1
|
Madrid RRM, Mathews PD, Pramanik S, Mangiarotti A, Fernandes R, Itri R, Dimova R, Mertins O. Hybrid crystalline bioparticles with nanochannels encapsulating acemannan from Aloe vera: Structure and interaction with lipid membranes. J Colloid Interface Sci 2024; 673:373-385. [PMID: 38878372 DOI: 10.1016/j.jcis.2024.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/26/2024]
Abstract
Smart nanocarrier-based bioactive delivery systems are a current focus in nanomedicine for allowing and boosting diverse disease treatments. In this context, the design of hybrid lipid-polymer particles can provide structure-sensitive features for tailored, triggered, and stimuli-responsive devices. In this work, we introduce hybrid cubosomes that have been surface-modified with a complex of chitosan-N-arginine and alginate, making them pH-responsive. We achieved high-efficiency encapsulation of acemannan, a bioactive polysaccharide from Aloe vera, within the nanochannels of the bioparticle crystalline structure and demonstrated its controlled release under pH conditions mimicking the gastric and intestinal environments. Furthermore, an acemannan-induced phase transition from Im3m cubic symmetry to inverse hexagonal HII phase enhances the bioactive delivery by compressing the lattice spacing of the cubosome water nanochannels, facilitating the expulsion of the encapsulated solution. We also explored the bioparticle interaction with membranes of varying curvatures, revealing thermodynamically driven affinity towards high-curvature lipid membranes and inducing morphological transformations in giant unilamellar vesicles. These findings underscore the potential of these structure-responsive, membrane-active smart bioparticles for applications such as pH-triggered drug delivery platforms for the gastrointestinal tract, and as modulators and promoters of cellular internalization.
Collapse
Affiliation(s)
- Rafael R M Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Patrick D Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil; Institute of Biosciences, Sao Paulo State University, 18618-689 Botucatu, Brazil
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rodrigo Fernandes
- Applied Physics Department, Institute of Physics, University of Sao Paulo, 05508-900 Sao Paulo, Brazil
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of Sao Paulo, 05508-900 Sao Paulo, Brazil
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil.
| |
Collapse
|
2
|
Rui X, Watanabe NM, Okamoto Y, Wakileh W, Umakoshi H. Exploring pH-Triggered Lamellar to Cubic Phase Transition in 2-Hydroxyoleic Acid/Monoolein Nanodispersions: Insights into Membrane Physicochemical Properties. J Phys Chem B 2024; 128:9151-9162. [PMID: 39285755 DOI: 10.1021/acs.jpcb.4c03747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Self-assembled lipid nanoparticles (LNPs) are essential nanocarriers for drug delivery. Functionalization of LNPs with ionizable lipids creates pH-responsive nanoparticles that change structures under varying pH conditions, enabling pH-triggered drug release. Typically, bicontinuous cubic phase nanoparticles (Cubosomes) and lamellar structured vesicles (Liposomes) differ in lipid packing statuses, affecting drug release and cellular uptake. However, most research predominantly focuses on elucidating lattice structure changes of these LNPs without a deep investigation of lipid-membrane properties. Addressing this gap, our study delves into the lipid-membrane physicochemical property variations during the lamellar-to-cubic phase transition. Here, we prepared pH-responsive LNPs using 2-hydroxyoleic acid/monoolein (2-OHOA/MO) binary components. Small-angle X-ray scattering (SAXS) revealed a phase transition from lamellar vesicles (Lα) to cubosomes (Im3m/Pn3m) with pH reduction. Laurdan and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence probes tracked the lipid-water interfacial polarity and lipid-membrane fluidity variations during the phase transition. Raman spectroscopy provided further insights into lipid-membrane lipid chain packing and chain torsion. We observed that the changes in lipid-membrane properties coincided with the lamellar-to-cubic phase transition, emphasizing the interplay between the phase structure and lipid-membrane behaviors in the 2-OHOA/MO system. This study provides insights into the lipid-membrane properties variation during the pH-triggered phase transition in the 2-OHOA/MO system, guiding future research toward more effective and reliable pH-responsive drug delivery platforms.
