1
|
Li YJ, Wu ZL, Gu QS, Fan T, Duan MH, Wu L, Wang YT, Wu JP, Fu FL, Sang F, Peng AT, Jiang Y, Liu XY, Lin JS. Catalytic Intermolecular Asymmetric [2π + 2σ] Cycloadditions of Bicyclo[1.1.0]butanes: Practical Synthesis of Enantioenriched Highly Substituted Bicyclo[2.1.1]hexanes. J Am Chem Soc 2024; 146:34427-34441. [PMID: 39626122 DOI: 10.1021/jacs.4c10968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The high percentage of sp3-hybridized carbons and the presence of chiral carbon centers could contribute to increased molecular complexity, enhancing the likelihood of clinical success of drug candidates. Three-dimensional (3D) bridged motifs have recently garnered significant interest in medicinal chemistry. Bicyclo[2.1.1]hexanes (BCHs) are emerging 3D benzene bioisosteres, but the synthesis of chiral, highly substituted BCHs has been underexplored. Herein, we disclose the Lewis acid-catalyzed asymmetric intermolecular [2π + 2σ] cycloaddition of bicyclo[1.1.0]butanes with coumarins, 2-pyrone, or chromenes to access diverse enantioenriched 1,2,3,4-tetrasubstituted BCHs bearing vicinal tertiary-quaternary stereocenters. The key to success is the introduction of chiral bisoxazoline ligands to effectively suppress the side reactions, inhibit significant racemic background reactions, and fine-tune the reactivity and regio-, enantio-, and diastereoselectivities of the reactions. The resulting BCHs hold significant potential as benzene bioisosteres in the synthesis of chiral BCHex-Sonidegib and BCHex-BMS-202, mimicking the anticancer drug Sonidegib and the PD-1/PD-L1 inhibitor BMS-202, respectively. The outcome highlights the positive impact of bioisosteric replacement on physicochemical properties, while maintaining comparable antitumor activity to their aryl-containing counterparts.
Collapse
Affiliation(s)
- Ying-Jie Li
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Zhi-Long Wu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ming-Hao Duan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Lihong Wu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yu-Tao Wang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ji-Peng Wu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Fang-Lei Fu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Fan Sang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ai-Ting Peng
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin-Shun Lin
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
2
|
Whalley DM, Carlino L, Putra OD, Anderson NA, Coote SC, Lorthioir O. Merging nucleophilic phosphine catalysis and photocatalysis for the rapid assembly of 2-oxabicyclo-[2.1.1]hexane scaffolds from feedstock allyl alcohols. Chem Sci 2024; 15:19564-19570. [PMID: 39568909 PMCID: PMC11575532 DOI: 10.1039/d4sc06684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
The previously unreported combination of nucleophilic phosphine catalysis and energy transfer catalysis allows for the rapid construction of structurally distinct 2-oxabicyclo[2.1.1]hexanes (2-oxa-BCH) from readily available building blocks with high atom economy. Previous multistep routes to these important phenyl ring bioisosteres have largely depended on the use of bespoke strain-release agents or on multiple post-functionalisation reactions to access structural diversity of the scaffold. In contrast, this cascade reaction allows the medicinal chemist to exploit the breadth of commercial allyl alcohols to synthesise systematically diverse 2-oxa-BCH architectures. Using a combination of polar and radical disconnections in the same reaction flask, every position of the scaffold can be substituted with useful functional handles such as protected amines, esters and alcohols, as well as arenes and alkyl groups. Cyclic allyl alcohols can even be employed to yield single diastereomers of sp3-rich bridged spirocyclic structures. Aromatic groups at the 1-position can be varied to incorporate a plethora of arenes including medicinally relevant heterocycles such as indole, pyrazole and pyridine.
