1
|
Yin J, Wu Z, Li H, Cao B, Wang W. Monitoring of mercury ion in environmental media and biological systems using a red emissive fluorescent probe with a large Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125272. [PMID: 39418676 DOI: 10.1016/j.saa.2024.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The development of practical fluorescent probe for detecting toxic mercury ions (Hg2+) is desirable for environmental assurance and public health. In this study, a new red emissive fluorescent probe (KJL) was designed and synthesized for monitoring trace Hg2+ both in vitro and in vivo with distinct features including ideal response rate (within 4 min), red emission (596 nm), large Stokes shift (162 nm), highly sensitivity (LOD = 4.79 nM) and excellent specificity. KJL also validated the good capability for accurately monitoring trace Hg2+ levels in actual samples (faucet water, drinking water, river water, lake water, urine and serum) and possessed the eye-catching ability in visualization of Hg2+ under environmental/biological conditions, which revealed the great potential of this red-emitting fluorescent probe for practical applications in complex environmental and biological systems.
Collapse
Affiliation(s)
- Juan Yin
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Zejie Wu
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Heng Li
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bianli Cao
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wanzhi Wang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
2
|
Panchenko PA, Efremenko AV, Polyakova AS, Feofanov AV, Ustimova MA, Fedorov YV, Fedorova OA. Application of RET Approach for Ratiometric Response Enhancement of ICT Fluorescent Hg 2+ Probe based on Crown-containing Styrylpyridinium Dye. Chem Asian J 2024; 19:e202400777. [PMID: 39312207 DOI: 10.1002/asia.202400777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/14/2024] [Indexed: 11/09/2024]
Abstract
Styrylpyridinium dye bearing azadithia-15-crown-5 ether receptor group SP and 4-alkoxy-1,8-naphthalimide fluorophore were linked using copper-catalyzed azide-alkyne cycloaddition click reaction to afford dyad compound NI-SP. Chemosensor NI-SP exhibited selective ratiometric fluorescent response to the presence of Hg2+ in aqueous solution due to the interplay between resonance energy transfer (RET) and intramolecular charge transfer (ICT) processes occurred upon excitation. The observed switching of the ratio of emission intensities in the blue and red channels R was higher than in the case of monochromophoric styrylpyridine derivative SP showing ratiometric response based on ICT mechanism only. Biological studies revealed that NI-SP penetrates into human lung adenocarcinoma A549 cells and accumulates in cytoplasm and lysosomes. When cells were pre-incubated with mercury (II) perchlorate, the ratio R was increased 2.6 times, which enables detection of intracellular Hg2+ ions and their quantitative analysis in the 0.7-6.0 μM concentration range.
Collapse
Affiliation(s)
- Pavel A Panchenko
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sqr. 9, Moscow, 125047, Russia
| | - Anastasija V Efremenko
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
| | - Anna S Polyakova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Alexey V Feofanov
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gori 1/12, Moscow, 119234, Russia
| | - Maria A Ustimova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Yuri V Fedorov
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Olga A Fedorova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sqr. 9, Moscow, 125047, Russia
| |
Collapse
|
3
|
Zhao C, Aziz A, Lu W, Xu H, Asif M, Shuang S, Dong C. A turn-on anthraquinone-derived colorimetric and fluorometric dual-mode probe for highly selective Hg 2+ determination and bioimaging in living organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135694. [PMID: 39217944 DOI: 10.1016/j.jhazmat.2024.135694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Mercury ion (Hg2+) is considered a harmful neurotoxin, and real-time monitoring of Hg2+ concentrations in environmental and biological samples is critical. Fluorescent probes are a rapidly emerging visualization tool owing to their simple design and good selectivity. Herein, a novel fluorescence (FL) probe 2-(4-((6-((quinolin-8-yloxy)methyl)pyridin-2-yl)methyl)piperazin-1-yl)anthracene-9,10-dione (QPPA) is designed using piperazine as a linker between the anthraquinone group, which serves as a fluorophore, and N4O as the Hg2+ ligand. The probe exhibits FL "turn-on" sensing of Hg2+ because the complex inhibits the photo-induced electron transfer (PET) process. Moreover, QPPA can overcome the invasion by other possible cations, resulting in a clear color change from orange to colorless with the addition Hg2+. The chelation of QPPA with Hg2+ in a 1:1 ratio. Subsequently, the theoretically determined binding sites of the ligand to Hg2+ are validated through 1H NMR titration. The in situQPPA-Hg2+ complex can be subjected to Hg2+ extraction following the introduction of S2- owing to its robust binding capacity. The exceptional limit of detection values for Hg2+ and S2- are obtained as 63.0 and 79.1 nM (S/N = 3), respectively. Moreover, QPPA can display bright red FL in the presence of Hg2+ in different biological specimens such as HeLa cells, zebrafish, onion root tip tissues, and water flea Daphnia carinata, further providing an effective strategy for environmental monitoring and bioimaging of Hg2+ in living organisms.
