1
|
Chen P, Lin C, Jin Q, Ye B, Liu X, Wang K, Zhang H, Liu J, Zhang R, Huang H, Zhang C, Li L. Investigating mechanisms of Sophora davidii (Franch.) skeels flower extract in treating LPS-induced acute pneumonia based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118914. [PMID: 39369925 DOI: 10.1016/j.jep.2024.118914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In TCM opinion, most of pneumonia is related to "lung heat". Sophora davidii (Franch.) Skeels flower was first documented in "Guizhou Herbal Medicine", and was recorded as having functions of clearing heat, detoxifying, and cooling blood. It can be used to treat lung heat cough. AIM OF THE STUDY To investigate main mechanisms of Sophora davidii flower extract (SDFE) in Treating LPS-induced acute Pneumonia. MATERIALS AND METHODS Acute pneumonia models on BEAS-2B cells and rats were established using LPS. The rat model was used to verified the protective effects of SDFE through HE staining, lung tissue W/D ratio assay, white blood cell count analysis, and ammonia-induced coughing test. Network pharmacology was applied to predict the active compounds, core targets and main pathways of SDFE in treating acute pneumonia. Western Blot and ELISA kits were employed to validate representative proteins in selected pathway in vivo and in vitro. RESULTS HE staining, lung tissue W/D ratio assay, white blood cell count analysis, and ammonia-induced coughing test showed SDFE could improve pathological features (leukocyte infiltration, pulmonary edema, lung injury and cough). Network pharmacology indicated MAPK/NF-κB pathway was the most relevant pathway. SDFE could significantly inhibit the expression of Fos and Jun, and the phosphorylation levels of p38, ERK, JNK, NF-κB and IκB. It also down-regulated the expression of pro-inflammatory factors (TNF-α, IL-6 and IL-1β). CONCLUSIONS SDFE can exert protective effects against acute pneumonia through the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ping Chen
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Cheng Lin
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Qi Jin
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Baibai Ye
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Xinxu Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Keke Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Han Zhang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Jiahui Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Runan Zhang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441100, China.
| | - Linfu Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
2
|
Zhang YZ, Huo DY, Liu Z, Li XD, Wang Z, Li W. Review on ginseng and its potential active substance G-Rg2 against age-related diseases: Traditional efficacy and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118781. [PMID: 39260708 DOI: 10.1016/j.jep.2024.118781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Shen Nong Herbal Classic, Ginseng (Panax ginseng C.A. Meyer) is documented to possess life-prolonging effects and is extensively utilized in traditional Chinese medicine for the treatment of various ailments such as qi deficiency, temper deficiency, insomnia, and forgetfulness. Ginseng is commonly employed for replenishing qi and nourishing blood, fortifying the body and augmenting immunity; it has demonstrated efficacy in alleviating fatigue, enhancing memory, and retarding aging. Furthermore, it exhibits a notable ameliorative impact on age-related conditions including cardiovascular diseases and neurodegenerative disorders. One of its active constituents - ginsenoside Rg2 (G-Rg2) - exhibits potential therapeutic efficacy in addressing these ailments. AIM OF THE REVIEW The aim of this review is to explore the traditional efficacy of ginseng in anti-aging diseases and the modern pharmacological mechanism of its potential active substance G-Rg2, in order to provide strong theoretical support for further elucidating the mechanism of its anti-aging effect. METHODS This review provides a comprehensive analysis of the traditional efficacy of ginseng and the potential mechanisms underlying the anti-age-related disease properties of G-Rg2, based on an extensive literature review up to March 12, 2024, from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar databases. Potential anti-aging mechanisms of G-Rg2 were predicted using network pharmacology and molecular docking analysis techniques. RESULTS In traditional Chinese medicine theory, ginseng has been shown to improve