1
|
Yang XY, Luo ZQ, Fang D, Chen QB, Peng N, Fang HM, Zou T. Hollow Copper Sulfide Nanocubes Loaded with Pt(IV) Complexes for Cancer Multimodal Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22875-22886. [PMID: 39418176 DOI: 10.1021/acs.langmuir.4c02957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chemotherapy (CT) can significantly inhibit tumor growth, metastasis, and recurrence during cancer therapy. People have widely used platinum drugs in cancer treatment. However, as most chemotherapeutic drugs, platinum drugs still have shortcomings such as poor solubility, low cell uptake, nonspecific distribution, multidrug resistance, and adverse side effects. Therefore, we synthesized hollow copper sulfide (CuS) nanocubes with photothermal and photodynamic properties as carriers for Pt(IV) drugs. Hollow CuS nanocubes have attracted considerable interest in the field of cancer photothermal therapy (PTT) using multiple biological windows. Under near-infrared (NIR) laser irradiation, Cu2+ can be reduced into Cu+ in the presence of hydrogen peroxide in the tumor microenvironment. The resulting Cu+ can be used for photodynamic therapy (PDT), which can perform a Fenton-like reaction under acidic conditions (pH 5.5-6.5) and catalyze hydrogen peroxide to produce ·OH in the tumor microenvironment. In addition, compared with Pt(II) drugs, Pt(IV) drugs not only have lower systemic toxicity but also consume glutathione (GSH), thereby increasing reactive oxygen species (ROS) levels in tumor cells and effectively promoting PDT. In this study, we oxidized ethylenediamine platinum chloride to its tetravalent state, loaded the Pt(IV) complexes using hollow CuS nanocubes, and modified the surfaces of the nanoparticles with PEG to improve the EPR effect. The Pt(IV)-loaded hollow CuS nanocubes modified with PEG (Pt(IV)-CuS@PEG) are expected to be used for tumor chemo/photothermal/photodynamic therapy.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zi-Qiang Luo
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dan Fang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Quan-Bing Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Hong-Ming Fang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
Chen QB, Qi M, Yang M, Luo ZQ, Yuan Q, Peng T, Wang J, Zou T, Wang H. Pt(IV) complexes loaded hollow copper sulfide nanoparticles for tumor chemo/photothermal/photodynamic therapy. Colloids Surf B Biointerfaces 2024; 242:114076. [PMID: 39003848 DOI: 10.1016/j.colsurfb.2024.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Hollow CuS nanoparticles can achieve photothermal and photodynamic therapy (PDT) in tumor treatment. However, excessive GSH in the tumor cells will consume the reactive oxygen species produced by PDT and reduce the PDT effect. Cisplatin is a broad-spectrum antineoplastic drug that can be used in a variety of tumor treatments. However, cisplatin is cytotoxic to normal cells while it kills tumor cells. Therefore, we construct Pt(IV) complexes loaded hollow CuS nanoparticles to attenuate the toxicity of cisplatin and enhance the PDT effect of the hollow CuS nanoparticles. The nanoparticles were proved to be able to accumulate around the tumor site through the enhanced permeability and retention (EPR) effect to achieve a synergistic chemo/photothermal/photodynamic therapy.