Collapse
Affiliation(s)
- Chen Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Ayesha Aziz
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Hongmei Xu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
4
|
Zhou M, Zheng M, Deng W, Kong N, Hu J, Wang P, Yang X. A highly sensitive and selective fluorescent "on-off-on" peptide-based probe for sequential detection of Hg 2+ and S 2- ions: Applications in living cells and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124514. [PMID: 38805991 DOI: 10.1016/j.saa.2024.124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.
Collapse
Affiliation(s)
- Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Na Kong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Jinglan Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
5
|
Mereuta L, Park J, Park Y, Luchian T. Repurposing an antimicrobial peptide for the development of a dual ion channel/molecular receptor-like platform for metal ion detection. NANOSCALE 2024; 16:15984-15994. [PMID: 39141323 DOI: 10.1039/d4nr02433h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The presence of non-essential metals in the environment as contaminants is prone to cause hazardous health problems following accumulation in the human body and the ensuing toxic effects. This calls for continuous discovery and innovation in the realm of developing easy-to-operate, cheap and sensitive sensors. Herein, we describe the proof of concept approach for designing a molecular receptor-like, chimeric sensor based on the pore-forming peptide alamethicin (Alm), tethered via a linker with an ultrashort peptide nucleic acid (PNA) moiety, capable of generating functional ion channel oligomers in planar lipid membranes. The working principle of the sensor exploits the ability of Hg2+ ions to complex mismatching thymine-thymine sequences between the PNA receptor moiety on Alm oligomers and free, thymine-based, single-stranded DNAs (ssDNAs) in solution, thus creating a stable base pair at the oligomer entrance. This generates a transducing mechanism which converts the metal ion complexation into a specific electrical signature of the self-assembled Alm oligomers, enabling selective Hg2+ ion detection. The platform is programmable, whereby the simple exchange of the PNA sequence and its ssDNA counterpart in solution rendered the system selective for Cu2+ ion detection. With further optimization, the presented solution has the potential to translate into miniaturized, cost-effective biosensors suitable for the real-time, label-free and continuous detection of metal ions or other biomolecules.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| |
Collapse
|
6
|
Naniyil A, Koroth Valappil N, Andrews AP, Gokulnath S. Carbazole-embedded p-benziporphyrinoid: synthesis, structure and a reversible chemodosimeter for mercury(II) ions. Chem Commun (Camb) 2024; 60:6957-6960. [PMID: 38887917 DOI: 10.1039/d4cc02281e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The first carbazole-embedded p-benziporphyrinoid is synthesized by a [3+1] acid-catalyzed condensation between appropriate coupling partners. The macrocycle 1 exhibited orange emission and showed a large Stokes shift of 5831 cm-1. Intriguingly, it shows a selective affinity towards Hg2+ ions over other metal-ions in a reversible manner. Job's plot confirmed the 1 : 1 stoichiometry with unambiguous confirmation of both 1 and 1-Hg by single crystal X-ray analysis.
Collapse
Affiliation(s)
- Athira Naniyil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Naveen Koroth Valappil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Alex P Andrews
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| |
Collapse
|
7
|
Nakum R, Ghosh AK, Ranjan Jali B, Sahoo SK. Fluorescent ovalbumin-functionalized gold nanocluster as a highly sensitive and selective sensor for relay detection of salicylaldehyde, Hg(II) and folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124143. [PMID: 38471309 DOI: 10.1016/j.saa.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
A sensitive and selective relay-based scheme for the detection of salicylaldehyde, Hg2+, and folic acid (FA) has been demonstrated using fluorescent ovalbumin functionalized gold nanoclusters (OVA-AuNCs, λem = 655 nm) in this article. The OVA-AuNCs were conjugated to salicylaldehyde via an imine linkage to form Salic_OVA-AuNCs conjugate. The molecular docking study reveals that multiple functional groups and amino acid residues are involved in the interaction between salicylaldehyde and the OVA-AuNCs. The coupling of salicylaldehyde with OVA-AuNCs results in fluorescence quenching at 655 nm and concomitant formation of an emission band at 500 nm, which have leveraged to detect salicylaldehyde down to 2.02 µM. Following that, the Salic_OVA-AuNCs has been used for the detection of Hg2+ and FA. Several processes, such as internal charge transfer (ICT), photoinduced electron transfer (PET) and metallophilic interactions, are involved between the Salic_OVA-AuNCs nanoprobe and the analytes, which allowed to detect Hg2+ and FA down to 0.13 nM and 0.11 nM, respectively. The Salic_OVA-AuNCs nanoprobe has an additional naked-eye utility when applied to paper-strip sensing strategy for Hg2+ and FA detection.