aging-related diseases with a variety of effects, including tonifying qi, strengthening the spleen and stomach, nourishing yin, regulating yin and yang, as well as calming the mind. Its potential active ingredient G-Rg2 has demonstrated significant therapeutic potential in age-related diseases, especially central nervous system and cardiovascular diseases. G-Rg2 exhibited a variety of pharmacological activities, including anti-apoptotic, anti-inflammatory and antioxidant effects. Meanwhile, the network pharmacological analyses and molecular docking results were consistent with the existing literature review, further validating the potential efficacy of G-Rg2 as an anti-aging agent. CONCLUSION The review firstly explores the ameliorative effects of ginseng on a wide range of age-related diseases based on TCM theories. Secondly, the article focuses on the remarkable significance and value demonstrated by G-Rg2 in age-related cardiovascular and neurodegenerative diseases. Consequently, G-Rg2 has broad prospects for development in intervening in aging and treating age-related health problems.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - De-Yang Huo
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Wu M, Li K, Wu J, Ding X, Ma X, Wang W, Xiao W. Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases. Pharmacol Res 2025:107571. [PMID: 39756553 DOI: 10.1016/j.phrs.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C. A. Meyer) is a tonic traditional Chinese herbal medicine, and natural products, including ginsenoside Rg1 (G-Rg1), which is a kind of 20(S)-protopanaxatriol saponin with a relatively high biological activity, can be isolated from the roots or stems of ginseng. Given these information, this review aimed to summarise and discuss the metabolic mechanisms of G-Rg1 in the regulation of diverse liver diseases and the measures to improve its bioavailability. As a kind of monomer in Chinese medicine with multitarget pharmacological effects, G-Rg1 can provide significant therapeutic benefits in the alleviation of alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, viral hepatitis, etc., which mainly rely on the inhibition of apoptosis, strengthening endogenous anti-inflammatory and antioxidant mechanisms, activation of immune responses and regulation of efflux transport signals, to improve pathological changes in the liver caused by lipid deposition, inflammation, oxidative stress, accumulation of hepatotoxic product, etc. However, the poor bioavailability of G-Rg1 must be overcome to improve its clinical application value. In summary, focusing on the hepatoprotective benefits of G-Rg1 will provide new insights into the development of natural Chinese medicine resources and their pharmaceutical products to target the treatment of liver diseases.
Collapse
Affiliation(s)
- Mingyu Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xianyi Ding
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaotong Ma
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; Research Institute for Biology and Medicine, Hunan University of Medicine, Huaihua 418000, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Ren Q, Qu L, Yuan Y, Wang F. Natural Modulators of Key Signaling Pathways in Skin Inflammageing. Clin Cosmet Investig Dermatol 2024; 17:2967-2988. [PMID: 39712942 PMCID: PMC11663375 DOI: 10.2147/ccid.s502252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Low-grade chronic inflammation without obvious infection is defined as "inflammageing" and a key driver of skin ageing. Although the importance of modulating inflammageing for treating skin diseases and restoring cutaneous homeostasis is increasingly being recognized. However, the mechanisms underlying skin inflammageing, particularly those associated with natural treatments, have not been systematically elucidated. This review explores the signaling pathways associated with skin inflammageing, as well as the natural plants and compounds that directly or indirectly target these pathways. Nine signaling pathways and 60 plants/constituents related to skin anti-inflammageing are discussed, exploring plant mechanisms to mitigate skin inflammageing. Common natural plants with anti-inflammageing activity are detailed by active ingredients, mechanisms, therapeutic potential, and quantitative effects on skin inflammageing modulation. This review strengthens our understanding of these botanical ingredients as natural interventions against skin inflammageing and provides directions for future research.