Collapse
Affiliation(s)
- David M Whalley
- Medicinal Chemistry, Research and Early Development, Oncology R&D AstraZeneca Cambridge CB2 0AA UK
| | - Luca Carlino
- Medicinal Chemistry, Research and Early Development, Oncology R&D AstraZeneca Cambridge CB2 0AA UK
| | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences R&D AstraZeneca Pepparedsleden 1, Mölndal SE-43183 Gothenburg Sweden
| | - Niall A Anderson
- Medicinal Chemistry, Research and Early Development, Oncology R&D AstraZeneca Cambridge CB2 0AA UK
| | - Susannah C Coote
- Department of Chemistry, University of Bath 1 South, Claverton Down Bath BA2 7AY UK
| | - Olivier Lorthioir
- Medicinal Chemistry, Research and Early Development, Oncology R&D AstraZeneca Cambridge CB2 0AA UK
| |
Collapse
|
3
|
Lee YC, Chen YC, Wu CF, Yoo WJ. Synthesis of 1-Substituted Bicyclo[2.1.1]hexan-2-ones via a Sequential SmI 2-Mediated Pinacol Coupling and Acid-Catalyzed Pinacol Rearrangement Reaction. Org Lett 2024; 26:9352-9356. [PMID: 39436356 PMCID: PMC11536404 DOI: 10.1021/acs.orglett.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
A two-step procedure, combining a SmI2-mediated transannular pinacol coupling reaction with an acid-catalyzed pinacol rearrangement process, was employed to prepare a diverse range of 1-substituted bicyclo[2.1.1]hexan-5-ones from cyclobutanedione derivatives. To underscore the significance of these bicyclic ketones in drug synthesis, an sp3-rich analog of nitazoxanide, a well-known antiparasitic and antiviral agent, was synthesized.
Collapse
Affiliation(s)
- Yung-Chi Lee
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Chen Chen
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chun-Fu Wu
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Woo-Jin Yoo
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Center
for Emerging Materials and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Lorthioir O, Anderson N, Boyd S, Carlino L, Davey P, Hodds W, Howard M, Lindhagen M, Proctor K, Putra OD, Smith T, Turner O, Woodhouse A, Woodward M. Access to 2-Oxabicyclo[2.1.1]hexanes and their use in Scaffold Hopping. Org Lett 2024; 26:9179-9184. [PMID: 39432828 DOI: 10.1021/acs.orglett.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Saturated isosteres of the ortho-substituted benzene ring remain rare due to the paucity of methods to access complex bridged systems. Using blue-light-mediated [2 + 2] photocycloaddition chemistry, we have developed a quick and practical route to provide novel 2-oxabicyclo[2.1.1]hexanes from simple feedstock materials in only three steps. Matched pair analysis confirmed that this motif could prove useful in the future to the drug discovery community as a scaffold endowed with remarkable properties.
Collapse
Affiliation(s)
- Olivier Lorthioir
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Niall Anderson
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Scott Boyd
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Luca Carlino
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Paul Davey
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - William Hodds
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Megan Howard
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Marika Lindhagen
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Katie Proctor
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Theo Smith
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Oliver Turner
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Alfie Woodhouse
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| | - Millie Woodward
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, U.K
| |
Collapse
|
5
|
Hu S, Gao Y, Pan Y, Ni D, Deng L. Modular Synthesis of Azidobicyclo[2.1.1]hexanes via (3 + 2) Annulation of α-Substituted Vinyl Azides and Bicyclo[1.1.0]butanes. J Org Chem 2024; 89:15151-15157. [PMID: 39331382 DOI: 10.1021/acs.joc.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here, we present a mild and rapid method to access azidobicyclo[2.1.1]hexanes via formal (3 + 2) cycloaddition of α-substituted vinyl azides and bicyclo[1.1.0]butanes under Lewis acid catalysis. A wide range of α-substituted vinyl azides were tolerated under mild conditions. Notably, the resulting cycloadducts could be transformed into structurally attractive 3-azabicyclo[3.1.1]heptenes through microwave-promoted rearrangement. The utilities were highlighted by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of tertiary alkyl azide and further transformation of the azide and ketone groups.
Collapse
Affiliation(s)
- Sai Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yuhong Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yuming Pan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| |
Collapse
|
6
|
Sarkar D, Deswal S, Chandra Das R, Biju AT. Lewis acid-catalyzed (3 + 2) annulation of bicyclobutanes with ynamides: access to 2-amino-bicyclo[2.1.1]hexenes. Chem Sci 2024:d4sc03893b. [PMID: 39296999 PMCID: PMC11404026 DOI: 10.1039/d4sc03893b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Strain-release driven annulations with bicyclo[1.1.0]butanes (BCBs) have become an attractive area of research for the synthesis of bioisosteric bicyclohexane derivatives, which play a vital role in drug discovery. Interestingly, the utilization of the inherent strain in BCBs for the synthesis of functionalized amino-bicyclo[2.1.1]hexenes, which may spatially mimic substituted benzenes and anilines, has received only scant attention. Herein, we report the Sc(OTf)3-catalyzed (3 + 2) annulation of BCBs with ynamides for the facile synthesis of 2-amino-bicyclo[2.1.1]hexenes in one step under mild conditions. The reaction likely proceeds via nucleophilic addition facilitated by the nitrogen lone pair from the alkynyl group of the ynamides to the unsubstituted side of the BCBs, followed by the annulation of the resulting enolate with the keteniminium species. For the first time, the C-C triple bond of ynamides was utilized as the coupling partner for BCBs, resulting in products adorned with a functionalizable amino group and an integrated strained alkene moiety.
