieved a double-bond conversion exceeding 50% with 10 s of exposure to red light (630 nm). The photochemical properties were studied through thermodynamic research, steady-state photolysis, and electron spin resonance. Photolithography techniques were employed to fabricate photoluminescent films and micrometer-scale patterns utilizing the blue-emitting BIC-pCz dye, showcasing the potential of photolithography in the production of photoluminescent pixels. Additionally, the BIC-pCz/Iod and TPABO-DICz/Iod systems have been employed to rapidly fabricate photoluminescent polymer patterns using a digital-light-processing 3D printer with a low-intensity light (3.2 mW cm-2). These multiresonance emitters show exceptional photosensitizing effects and can act as fluorescent dyes in photoluminescent patterns, highlighting the potential of utilizing photopolymerization for OLED applications.
Collapse
Affiliation(s)
- Yayu Shao
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xianglong He
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yangyang Xin
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dongdong Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yingquan Zou
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
3
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
4
|
Huang X, Liu J, Xu Y, Chen G, Huang M, Yu M, Lv X, Yin X, Zou Y, Miao J, Cao X, Yang C. B‒N covalent bond-involved π-extension of multiple resonance emitters enables high-performance narrowband electroluminescence. Natl Sci Rev 2024; 11:nwae115. [PMID: 38707202 PMCID: PMC11067958 DOI: 10.1093/nsr/nwae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs. The structurally and electronically extended π-system not only enhances molecular rigidity to narrow emission linewidth but also promotes reverse intersystem crossing to mitigate efficiency roll-off. As illustrated examples, ultra-narrowband sky-blue emitters (full-width at half-maximum as small as 8 nm in n-hexane) have been developed with multi-dimensional improvement in photophysical properties compared to their precursor emitters, which enables narrowband OLEDs with external quantum efficiencies (EQEmax) of up to 42.6%, in company with alleviated efficiency decline at high brightness, representing the best efficiency reported for single-host OLEDs. The success of these emitters highlights the effectiveness of our molecular design strategy for advanced MR-TADF emitters and confirms their extensive potential in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xingyu Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiahui Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingxin Yu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Nowak-Król A, Geppert PT, Naveen KR. Boron-containing helicenes as new generation of chiral materials: opportunities and challenges of leaving the flatland. Chem Sci 2024; 15:7408-7440. [PMID: 38784742 PMCID: PMC11110153 DOI: 10.1039/d4sc01083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Increased interest in chiral functional dyes has stimulated activity in the field of boron-containing helicenes over the past few years. Despite the fact that the introduction of boron endows π-conjugated scaffolds with attractive electronic and optical properties, boron helicenes have long remained underdeveloped compared to other helicenes containing main group elements. The main reason was the lack of reliable synthetic protocols to access these scaffolds. The construction of boron helicenes proceeds against steric strain, and thus the methods developed for planar systems have sometimes proven ineffective in their synthesis. Recent advances in the general boron chemistry and the synthesis of strained derivatives have opened the way to a wide variety of boron-containing helicenes. Although the number of helically chiral derivatives is still limited, these compounds are currently at the forefront of emissive materials for circularly-polarized organic light-emitting diodes (CP-OLEDs). Yet the design of good emitters is not a trivial task. In this perspective, we discuss a number of requirements that must be met to provide an excellent emissive material. These include chemical and configurational stability, emission quantum yields, luminescence dissymmetry factors, and color purity. Understanding of these parameters and some structure-property relationships should aid in the rational design of superior boron helicenes. We also present the main achievements in their synthesis and point out niches in this area, e.g. stereoselective synthesis, necessary to accelerate the development of this fascinating class of compounds and to realize their potential in OLED devices and in other fields.
Collapse
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Patrick T Geppert
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kenkera Rayappa Naveen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
6
|
Du M, Mai M, Zhang D, Duan L, Zhang Y. Stereo effects for efficient synthesis of orange-red multiple resonance emitters centered on a pyridine ring. Chem Sci 2024; 15:3148-3154. [PMID: 38425532 PMCID: PMC10901515 DOI: 10.1039/d3sc06470k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Despite theoretical difficulties, we herein demonstrate an effective strategy for the inaugural synthesis of an orange-red multiple resonance (MR) emitter centered on a pyridine ring via stereo effects. Compared to conventional benzene-centered materials, the pyridine moiety in the novel MR material acts as a co-acceptor. This results in a significant spectral redshift and a narrower spectrum, as well as an improved photoluminescence quantum yield (PLQY) due to the formation of intramolecular hydrogen bonds. As envisioned, the proof-of-concept emitter Py-Cz-BN exhibits bright orange-red emission peaking at 586 nm with a small full width at half maximum (FWHM) of 0.14 eV (40 nm), exceeding both the wavelength and FWHM achieved with benzene-centered BBCz-Y. Benefiting from high PLQYs (>92%) and suppressed chromophore interactions, the optimized organic light-emitting diodes achieved high maximum external quantum efficiencies of 25.3-29.6%, identical small FWHMs of 0.18 eV (54 nm), and long lifetimes over a wide range of dopant concentrations (1-15 wt%). The performance described above demonstrates the effectiveness of this molecular design and synthesis strategy in constructing high performance long-wavelength MR emitters.
Collapse
Affiliation(s)
- Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Minqiang Mai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
- Applied Mechanics Lab, School of Aerospace Engineering, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
7
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
8
|
Pang B, Liao C, Xu X, Peng S, Xia J, Guo Y, Xie Y, Chen Y, Duan C, Wu H, Li R, Peng Q. BN-Bond-Embedded Triplet Terpolymers with Small Singlet-Triplet Energy Gaps for Suppressing Non-Radiative Recombination and Improving Blend Morphology in Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211871. [PMID: 36731510 DOI: 10.1002/adma.202211871] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Indexed: 05/17/2023]
Abstract
Suppressing the photon energy loss (Eloss ), especially the non-radiative loss, is of importance to further improve the device performance of organic solar cells (OSCs). However, typical π-conjugated semiconductors possess a large singlet-triplet energy gap (ΔEST ), leading to a lower triplet state than charge transfer state and contributing to a non-radiative loss channel of the photocurrent by the triplet state. Herein, a series of triplet polymer donors are developed by introducing a BNIDT block into the PM6 polymer backbone. The high electron affinity of BNIDT and the opposite resonance effect of the BN bond in BNIDT results in a lowered highest occupied molecular orbital (HOMO) and a largely reduced ΔEST . Moreover, the morphology of the active blends is also optimized by fine-tuning the BNIDT content. Therefore, non-radiative recombination via the terminal triplet loss channels and morphology traps is effectively suppressed. The PNB-3 (with 3% BNIDT):L8-BO device exhibits both small ΔEST and optimized morphology, favoring more efficient charge transfer and transport. Finally, the simultaneously enhanced Voc of 0.907 V, Jsc of 26.59 mA cm-2 , and FF of 78.86% contribute to a champion PCE of 19.02%. Therefore, introducing BN bonds into benchmark polymers is a possible avenue toward higher-performance of OSCs.
Collapse
Affiliation(s)
- Bo Pang
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chentong Liao
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shaoqian Peng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Jianlong Xia
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Yuanyuan Guo
- Division of Physics and Applied Physics School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yuan Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuting Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|