Collapse
Affiliation(s)
- Qianqian Ren
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Yonglei Yuan
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, People’s Republic of China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| |
Collapse
|
5
|
Zeng R, Xiong Y, Lin Z, Chu X, Lv B, Lu L, Lin C, Liao J, Ouyang L, Sun Y, Dai G, Cao F, Liu G. Novel cocktail therapy based on multifunctional supramolecular hydrogel targeting immune-angiogenesis-nerve network for enhanced diabetic wound healing. J Nanobiotechnology 2024; 22:749. [PMID: 39623443 PMCID: PMC11613776 DOI: 10.1186/s12951-024-03038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Diabetes-associated chronic skin wounds present a formidable challenge due to inadequate angiogenesis and nerve regeneration during the healing process. In the present study, we introduce a groundbreaking approach in the form of a novel cocktail therapy utilizing a multifunctional supramolecular hydrogel. Formulated through the photo-crosslinking of gelatinized aromatic residues and β-cyclodextrin (β-CD), this injectable hydrogel fosters weak host-guest interactions, offering a promising solution. The therapeutic efficacy of the hydrogel is realized through its integration with adipose-derived stem cells (ADSCs) and lipid nanoparticles encapsulating ginsenoside RG1 and Stromal cell-derived factor-1 (SDF-1). This strategic combination directs ADSCs to the injury site, guiding them toward neurogenic specialization while establishing an advantageous immunomodulatory environment through macrophage reprogramming. The synergistic effects of the newly differentiated nerve cells and the regenerative cytokines secreted by ADSCs contribute significantly to enhanced angiogenesis, ultimately expediting the diabetic wound healing process. To summarize, this innovative hydrogel-based therapeutic system represents a novel perspective for the management of diabetic wounds by concurrently targeting immune response, angiogenesis, and nerve regeneration-a pivotal advancement in the quest for effective solutions in diabetic wound care.
Collapse
Affiliation(s)
- Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanlu Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China.
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Kang M, Park S, Son SR, Noh Y, Jang DS, Lee S. Anti-Aging and Anti-Inflammatory Effects of Compounds from Fresh Panax ginseng Roots: A Study on TNF-α/IFN-γ-Induced Skin Cell Damage. Molecules 2024; 29:5479. [PMID: 39598869 PMCID: PMC11597146 DOI: 10.3390/molecules29225479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Panax ginseng (Korean ginseng) is renowned for its health-promoting properties, attributed to its bioactive compounds, including saponins, polyphenols, and polysaccharides, which possess both antioxidant and anti-aging activities. This study investigated the anti-aging and anti-inflammatory effects of compounds isolated from the hot water extract of fresh P. ginseng roots, evaluating their resistance to TNF-α/IFN-γ-induced skin cell damage. Among 14 compounds, ginsenoside Rf (compound 2) showed significant multi-target effects. In NHDFs, ginsenoside Rf and others effectively reduced intracellular ROS, demonstrating strong antioxidant properties. Additionally, they inhibited MMP-1 expression, a key enzyme in collagen degradation, and promoted pro-collagen Type I synthesis, countering the negative effects of TNF-α and supporting skin health. Further analysis showed that ginsenoside Rf reduced the secretion of inflammatory cytokines like IL-1β and IL-6, exhibiting anti-inflammatory effects. It also promoted the expression of crucial skin barrier proteins, including LOR, AQP3, FLG, and KRT1 in TNF-α/IFN-γ-stimulated NHEKs, enhancing skin hydration and structural integrity. These results suggest that compounds from P. ginseng roots, especially ginsenoside Rf, hold promise as skincare agents targeting skin aging and inflammation. Future research should further explore their mechanisms and optimize their applications in dermatological treatments.
Collapse
Affiliation(s)
- Minseo Kang
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Somin Park
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - Yedam Noh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
7
|
Li W. Integrating tradition and innovation: Health industry opportunities for ginseng with foods and medicines. CHINESE HERBAL MEDICINES 2024; 16:487-488. [PMID: 39606258 PMCID: PMC11589286 DOI: 10.1016/j.chmed.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Affiliation(s)
- Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Yin P, Wang H, Xue T, Yu X, Meng X, Mi Q, Song S, Xiong B, Bi Y, Yu L. Four-Dimensional Label-Free Quantitative Proteomics of Ginsenoside Rg 2 Ameliorated Scopolamine-Induced Memory Impairment in Mice through the Lysosomal Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14640-14652. [PMID: 38885433 DOI: 10.1021/acs.jafc.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease. Ginsenoside Rg2 has shown potential in treating AD, but the underlying protein regulatory mechanisms associated with ginsenoside Rg2 treatment for AD remain unclear. This study utilized scopolamine to induce memory impairment in mice, and proteomics methods were employed to investigate the potential molecular mechanism of ginsenoside Rg2 in treating AD model mice. The Morris water maze, hematoxylin and eosin staining, and Nissl staining results indicated that ginsenoside Rg2 enhanced cognitive ability and decreased neuronal damage in AD mice. Proteomics, western blot, and immunofluorescence results showed that ginsenoside Rg2 primarily improved AD mice by downregulating the expression of LGMN, LAMP1, and PSAP proteins through the regulation of the lysosomal pathway. Transmission electron microscopy and network pharmacology prediction results showed a potential connection between the mechanism of ginsenoside Rg2 treatment for AD mice and lysosomes. The comprehensive results indicated that ginsenoside Rg2 may improve AD by downregulating LGMN, LAMP1, and PSAP through the regulation of the lysosomal pathway.
