1
|
Sun X, Zhang N, Chen L, Lai Y, Yang S, Li Q, Zheng Y, Chen L, Shi X, Yang J. Collagen/polyvinyl alcohol scaffolds combined with platelet-rich plasma to enhance anterior cruciate ligament repair. BIOMATERIALS ADVANCES 2025; 169:214164. [PMID: 39756091 DOI: 10.1016/j.bioadv.2024.214164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques. The composite scaffold is primarily formed through hydrogen bonding between molecular chains and physical cross-linking of microcrystalline regions using a simple cyclic freeze-thaw method, resulting in improved mechanical properties and an extended degradation period. The maximum tensile fracture load of the composite scaffold reached 5.99 ± 0.30 N. The incorporation of PRP facilitates cell migration, proliferation, and blood vessel growth by enabling slow release of various growth factors. In vivo results demonstrate that this composite scaffold promotes rabbit hindlimb rupture ACL healing by stimulating fibroblast proliferation, collagen deposition, microvascular formation, and proprioceptor generation. Furthermore, it effectively reduces meniscus and cartilage wear while mitigating bone arthritis and joint degenerative diseases. Overall, our proposed composite scaffold holds great promise as a candidate for ACL healing.
Collapse
Affiliation(s)
- Xiaohan Sun
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Nanxin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, China
| | - Longhui Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yuchao Lai
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, China
| | - Shasha Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Qiang Li
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, China.
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Li Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
2
|
Li C, Li X, Liu X, Yuan L, Duan X, Guo W. Recent progress of natural materials-based hydrogel for postoperative chemotherapy. Colloids Surf B Biointerfaces 2025; 246:114375. [PMID: 39541909 DOI: 10.1016/j.colsurfb.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Hydrogels have been widely used for in situ postoperative chemotherapy due to fewer side effects and longer duration of drug action compared to systemic chemotherapy. This paper reviews the application of natural materials-based hydrogels after tumor resection to explore them as an option for postoperative chemotherapy. Different material-based hydrogels, different response-based hydrogels, and the clinical applications of implantable, injectable, and sprayed hydrogels were investigated and summarized. Based on the main content, we report the possible clinical application prospects and typical functions of hydrogel-based local drug delivery systems.
Collapse
Affiliation(s)
- Chang Li
- School of Pharmacy, Changzhi Medical College, Changzhi, China; First Clinical College, Changzhi Medical College, Changzhi, China
| | - Xiaocong Li
- School of Pharmacy, Changzhi Medical College, Changzhi, China; First Clinical College, Changzhi Medical College, Changzhi, China
| | - Xinping Liu
- School of Pharmacy, Changzhi Medical College, Changzhi, China
| | - Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi 046000, China.
| | - Xiao Duan
- School of Pharmacy, Changzhi Medical College, Changzhi, China.
| | - Wei Guo
- Department of Gastrointestinal Surgery, Second Clinical College/Heji Hospital, Changzhi Medical College, Changzhi, China.
| |
Collapse
|
3
|
Tang S, Feng K, Yang R, Cheng Y, Chen M, Zhang H, Shi N, Wei Z, Ren H, Ma Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv Healthc Mater 2025; 14:e2403734. [PMID: 39604246 DOI: 10.1002/adhm.202403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Adhesive hydrogels characterized by structural properties similar to the extracellular matrix, excellent biocompatibility, controlled degradation, and tunable mechanical properties have demonstrated significant potential in biomedical applications, including tissue engineering, biosensors, and drug delivery systems. These hydrogels exhibit remarkable adhesion to target substrates and can be rationally engineered to meet specific requirements. In recent decades, adhesive hydrogels have experienced significant advancements driven by the introduction of numerous multifunctional design strategies. This review initially summarizes the chemical bond-based design strategies for tissue adhesion, encompassing static covalent bonds, dynamic covalent bonds, and non-covalent interactions. Subsequently, the multiple functionalities imparted by these diverse design strategies, including highly stretchable and tough performances, responsiveness to microenvironments, anti-freezing/heating properties, conductivity, antibacterial activity, and hemostatic properties are discussed. In addition, recent advances in the biomedical applications of adhesive hydrogels, focusing on tissue repair, drug delivery, medical devices, and wearable sensors are reviewed. Finally, the current challenges are highlighted and future trends in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meiyue Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Zhao W, Liang Y, He Q, Deng Y, Zhang Y, Lin B. Surface Molding Hydrogel Film Initiated by ZIF-8 with Ethylene Adsorption Performance for Preserving Perishable Fruits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57724-57737. [PMID: 39387491 DOI: 10.1021/acsami.4c13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The quality deterioration of postharvest fruits is greatly influenced by ethylene, leading to food wastage worldwide. Therefore, it is urgent to develop an efficient packaging strategy to reduce ethylene concentration and prolong the shelf life of perishable fruits. In this work, a surface-molding hydrogel film was created using ZIF-8 in combination with carboxymethyl starch (CMS) and carboxymethyl chitosan (CMCS). Specifically, ZIF-8 is first anchored on CMS and then rapidly cross-linked in situ with CMCS, forming ZIF-8@CC on the fruit surface (within 10 s). The perfect tight-fitting effects of ZIF-8@CC were observed on various fruit surfaces with different roughness (Ra: ranges from 102 to 308 nm). ZIF-8@CC could absorb 57.3% endogenous ethylene from bananas, and the interaction mechanism between ethylene and ZIF-8 was studied by molecular dynamics simulations, providing insights into the ethylene adsorption capacity of ZIF-8@CC. Moreover, ZIF-8@CC presented excellent antibacterial properties and achieved satisfactory ultralong preservation effects on both nonclimatic and climatic fruits (12 days for strawberries and 14 days for bananas) at room temperature. Importantly, ZIF-8@CC is easily removed, washed, and degradable. These findings offer an efficient and potential food packing material with multifunctional properties for preserving perishable fruits.