Collapse
Affiliation(s)
- Rajanee Nakum
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India
| | - Arup K Ghosh
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
8
|
Chakraborty A, Rajana VK, Saritha C, Srivastava A, Mandal D, Das N. A new Eosin Y-based 'turnon' fluorescent sensor for ratiometric sensing of toxic mercury ion (Hg 2+) offering unaided eye detection and its antibacterial activity. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134207. [PMID: 38593667 DOI: 10.1016/j.jhazmat.2024.134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
A unique fluorescent molecule (ND-S) was obtained from Eosin Y in two simple yet high yielding steps (1). ND-S has special metal ion sensing ability, such that it can selectively detect toxic Hg2+ present in very low concentration in aqueous solutions in the presence of other competing metal ions. The host-guest complexation is ratiometric and is associated with significant increase in fluorescence during the process. Isothermal titration calorimetry (ITC) experiments provided thermodynamic parameters related to interaction between ND-S and Hg2+. Using inductively coupled plasma mass spectrometry (ICP-MS), the Hg2+(aq) removal efficiency of ND-S was estimated to be 99.88%. Appreciable limit of detection (LOD = 7.4 nM) was observed. Other competing ions did not interfere with the sensing of Hg2+ by ND-S. The effects of external stimuli (temperature and pH) were studied. Besides, the complex (ND-M), formed by 1:1 coordination of ND-S and Hg2+ was found to be effective against the survival of Gram-positive bacteria (S. aureus and B. subtilis) with a high selectivity index. Moreover, bacterial cell death mechanism was studied systematically. Overall, we have shown the transformation of a toxic species (Hg2+), extracted from polluted water by a biocompatible sensor (ND-S), into an effective and potent antibacterial agent (ND-M).
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Vinod K Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Abhinav Srivastava
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| |
Collapse
|
9
|
Wang S, Chen X, Yu S, Liu Z, Fu J, Zeng X. Naphthalimide-based fluorescent probe for Hg 2+ detection and imaging in living cells and zebrafish. LUMINESCENCE 2024; 39:e4699. [PMID: 38494638 DOI: 10.1002/bio.4699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 03/19/2024]
Abstract
A simple naphthalimide-based fluorescent probe was designed and synthesized for the determination of mercury ion (Hg2+ ). The probe showed a noticeable fluorescence quenching response for Hg2+ . When added with Hg2+ , the fluorescence intensity of the probe at 560 nm was remarkably decreased with the color changed from yellow to colorless under ultraviolet (UV) light. The probe had a notable selectivity and sensitivity for Hg2+ and displayed an excellent sensing performance when detecting Hg2+ at low concentration (19.5 nM). The binding phenomenon between the probe and Hg2+ was identified by Job's method and high-resolution mass spectrometry (HRMS). Moreover, the probe was not only utilized to identify Hg2+ in real samples with satisfactory results (92.00%-110.00%) but also was successfully used for bioimaging in cells and zebrafish. The recognition mechanism has been verified by transmission electron microscopy (TEM) for the first time. All the results showed that the probe could be used as a potent useful tool for detection of Hg2+ .
Collapse
Affiliation(s)
- Shanshan Wang
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Xin Chen
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Zhigang Liu
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, P. R. China
| | - Jing Fu
- Stomatological Hospital, Periodontics and Oral Medicine Department, Jinan, Shandong, P. R. China
| | - Xiaodan Zeng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, P. R. China
| |
Collapse
|
10
|
Tan T, Zhang C, Han Y, Chu R, Xi W, Chen X, Sun J, Huang H, Hu Y, Huang X. Fine-tuning bromide AIE probes for Hg 2+ detection in mitochondria with wash-free staining. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132999. [PMID: 37988945 DOI: 10.1016/j.jhazmat.2023.132999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Mercury ions (Hg2+) primarily target mitochondria in the cells. Therefore, the development of novel probes that specifically target mitochondria in the presence of Hg2+ is of immense importance. Most previously reported probes that utilize the softness of S, Te, O, and/or N atoms for Hg2+ binding often face problems such as fluorescence quenching and off-target signals. In this study, bromide-hydrocarbon pyridinium salts were designed to target the mitochondria and chelate Hg2+ via Hg-Br coordination bonds. As a prototype, four aggregation-induced emission (AIE) fluorogens, namely TPP-Br, TPP-Cl, R1, and R2, with a similar D-π-A structure but slight differences in their halogen substituents, were designed. Among them, only TPP-Br achieved the highly selective and sensitive detection of Hg2+ by triggering its AIE properties, resulting in remarkable emission enhancement (80-fold), colorimetry, and the Tyndall effect. TPP-Br exhibited high selectivity and sensitivity to Hg2+ with a detection limit of 0.35 μM, rapid response time (<10 s), and large Stokes shift of 185 nm. Their interaction modes were studied using a combination of 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy, fluorescent lifetime decay, and theoretical calculations. TPP-Br exhibited a low emission background in cells, whereas in the presence of Hg2+, mitochondria were lit up with wash-free staining. This study provides a powerful tool for accurately diagnosing mercury poisoning-related diseases in mitochondria.