Collapse
Affiliation(s)
- Pei Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Heyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Tingfang Xue
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Xiaoran Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Xingjian Meng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Qianwen Mi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Boyu Xiong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| |
Collapse
|
9
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol-Type Saponins and Protopanaxatriol-Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024:9096774. [PMID: 38957183 PMCID: PMC11217582 DOI: 10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol-type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol-type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in-depth study of the relationship between PDS and PTS.
Collapse
Affiliation(s)
- Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiang Gao
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Chunhui Yang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Tuina DepartmentThe Third Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Zuguo Liang
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Dongsong Guan
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Quality Testing Laboratory, Haerbin Customs District 150008, Foshan, China
| | - Tongyi Yuan
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - He Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
- Research Center of Traditional Chinese MedicineThe Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| |
Collapse
|
10
|
Huang Y, Peng H, Wu Y, Deng S, Ge F, Ma W, Zhou X, Songyang Z. Rosa roxburghii Fruit Extracts Upregulate Telomerase Activity and Ameliorate Cell Replicative Senescence. Foods 2024; 13:1673. [PMID: 38890904 PMCID: PMC11171777 DOI: 10.3390/foods13111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Anti-aging functional foods benefit the elderly. Telomeres are chromosomal ends that maintain genome stability extended by telomerase catalytic subunit TERT. Due to the end-replication problem, telomeres shorten after each cell cycle without telomerase in most human cells, and eventually the cell enters the senescence stage. Natural products can attenuate the aging process by increasing telomerase activity, such as TA-65. However, TA-65 is expensive. Other Chinese natural products may achieve comparable effects. Here, we found that Rosa roxburghii fruit extracts effectively increase TERT expression and telomerase activity in cultured human mesenchymal stem cells. Both R. roxburghii fruit extracts obtained by freeze-drying and spray-drying increased the activity of telomerase. R. roxburghii fruit extracts were able to reduce reactive oxygen species levels, enhance superoxide dismutase activity, and reduce DNA damage caused by oxidative stress or radiation. R. roxburghii fruit extracts promoted cell proliferation, improved senescent cell morphology, delayed replicative cellular senescence, attenuated cell cycle suppressors, and alleviated the senescence-associated secretory phenotype. Transcriptome and metabolic profiling revealed that R. roxburghii fruit extracts promote DNA replication and telomere maintenance pathways and decrease triglyceride levels. Overall, we provide a theoretical basis for the application of R. roxburghii fruit as an anti-aging product.
Collapse
Affiliation(s)
- Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Haoyue Peng
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Yifan Wu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Shengcheng Deng
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Xue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| |
Collapse
|
11
|
Ma Y, Li J, Mai J, Guo H, Ding L, Li J, Xiao J, Li M, Fang W, Zhang S, Xu L, Wang H. Ginsenoside Rb2 exhibits therapeutic value for male osteoporosis in orchiectomy mice by suppressing osteoclastogenesis and modulating NF-κB/MAPK signaling pathways. Food Funct 2024; 15:1583-1597. [PMID: 38240189 DOI: 10.1039/d3fo04334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Osteoporosis (OP) is a systemic disorder characterized by decreased bone mass as well as deteriorated microarchitecture. Although OP in men is common, it has received much less attention than that in women. Ginseng, a famous traditional herb in Asia, is used to strengthen and repair bones by invigorating vital bioenergy and maintaining body homeostasis in dietary intake and clinical applications. However, there is currently no study investigating the impact of ginseng and its active compounds on male osteoporosis. In this study, RNA sequencing and bioinformatic analysis were conducted to reveal the influence of Ginsenoside-Rb2 on RAW264.7 cells and its underlying signaling pathways. The potential anti-osteoporosis effects of Rb2 as well as its molecular mechanisms were elucidated in RAW264.7 cells and BMMs by TRAP staining, F-actin belt staining, qRT-PCR and WB. Moreover, orchiectomy (ORX) was utilized to demonstrate the influence of Rb2 on bone mass loss in vivo by micro-CT scanning, and H&E, TRAP, and IHC staining. The results suggested that Rb2 suppressed osteoclastogenesis and mitigated bone loss in orchiectomy mice through NF-κB/MAPK signaling pathways. These findings indicate that ginseng as well as its active component Rb2 have potential therapeutic value in the management of osteoporosis in men.