Collapse
Affiliation(s)
- Xuehui Rui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Ward Wakileh
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
3
|
Casula L, Elena Giacomazzo G, Conti L, Fornasier M, Manca B, Schlich M, Sinico C, Rheinberger T, Wurm FR, Giorgi C, Murgia S. Polyphosphoester-stabilized cubosomes encapsulating a Ru(II) complex for the photodynamic treatment of lung adenocarcinoma. J Colloid Interface Sci 2024; 670:234-245. [PMID: 38761576 DOI: 10.1016/j.jcis.2024.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Benedetto Manca
- Department of Mathematics and Computer Science, University of Cagliari, via Ospedale 72, 09124 Cagliari, CA, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
4
|
Yoksan R, Towongphaichayonte P. Vitexin-loaded poly(ethylene glycol) methyl ether-grafted chitosan/alginate nanoparticles: preparation, physicochemical properties and in vitro release behaviors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:956-966. [PMID: 37708397 DOI: 10.1002/jsfa.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Vitexin, a flavonoid in various foods and medicinal plants, has potential clinical, therapeutic and food applications due to its bioactive properties and beneficial health effects. However, its poor water solubility causes low oral bioavailability and poor absorption in the gastrointestinal tract, limiting its practical applications. Encapsulation is an efficient approach to overcome these limitations. This study demonstrates the encapsulation of vitexin into poly(ethylene glycol) methyl ether-grafted chitosan (mPEG-g-CTS)/alginate (ALG) polyelectrolyte complex nanoparticles. RESULTS The vitexin-loaded mPEG-g-CTS/ALG nanoparticles were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy and X-ray diffraction. The vitexin-loaded mPEG-g-CTS/ALG nanoparticles had a spherical shape, 50-200 nm in diameter, and negatively charged surface (-27 to -38 mV). They possessed a loading capacity of 4-60%, encapsulation efficiency of 50-100% and antioxidant activity (30-52% 2,2-diphenyl-1-picrylhydrazyl decoloration) when their initial vitexin content was 0.02-0.64 g g-1 polymers. Successful vitexin loading into mPEG-g-CTS/ALG nanoparticles was also indirectly confirmed by the enhanced thermal stability of both polymers and the residual soybean oil used in the emulsion preparation step and delayed oxidative degradation of the residual soybean oil. Vitexin's in vitro release from the mPEG-g-CTS/ALG nanoparticles was very fast in phosphate buffer at pH 11, followed by pH 7, and very slow in acetate buffer at pH 3. The gastrointestinal digestion of vitexin increased by encapsulating into mPEG-g-CTS/ALG nanoparticles. CONCLUSIONS Vitexin-loaded mPEG-g-CTS/ALG nanoparticles were successfully fabricated using a two-step process of oil-in-water emulsion and ionic gelation without the use of pungent odor acids and other crosslinkers. The obtained nanoparticles are suitable for oral intestinal-specific delivery systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Pawika Towongphaichayonte
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
5
|
Mathews PD, Gama GS, Megiati HM, Madrid RRM, Garcia BBM, Han SW, Itri R, Mertins O. Flavonoid-Labeled Biopolymer in the Structure of Lipid Membranes to Improve the Applicability of Antioxidant Nanovesicles. Pharmaceutics 2024; 16:141. [PMID: 38276511 PMCID: PMC10819309 DOI: 10.3390/pharmaceutics16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.
Collapse
Affiliation(s)
- Patrick D. Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
- Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil
| | - Gabriella S. Gama
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Hector M. Megiati
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Rafael R. M. Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Bianca B. M. Garcia
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Sang W. Han
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| |
Collapse
|
6
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Ramirez CAB, Mathews PD, Madrid RRM, Garcia ITS, Rigoni VLS, Mertins O. Antibacterial polypeptide-bioparticle for oral administration: Powder formulation, palatability and in vivo toxicity approach. BIOMATERIALS ADVANCES 2023; 153:213525. [PMID: 37352744 DOI: 10.1016/j.bioadv.2023.213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The upsurge of bacterial resistance to conventional antibiotics turned a well-recognized public health threat. The need of developing new biomaterials of effective practical use in order to tackle bacterial resistance became urgent. In this study, a submicrometric bioparticle of known antibacterial activity was produced in powder form with suitable texture and appealing characteristics for effective oral administration. Through complex coacervating a natural-source antimicrobial polypeptide with chitosan-N-arginine and alginate, the bioactive polypeptide was physically incorporated to the bioparticle whose structure positively responds to the pH variations found in gastrointestinal tract. The powder formulation presented high palatability that was evaluated using fish as in vivo animal model. A thorough survey of the fish intestinal tissues, following a systematic oral administration, revealed high penetration potential of the biomaterial through epithelial cells and deeper intestine layers. Despite, no cytotoxic effect was observed in analyzing the tissues through different histology methods. The absence of intestinal damage was corroborated by immune histochemistry, being the integrity of epithelial motor myosin Vb and related traffic proteins preserved. Hematology further endorsed absence of toxicity in blood cells whose morphology was evaluated in detail. The study evidenced the applicability potential of a new biomaterial of appealing and safe oral administration of antibacterial polypeptide.