Collapse
Affiliation(s)
- Deeptanu Sarkar
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://atbiju.in/
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://atbiju.in/
| | - Rohan Chandra Das
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://atbiju.in/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://atbiju.in/
| |
Collapse
|
7
|
Gao XY, Tang L, Zhang X, Feng JJ. Palladium-catalyzed decarboxylative (4 + 3) cycloadditions of bicyclobutanes with 2-alkylidenetrimethylene carbonates for the synthesis of 2-oxabicyclo[4.1.1]octanes. Chem Sci 2024:d4sc02998d. [PMID: 39139738 PMCID: PMC11317905 DOI: 10.1039/d4sc02998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
While cycloaddition reactions of bicyclobutanes (BCBs) have emerged as a potent method for synthesizing (hetero-)bicyclo[n.1.1]alkanes (usually n ≤ 3), their utilization in the synthesis of bicyclo[4.1.1]octane derivatives (BCOs) is still underdeveloped. Here, a palladium-catalyzed formal (4 + 3) reaction of BCBs with 1,4-O/C dipole precursors for the synthesis of oxa-BCOs is described. Unlike previous catalytic polar (3 + X) cycloadditions of BCBs, which are typically achieved through the activation of BCB substrates, the current reaction represents a novel strategy for realizing the cycloaddition of BCBs through the activation of the "X" cycloaddition partner. Moreover, the obtained functionalized oxa-BCOs products can be readily modified through various synthetic transformations.
Collapse
Affiliation(s)
- Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
8
|
Hu QQ, Wang LY, Chen XH, Geng ZX, Chen J, Zhou L. Lewis Acid Catalyzed Cycloaddition of Bicyclobutanes with Ynamides for the Synthesis of Polysubstituted 2-Amino-bicyclo[2.1.1]hexenes. Angew Chem Int Ed Engl 2024; 63:e202405781. [PMID: 38782734 DOI: 10.1002/anie.202405781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Synthesis of bicyclic scaffolds has gained significant attention in drug discovery due to their potential to mimic benzene bioisosteres. Here, we present a mild and scalable Sc(OTf)3-catalyzed [3+2] cycloaddition of bicyclo[1.1.0]butanes (BCBs) with ynamides, yielding a diverse array of polysubstituted 2-amino-bicyclo[2.1.1]hexenes in good to excellent yields. These products offer valuable starting materials for the construction of novel functionalized bicyclo[1.1.0]butanes. Preliminary mechanistic studies indicate that the reaction involves a nucleophilic addition of ynamides to bicyclo[1.1.0]butanes, followed by an intramolecular cyclization of in situ generated enolate and keteniminium ion. We expect that these findings will encourage utilization of complex bioisosteres and foster further investigation into BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Qian-Qian Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Liu-Yang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xing-Hao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
9
|
Chernykh AV, Vashchenko BV, Shishkina SV, Volochnyuk DM, Grygorenko OO. 3-Substituted 6-Azabicyclo[3.1.1]heptanes: Nonclassical Piperidine Isosteres for Drug Discovery. J Org Chem 2024; 89:10440-10450. [PMID: 38989992 DOI: 10.1021/acs.joc.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Advanced analogs of piperidine and smaller homologues of tropane─3-substituted 6-azabicyclo[3.1.1]heptanes─were synthesized on a large scale using readily available bulk reagents. The key step of the approach involved the double alkylation reaction of malonate with cis-2,4-bis(mesyloxymethyl)azetidine-1-carboxylate, in turn easily prepared on up to 1 kg scale. After hydrolysis, N-Boc-6-azabicyclo[3.1.1]heptane-3,3-dicarboxylic acid was obtained (up to 400 g in a single run), which was used as a common intermediate for the preparation of all the title building blocks. In particular, Pb(OAc)4-mediated oxidative decarboxylation of this intermediate gave 2,6-methanopiperidone derivative (up to 400 g scale), while monodecarboxylation gave N-Boc-6-azabicyclo[3.1.1]heptane-3-carboxylic acids as an easily separatable mixture of cis and trans diastereomers (up to 100 g scale). Further functional group transformations gave diastereopure cis- and trans-N-Boc-monoprotected diamines and amino alcohols. Molecular structure analysis using exit vector parameters (EVP) revealed that cis isomers of 3-substituted 6-azabicyclo[3.1.1]heptanes are three-dimensional analogs of common 1,4-disubstituted piperidine chair conformer, whereas trans isomers can be considered as unusual "boat" piperidines.