Collapse
Affiliation(s)
- Yanhuai Ma
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianliang Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou First People's Hospital, Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Jiale Mai
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Foshan Hospital of Chinese Medicine, Eighth Clinical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Huizhi Guo
- Department of Spine Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Ding
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Li
- Department of Spine Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihua Fang
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuncong Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou, 510405, China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou, 510405, China
| |
Collapse
|
12
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol‐Type Saponins and Protopanaxatriol‐Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024. [DOI: org/10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol‐type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol‐type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in‐depth study of the relationship between PDS and PTS.
Collapse
|
13
|
Cheng L, Luo W, Ye A, Zhang Y, Li L, Xie H. How to More Effectively Obtain Ginsenoside Rg5: Understanding Pathways of Conversion. Molecules 2023; 28:7313. [PMID: 37959741 PMCID: PMC10650205 DOI: 10.3390/molecules28217313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Ginsenoside Rg5, a relatively uncommon secondary ginsenoside, exhibits notable pharmacological activity and is commonly hypothesized to originate from the dehydration of Rg3. In this work, we compared different conversion pathways using Rb1, R-Rg3 and S-Rg3 as the raw material under simple acid catalysis. Interestingly, the results indicate that the conversion follows this reaction activity order Rb1 > S-Rg3 > R-Rg3, which is contrary to the common understanding of Rg5 obtained from Rg3 by dehydration. Our experimental results have been fully confirmed by theoretical calculations and a NOESY analysis. The DFT analysis reveals that the free energies of S-Rg3 and R-Rg3 in generating carbocation are 7.56 mol/L and 7.57 mol/L, respectively, which are significantly higher than the free energy of 1.81 mol/L when Rb1 generates the same carbocation. This finding aligns with experimental evidence suggesting that Rb1 is more prone to generating Rg5 than Rg3. The findings from the nuclear magnetic resonance (NMR) analysis suggest that the fatty chains (C22-C27) in R-Rg3 and S-Rg3 adopt a Gauche conformation and an anti conformation with C16-C17 and C13-C17, respectively, due to the relatively weak repulsive van der Waals force. Therefore, the configuration of R-Rg3 is more conducive to the formation of intramolecular hydrogen bonds between 20C-OH and 12C-OH, whereas S-Rg3 lacks this capability. Consequently, this also explains the fact that S-Rg3 is more prone to dehydration to generate Rg5 than R-Rg3. Additionally, our research reveals that the synthetic route of Rg5 derived from protopanaxadiol (PPD)-type ginsenosides (including Rb1, Rb2, Rb3, Rc and Rd) exhibits notable advantages in terms of efficacy, purity and yield when compared to the pathway originating from Rg3. Moreover, this study presents a highly effective and practical approach for the extensive synthesis of Rg5, thereby facilitating the exploration of its pharmacological properties and potential application in drug discovery.
Collapse
Affiliation(s)
- Leqin Cheng
- Jilin Institute of Chemical Technology, School of Chemistry and Pharmaceutical Engineering, Jilin 132022, China
| | - Wei Luo
- Jilin Institute of Chemical Technology, School of Chemistry and Pharmaceutical Engineering, Jilin 132022, China
| | - Anqi Ye
- Jilin Institute of Chemical Technology, School of Chemistry and Pharmaceutical Engineering, Jilin 132022, China
| | - Yuewei Zhang
- Jilin Institute of Chemical Technology, School of Chemistry and Pharmaceutical Engineering, Jilin 132022, China
| | - Ling Li
- Tonghua Bai’aojinsen Biotechnology Co., Ltd., Tonghua 134000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| |
Collapse
|