Collapse
Affiliation(s)
- Carlos A B Ramirez
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Patrick D Mathews
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil; Muséum National d'Histoire Naturelle, Sorbonne Université, CP26, 75231 Paris, France.
| | - Rafael R M Madrid
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Irene T S Garcia
- Department of Physical-Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Vera L S Rigoni
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil.
| |
Collapse
|
8
|
Palma AS, Casadei BR, Lotierzo MC, de Castro RD, Barbosa LRS. A short review on the applicability and use of cubosomes as nanocarriers. Biophys Rev 2023; 15:553-567. [PMID: 37681099 PMCID: PMC10480096 DOI: 10.1007/s12551-023-01089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 09/09/2023] Open
Abstract
Abstract Cubosomes are nanostructured lipid-based particles that have gained significant attention in the field of drug delivery and nanomedicine. These unique structures consist of a three-dimensional cubic lattice formed by the self-assembly of lipid molecules. The lipids used to construct cubosomes are typically nonionic surfactants, such as monoolein, which possess both hydrophilic and hydrophobic regions, allowing them to form stable, water-dispersible nanoparticles. One of the key advantages of cubosomes is their ability to encapsulate and deliver hydrophobic as well as hydrophilic drugs. The hydrophobic regions of the lipid bilayers provide an ideal environment for incorporating lipophilic drugs, while the hydrophilic regions can encapsulate water-soluble drugs. This versatility makes cubosomes suitable for delivering a wide range of therapeutic agents, including small molecules, proteins, peptides, and nucleic acids. The unique structure of cubosomes also offers stability and controlled release benefits. The lipid bilayers provide a protective barrier, shielding the encapsulated drugs from degradation and improving their stability. Moreover, the cubic lattice arrangement enables the modulation of drug release kinetics by varying the lipid composition and surface modifications. This allows for the development of sustained or triggered drug release systems, enhancing therapeutic efficacy and reducing side effects. Furthermore, cubosomes can be easily modified with targeting ligands or surface modifications to achieve site-specific drug delivery, enhancing therapeutic selectivity and reducing off-target effects. In conclusion, cubosomes offer a versatile and promising platform for the delivery of therapeutic agents. In this manuscript, we will highlight some of these applications. Graphical abstract
Collapse
Affiliation(s)
- Amanda Santos Palma
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| | - Bruna Renata Casadei
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
| | - Mayra Cristina Lotierzo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, USP, São Paulo, SP 05508-000 Brazil
| | - Raphael Dias de Castro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, USP, São Paulo, SP 05508-000 Brazil
| | - Leandro Ramos Souza Barbosa
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| |
Collapse
|
9
|
Pushpa Ragini S, White J, Kirby N, Banerjee R, Reddy Bathula S, Drummond CJ, Conn CE. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. J Colloid Interface Sci 2023; 649:966-976. [PMID: 37392686 DOI: 10.1016/j.jcis.2023.06.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Hypothesis The study aimed to use molecular hybridization of a cationic lipid with a known pharmacophore to produce a bifunctional lipid having a cationic charge to enhance fusion with the cancer cell surface and biological activity via the pharmacophoric head group. Experiments The novel cationic lipid DMP12 [N-(2-(3-(3,4-dimethoxyphenyl) propanamido) ethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide] was synthesised by conjugating 3-(3,4-dimethoxyphenyl) propanoic acid (or 3,4-dimethoxyhydrocinnamic acid) to twin 12 carbon chains bearing a quaternary ammonium group [N-(2-aminoethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide]. The physicochemical and biological properties of DMP12 were investigated. Cubosome particles consisting of monoolein (MO) doped with DMP12 and paclitaxel were characterized using Small-angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Combination therapy using these cubosomes was assessed in vitro against the gastric (AGS) and prostate (DU-145 and PC-3) cancer cell lines using cytotoxicity assay. Findings Monoolein (MO) cubosomes doped with DMP12 were observed to be toxic against the AGS and DU-145 cell-lines at higher cubosome concentrations (≥100 µg/ml) but had limited activity against the PC-3 cell-line. However, combination therapy consisting of 5 mol% DMP12 and 0.5 mol% paclitaxel (PTX) significantly increased the cytotoxicity against the PC-3 cell-line which was resistant to either DMP12 or PTX individually. The results demonstrate that DMP12 has a prospective role as a bioactive excipient in cancer therapy.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Surendar Reddy Bathula
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|