Collapse
Affiliation(s)
- Tian Tan
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Chuang Zhang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Ying Han
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Ruijun Chu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Wenyu Xi
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xulang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yanjun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
11
|
Pal A, Dey N. Oxidized Bisindolyl-Based Amphiphilic Probe for Dual Mode Analysis of Heavy Metal Pollutants in Aqueous Medium. J Fluoresc 2024:10.1007/s10895-023-03393-y. [PMID: 38319519 DOI: 10.1007/s10895-023-03393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 02/07/2024]
Abstract
The oxidized bisindolyl-based amphiphilic, chromogenic probe has been synthesized that can form nanoscopic aggregates in the aqueous medium. Along with solvent polarity and pH of the medium, it was observed that the addition of heavy metal pollutants, like Hg2+ can cause significant alteration in the charge transfer state. This resulted in the immediate change in the solution color from yellow to orange. Additionally, we could excite either the monomer species or the aggregates of the probe by choosing the proper excitation wavelength. Upon exciting at 390 nm, the compound exhibited a broad fluorescence spectrum with maxima at 450 nm, presumably due to twisted state charge transfer. On the contrary, the aggregated species (λex = 465 nm) displayed a comparatively weaker fluorescence band centered at 565 nm. Interestingly, the fluorescence intensity at the 450 nm band experience fluorescence quenching in the presence of Hg2+ ion, while the aggregate emission band remained unaffected. Finally, the present system was utilized for detection of mercury ions in natural water samples.
Collapse
Affiliation(s)
- Animesh Pal
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
12
|
Diacon A, Albota F, Mocanu A, Brincoveanu O, Podaru AI, Rotariu T, Ahmad AA, Rusen E, Toader G. Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater. Gels 2024; 10:113. [PMID: 38391443 PMCID: PMC10887514 DOI: 10.3390/gels10020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment inside the 3D polymeric matrix). These hydrogels, designed for the simultaneous detection and entrapment of mercury, were obtained through the photopolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) and N-vinyl-2-pyrrolidone (NVP), utilizing N,N'-methylenebisacrylamide (MBA) as crosslinker, in the presence of polyvinyl alcohol (PVA), a rhodamine B derivative, and one of the following chelating agents: phytic acid, 1,3-diamino-2-hydroxypropane-tetraacetic acid, triethylenetetramine-hexaacetic acid, or ethylenediaminetetraacetic acid disodium salt. The rhodamine derivative had a dual purpose in this study: firstly, it was incorporated into the hydrogel to allow the qualitative evaluation of mercury entrapment through its fluorogenic switch-off abilities when sensing Hg2+ ions; secondly, it was used to quantitatively evaluate the level of residual mercury from the decontaminated aqueous solutions, via the UV-Vis technique. The ICP-MS analysis of the hydrogels also confirmed the successful entrapment of mercury inside the hydrogels and a good correlation with the UV-Vis method.
Collapse
Affiliation(s)
- Aurel Diacon
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Florin Albota
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
- Research Institute, University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Alice Ionela Podaru
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Traian Rotariu
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Ahmad A Ahmad
- Department of Physical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gabriela Toader
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| |
Collapse
|
13
|
Qu W, Zhang Y, Cao H, Jia L. A highly selective fluorescence turn-on sensor for Hg 2+ based on quinolimide in aqueous media and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123376. [PMID: 37708757 DOI: 10.1016/j.saa.2023.123376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Herein, a novel fluorescent sensor QPE based on quinolimide was developed, which displayed the highly selective response to Hg2+ through the turn-on signal in aqueous media. The corresponding recognition mechanism of QPE for Hg2+ was investigated by the titration experiments, Job's plots, HRMS, and DFT calculations analysis. QPE could detect Hg2+ in a broad pH range (pH = 4-9) with the LOD of 20 nM and the LOQ of 66 nM. Meanwhile, QPE-loaded test strips were demonstrated in the visual detection of Hg2+. Importantly, QPE exhibited the reliable capability to track Hg2+ in real water and soil samples and yeast cells, indicating that QPE could be used as a prospective tool for monitoring Hg2+ in wide fields.
Collapse
Affiliation(s)
- Wenjing Qu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Hongjie Cao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|