Collapse
Affiliation(s)
- Anton V Chernykh
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| | - Svitlana V Shishkina
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- SSI "Institute for Single Crystals" of the NAS of Ukraine, Nauky Avenue 60, Kharkiv 61001, Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyiv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Street 5, Kyiv 02094, Ukraine
| |
Collapse
|
10
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Hu S, Pan Y, Ni D, Deng L. Facile access to bicyclo[2.1.1]hexanes by Lewis acid-catalyzed formal cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes. Nat Commun 2024; 15:6128. [PMID: 39033172 PMCID: PMC11271461 DOI: 10.1038/s41467-024-50434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Saturated three-dimensional carbocycles have gained increasing prominence in synthetic and medicinal chemistry. In particular, bicyclo[2.1.1]hexanes (BCHs) have been identified as the molecular replacement for benzenes. Here, we present facile access to a variety of BCHs via a stepwise two-electron formal (3 + 2) cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes (BCBs) under Lewis acid catalysis. The reaction features wide functional group tolerance for silyl enol ethers, allowing the efficient construction of two vicinal quaternary carbon centers and a silyl-protected tertiary alcohol unit in a streamlined fashion. Interestingly, the reaction with conjugated silyl dienol ethers can provide access to bicyclo[4.1.1]octanes (BCOs) equipped with silyl enol ethers that facilitate further transformation. The utilities of this methodology are demonstrated by the late-stage modification of natural products, transformations of tertiary alcohol units on bicyclo[2.1.1]hexane frameworks, and derivatization of silyl enol ethers on bicyclo[4.1.1]octanes, delivering functionalized bicycles that are traditionally inaccessible.
Collapse
Affiliation(s)
- Sai Hu
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuming Pan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
12
|
Krajczy P, Meyners C, Repity ML, Hausch F. Structure-Based Design of Ultrapotent Tricyclic Ligands for FK506-Binding Proteins. Chemistry 2024:e202401405. [PMID: 38837733 DOI: 10.1002/chem.202401405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Access to small, rigid, and sp3-rich molecules is a major limitation in the drug discovery for challenging protein targets. FK506-binding proteins hold high potential as drug targets or enablers of molecular glues but are fastidious in the chemotypes accepted as ligands. We here report an enantioselective synthesis of a highly rigidified pipecolate-mimicking tricyclic scaffold that precisely positions functional groups for interacting with FKBPs. This was enabled by a 14-step gram-scale synthesis featuring anodic oxidation, stereospecific vinylation, and N-acyl iminium cyclization. Structure-based optimization resulted in the discovery of FKBP inhibitors with picomolar biochemical and subnanomolar cellular activity that represent the most potent FKBP ligands known to date.
Collapse
Affiliation(s)
- Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Maximilian L Repity
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, 64283, Germany
| |
Collapse
|
13
|
Smyrnov OK, Melnykov KP, Pashenko OY, Volochnyuk DM, Ryabukhin SV. Stellane at the Forefront: Derivatization and Reactivity Studies of a Promising Saturated Bioisostere of ortho-Substituted Benzenes. Org Lett 2024. [PMID: 38804566 DOI: 10.1021/acs.orglett.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This work highlights stellane's cage stability and derivatization opportunities. A diverse range of building blocks were synthesized using modern synthesis protocols to demonstrate stellane's reactivity and chemical tolerance across different reaction systems, proving its promise as a bioisosteric scaffold. It can be utilized in scaffold-based molecular design and is superior in terms of topological precision compared to existing ortho isosteres, as well as monosubstituted benzene mimetics, holding the potential to become a robust platform for future medicinal chemistry studies.