Collapse
Affiliation(s)
- Wenxin Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qiuwen He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
5
|
Zhang Y, Guo D, Shen X, Tang Z, Lin B. Recoverable and degradable carboxymethyl chitosan polyelectrolyte hydrogel film for ultra stable encapsulation of curcumin. Int J Biol Macromol 2024; 268:131616. [PMID: 38631592 DOI: 10.1016/j.ijbiomac.2024.131616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Hydrogels have shown great potential for application in food science due to their diverse functionalities. However, most hydrogels inevitably contain toxic chemical cross-linking agent residues, posing serious food safety concerns. In this paper, a curcumin/sodium alginate/carboxymethyl chitosan hydrogels (CSCH) were prepared by self-assembly of two oppositely charged polysaccharides, carboxymethyl chitosan and sodium alginate, to form a three-dimensional network encapsulating curcumin for extending food shelf life. The network structure of the CSCH film confirmed by FTIR, XRD, and XPS was mainly formed by electrostatic interactions. The chemical stability of CSCH network encapsulated curcumin was 4.2 times greater than that of free curcumin, with excellent gas barrier, antimicrobial, antioxidant, and biosafety properties. It was found that CSCH films reduced dehydration, prevented nutrient loss, inhibited microbial growth, and lowered the respiration rate, which effectively maintained the quality of mango and prolonged its shelf-life up to 11 days. Notably, CSCH films possessed the properties of rapid recycling (10 mins) and biodegradability (53 days). This polysaccharide-based hydrogel film provides a viable strategy for the development of green and sustainable food packaging.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Dengshuang Guo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xi Shen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhongfeng Tang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Guo W, Bu W, Mao Y, Wang E, Yang Y, Liu C, Guo F, Mai H, You H, Long Y. Magnesium Hydroxide as a Versatile Nanofiller for 3D-Printed PLA Bone Scaffolds. Polymers (Basel) 2024; 16:198. [PMID: 38256997 PMCID: PMC10820754 DOI: 10.3390/polym16020198] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Polylactic acid (PLA) has attracted much attention in bone tissue engineering due to its good biocompatibility and processability, but it still faces problems such as a slow degradation rate, acidic degradation product, weak biomineralization ability, and poor cell response, which limits its wider application in developing bone scaffolds. In this study, Mg(OH)2 nanoparticles were employed as a versatile nanofiller for developing PLA/Mg(OH)2 composite bone scaffolds using fused deposition modeling (FDM) 3D printing technology, and its mechanical, degradation, and biological properties were evaluated. The mechanical tests revealed that a 5 wt% addition of Mg(OH)2 improved the tensile and compressive strengths of the PLA scaffold by 20.50% and 63.97%, respectively. The soaking experiment in phosphate buffered solution (PBS) revealed that the alkaline degradation products of Mg(OH)2 neutralized the acidic degradation products of PLA, thus accelerating the degradation of PLA. The weight loss rate of the PLA/20Mg(OH)2 scaffold (15.40%) was significantly higher than that of PLA (0.15%) on day 28. Meanwhile, the composite scaffolds showed long-term Mg2+ release for more than 28 days. The simulated body fluid (SBF) immersion experiment indicated that Mg(OH)2 promoted the deposition of apatite and improved the biomineralization of PLA scaffolds. The cell culture of bone marrow mesenchymal stem cells (BMSCs) indicated that adding 5 wt% Mg(OH)2 effectively improved cell responses, including adhesion, proliferation, and osteogenic differentiation, due to the release of Mg2+. This study suggests that Mg(OH)2 can simultaneously address various issues related to polymer scaffolds, including degradation, mechanical properties, and cell interaction, having promising applications in tissue engineering.
Collapse
Affiliation(s)
- Wang Guo
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Wenlang Bu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yufeng Mao
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Enyu Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Chao Liu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Feng Guo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, China; (F.G.); (H.M.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Huaming Mai
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, China; (F.G.); (H.M.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Hui You
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yu Long
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; (W.B.); (Y.M.); (E.W.); (Y.Y.); (C.L.)
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Tang Y, Xu H, Wang X, Dong S, Guo L, Zhang S, Yang X, Liu C, Jiang X, Kan M, Wu S, Zhang J, Xu C. Advances in preparation and application of antibacterial hydrogels. J Nanobiotechnology 2023; 21:300. [PMID: 37633883 PMCID: PMC10463510 DOI: 10.1186/s12951-023-02025-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023] Open
Abstract
Bacterial infections, especially those caused by drug-resistant bacteria, have seriously threatened human life and health. There is urgent to develop new antibacterial agents to reduce the problem of antibiotics. Biomedical materials with good antimicrobial properties have been widely used in antibacterial applications. Among them, hydrogels have become the focus of research in the field of biomedical materials due to their unique three-dimensional network structure, high hydrophilicity, and good biocompatibility. In this review, the latest research progresses about hydrogels in recent years were summarized, mainly including the preparation methods of hydrogels and their antibacterial applications. According to their different antibacterial mechanisms, several representative antibacterial hydrogels were introduced, such as antibiotics loaded hydrogels, antibiotic-free hydrogels including metal-based hydrogels, antibacterial peptide and antibacterial polymers, stimuli-responsive smart hydrogels, and light-mediated hydrogels. In addition, we also discussed the applications and challenges of antibacterial hydrogels in biomedicine, which are expected to provide new directions and ideas for the application of hydrogels in clinical antibacterial therapy.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shichen Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021 Jilin China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Jizhou Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|