Collapse
Affiliation(s)
- Quan-Bing Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Meng Qi
- College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Meng Yang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Zi-Qiang Luo
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Qiong Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou 646000, PR China
| | - Tao Peng
- GEM (Wuhan) Urban Mining Industrial Group Co., Ltd., Wuhan 430415, PR China
| | - Jing Wang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Hongjun Wang
- Stevens Institute of Technology, Department of Biomedical Engineering, Hoboken, NJ 07030, United States
| |
Collapse
|
3
|
Yuan Y, Hou M, Song X, Yao X, Wang X, Chen X, Li S. Designing Mesoporous Prussian Blue@zinc Phosphate Nanoparticles with Hierarchical Pores for Varisized Guest Delivery and Photothermally-Augmented Chemo-Starvation Therapy. Int J Nanomedicine 2024; 19:6829-6843. [PMID: 39005958 PMCID: PMC11244623 DOI: 10.2147/ijn.s464186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Background With the rapid development of nanotechnology, constructing a multifunctional nanoplatform that can deliver various therapeutic agents in different departments and respond to endogenous/exogenous stimuli for multimodal synergistic cancer therapy remains a major challenge to address the inherent limitations of chemotherapy. Methods Herein, we synthesized hollow mesoporous Prussian Blue@zinc phosphate nanoparticles to load glucose oxidase (GOx) and DOX (designed as HMPB-GOx@ZnP-DOX NPs) in the non-identical pore structures of their HMPB core and ZnP shell, respectively, for photothermally augmented chemo-starvation therapy. Results The ZnP shell coated on the HMPB core, in addition to providing space to load DOX for chemotherapy, could also serve as a gatekeeper to protect GOx from premature leakage and inactivation before reaching the tumor site because of its degradation characteristics under mild acidic conditions. Moreover, the loaded GOx can initiate starvation therapy by catalyzing glucose oxidation while causing an upgradation of acidity and H2O2 levels, which can also be used as forceful endogenous stimuli to trigger smart delivery systems for therapeutic applications. The decrease in pH can improve the pH-sensitivity of drug release, and O2 can be supplied by decomposing H2O2 through the catalase-like activity of HMPBs, which is beneficial for relieving the adverse conditions of anti-tumor activity. In addition, the inner HMPB also acts as a photothermal agent for photothermal therapy and the generated hyperthermia upon laser irradiation can serve as an external stimulus to further promote drug release and enzymatic activities of GOx, thereby enabling a synergetic photothermally enhanced chemo-starvation therapy effect. Importantly, these results indicate that HMPB-GOx@ZnP-DOX NPs can effectively inhibit tumor growth by 80.31% and exhibit no obvious systemic toxicity in mice. Conclusion HMPB-GOx@ZnP-DOX NPs can be employed as potential theranostic agents that incorporate multiple therapeutic modes to efficiently inhibit tumors.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiaoning Song
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Xintao Yao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Xuerui Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| |
Collapse
|
4
|
Shi LX, Liu XR, Zhou LY, Zhu ZQ, Yuan Q, Zou T. Nanocarriers for gene delivery to the cardiovascular system. Biomater Sci 2023; 11:7709-7729. [PMID: 37877418 DOI: 10.1039/d3bm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cardiovascular diseases have posed a great threat to human health. Fortunately, gene therapy holds great promise in the fight against cardiovascular disease (CVD). In gene therapy, it is necessary to select the appropriate carriers to deliver the genes to the target cells of the target organs. There are usually two types of carriers, viral carriers and non-viral carriers. However, problems such as high immunogenicity, inflammatory response, and limited loading capacity have arisen with the use of viral carriers. Therefore, scholars turned their attention to non-viral carriers. Among them, nanocarriers are highly valued because of their easy modification, targeting, and low toxicity. Despite the many successes of gene therapy in the treatment of human diseases, it is worth noting that there are still many problems to be solved in the field of gene therapy for the treatment of cardiovascular diseases. In this review, we give a brief introduction to the common nanocarriers and several common cardiovascular diseases (arteriosclerosis, myocardial infarction, myocardial hypertrophy). On this basis, the application of gene delivery nanocarriers in the treatment of these diseases is introduced in detail.
Collapse
Affiliation(s)
- Ling-Xin Shi
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiu-Ran Liu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zi-Qi Zhu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Qiong Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou 646000, China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
5
|
Li M, Yang G, Zheng Y, Lv J, Zhou W, Zhang H, You F, Wu C, Yang H, Liu Y. NIR/pH-triggered aptamer-functionalized DNA origami nanovehicle for imaging-guided chemo-phototherapy. J Nanobiotechnology 2023; 21:186. [PMID: 37301952 DOI: 10.1186/s12951-023-01953-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Targeted chemo-phototherapy has received widespread attention in cancer treatment for its advantages in reducing the side effects of chemotherapeutics and improving therapeutic effects. However, safe and efficient targeted-delivery of therapeutic agents remains a major obstacle. Herein, we successfully constructed an AS1411-functionalized triangle DNA origami (TOA) to codeliver chemotherapeutic drug (doxorubicin, DOX) and a photosensitizer (indocyanine green, ICG), denoted as TOADI (DOX/ICG-loaded TOA), for targeted synergistic chemo-phototherapy. In vitro studies show that AS1411 as an aptamer of nucleolin efficiently enhances the nanocarrier's endocytosis more than 3 times by tumor cells highly expressing nucleolin. Subsequently, TOADI controllably releases the DOX into the nucleus through the photothermal effect of ICG triggered by near-infrared (NIR) laser irradiation, and the acidic environment of lysosomes/endosomes facilitates the release. The downregulated Bcl-2 and upregulated Bax, Cyt c, and cleaved caspase-3 indicate that the synergistic chemo-phototherapeutic effect of TOADI induces the apoptosis of 4T1 cells, causing ~ 80% cell death. In 4T1 tumor-bearing mice, TOADI exhibits 2.5-fold targeted accumulation in tumor region than TODI without AS1411, and 4-fold higher than free ICG, demonstrating its excellent tumor targeting ability in vivo. With the synergetic treatment of DOX and ICG, TOADI shows a significant therapeutic effect of ~ 90% inhibition of tumor growth with negligible systemic toxicity. In addition, TOADI presents outstanding superiority in fluorescence and photothermal imaging. Taken together, this multifunctional DNA origami-based nanosystem with the advantages of specific tumor targeting and controllable drug release provides a new strategy for enhanced cancer therapy.
Collapse
Grants
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
Collapse
Affiliation(s)
- Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Yue Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jiazhen Lv
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Wanyi Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China.
| |
Collapse
|
6
|
Huang KX, Zhou LY, Chen JQ, Peng N, Chen HX, Gu HZ, Zou T. Applications and perspectives of quaternized cellulose, chitin and chitosan: A review. Int J Biol Macromol 2023:124990. [PMID: 37211070 DOI: 10.1016/j.ijbiomac.2023.124990] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Recently, increasing attention has been paid to natural polysaccharides for their low cost, biocompatibility and biodegradability. Quaternization is a modification method to improve the solubility and antibacterial ability of natural polysaccharides. Water-soluble derivatives of cellulose, chitin and chitosan offer the prospect of diverse applications in a wide range of fields, such as antibacterial products, drug delivery, wound healing, sewage treatment and ion exchange membranes. By combining the inherent properties of cellulose, chitin and chitosan with the inherent properties of the quaternary ammonium groups, new products with multiple functions and properties can be obtained. In this review, we summarized the research progress in the applications of quaternized cellulose, chitin and chitosan in recent five years. Moreover, ubiquitous challenges and personal perspectives on the further development of this promising field are also discussed.
Collapse
Affiliation(s)
- Ke-Xin Huang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jia-Qi Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Na Peng
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hong-Xiang Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hua-Zhi Gu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
7
|
Yan T, Alimu G, Zhu L, Fan H, Zhang L, Du Z, Ma R, Chen S, Alifu N, Zhang X. PpIX/IR-820 Dual-Modal Therapeutic Agents for Enhanced PDT/PTT Synergistic Therapy in Cervical Cancer. ACS OMEGA 2022; 7:44643-44656. [PMID: 36530282 PMCID: PMC9753516 DOI: 10.1021/acsomega.2c02977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 05/10/2023]
Abstract
High treatment accuracy is the key to efficient cancer treatment. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two kinds of popular, precise treatment methods. The combination of photodynamic and photothermal therapy (PDT/PTT) can greatly enhance the precise therapeutic efficacy. In this work, protoporphyrin IX (PpIX) was selected as the PDT agent (photosensitizer), and new indocyanine green (IR-820) was selected as the PTT agent. Further, the two kinds of theranostic agents were encapsulated by biological-membrane-compatible liposomes to form PpIX-IR-820@Lipo nanoparticles (NPs), a new kind of PDT/PTT agent. The PpIX-IR-820@Lipo NPs exhibited good water solubility, a spherical shape, and high fluorescence peak emission in the near-infrared spectral region (700-900 nm, NIR). The cellular toxicity of PpIX-IR-820@Lipo NPs for human cervical cancer cells (HeLa) and human cervical epithelial cells (H8) was detected by the CCK-8 method, and low cytotoxicity was observed for the PpIX-IR-820@Lipo NPs. Then, the excellent cellular uptake of PpIX-IR-820@Lipo NPs was confirmed by laser scanning confocal microscopy. Moreover, the PDT/PTT property of PpIX-IR-820@Lipo NPs was illustrated via 2',7'-dichlorofluorescin diacetate (DCFH-DA) and annexin V-fluorescein isothiocyanate (annexin V-FITC), as indicator probes. The PDT/PTT synergistic efficiency of PpIX-IR-820@Lipo NPs on HeLa cells was verified, exhibiting a high efficiency of 70.5%. Thus, the novel theranostic PpIX-IR-820@Lipo NPs can be used as a promising PDT/PTT synergistic theranostic nanoplatform in future cervical cancer treatment.
Collapse
Affiliation(s)
- Ting Yan
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Gulinigaer Alimu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Lijun Zhu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Huimin Fan
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Linxue Zhang
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Zhong Du
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Rong Ma
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Shuang Chen
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Nuernisha Alifu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Xueliang Zhang
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| |
Collapse
|
8
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|