Collapse
Affiliation(s)
- Oleh K Smyrnov
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Olexandr Ye Pashenko
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| | - Serhiy V Ryabukhin
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| |
Collapse
|
14
|
Levterov VV, Panasiuk Y, Shablykin O, Stashkevych O, Sahun K, Rassokhin A, Sadkova I, Lesyk D, Anisiforova A, Holota Y, Borysko P, Bodenchuk I, Voloshchuk NM, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes: Synthesis, Properties, and Validation as Bioisosteres of ortho- and meta-Benzenes. Angew Chem Int Ed Engl 2024; 63:e202319831. [PMID: 38465464 DOI: 10.1002/anie.202319831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
We have developed a general and practical approach towards 2-oxabicyclo[2.1.1]hexanes with two and three exit vectors via an iodocyclization reaction. The obtained compounds have been easily converted into the corresponding building blocks for use in medicinal chemistry. 2-Oxabicyclo[2.1.1]hexanes have been incorporated into the structure of five drugs and three agrochemicals, and validated biologically as bioisosteres of ortho- and meta-benzenes.
Collapse
Affiliation(s)
| | | | - Oleh Shablykin
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Oleksandr Stashkevych
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska Str. 64, 01601, Kyiv, Ukraine
| | - Kateryna Sahun
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Artur Rassokhin
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Iryna Sadkova
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Dmytro Lesyk
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Yuliia Holota
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Nataliya M Voloshchuk
- National University of Life and Environmental Sciences of Ukraine, V. F. Peresypkin Department of Phytopathology, Heroyiv Oborony Str. 15, 03041, Kyiv, Ukraine
| | | |
Collapse
|
15
|
Diepers HE, Walker JCL. (Bio)isosteres of ortho- and meta-substituted benzenes. Beilstein J Org Chem 2024; 20:859-890. [PMID: 38655554 PMCID: PMC11035989 DOI: 10.3762/bjoc.20.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Saturated bioisosteres of substituted benzenes offer opportunities to fine-tune the properties of drug candidates in development. Bioisosteres of para-benzenes, such as those based on bicyclo[1.1.1]pentane, are now very common and can be used to increase aqueous solubility and improve metabolic stability, among other benefits. Bioisosteres of ortho- and meta-benzenes were for a long time severely underdeveloped by comparison. This has begun to change in recent years, with a number of potential systems being reported that can act as bioisosteres for these important fragments. In this review, we will discuss these recent developments, summarizing the synthetic approaches to the different bioisosteres as well as the impact they have on the physiochemical and biological properties of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- H Erik Diepers
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Posz JM, Sharma N, Royalty PA, Liu Y, Salome C, Fessard TC, Brown MK. Synthesis of Borylated Carbocycles by [2 + 2]-Cycloadditions and Photo-Ene Reactions. J Am Chem Soc 2024; 146:10142-10149. [PMID: 38536870 PMCID: PMC11041674 DOI: 10.1021/jacs.4c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Saturated bicyclic compounds make up a valuable class of building blocks in the development of agrochemicals and pharmaceuticals. Here, we present the synthesis of borylated bicyclo[2.1.1]hexanes via crossed [2 + 2]-cycloaddition. Due to the presence of the C-B bond, a variety of structures can be easily prepared that are not accessible by other methods. Moreover, a rare photo-ene reaction is also disclosed, allowing for the diastereoselective synthesis of trisubstituted borylated cyclopentanes.
Collapse
Affiliation(s)
- Jarett M Posz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Neetu Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Paige A Royalty
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christophe Salome
- SpiroChem AG, Rosental Area, WRO-1047-3, Mattenstrasse 22, Basel 4058, Switzerland
| | - Thomas C Fessard
- SpiroChem AG, Rosental Area, WRO-1047-3, Mattenstrasse 22, Basel 4058, Switzerland
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell'Amico L. Light-Driven Synthesis and Functionalization of Bicycloalkanes, Cubanes and Related Bioisosteres. Angew Chem Int Ed Engl 2024; 63:e202317333. [PMID: 38179801 DOI: 10.1002/anie.202317333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Bicycloalkanes, cubanes and their structural analogues have emerged as bioisosteres of (hetero)arenes. To meet increasing demand, the chemical community has developed a plethora of novel synthetic methods. In this review, we assess the progress made in the field of light-driven construction and functionalization of such relevant molecules. We have focused on diverse structural targets, as well as on reaction processes giving access to: (i) [1.1.1]-bicyclopentanes (BCPs); (ii) [2.2.1]-bicyclohexanes (BCHs); (iii) [3.1.1]-bicycloheptanes (BCHeps); and (iv) cubanes; as well as other structurally related scaffolds. Finally, future perspectives dealing with the identification of novel reaction manifolds to access new functionalized bioisosteric units are discussed.
Collapse
Affiliation(s)
- Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Julien Paut
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
18
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
19
|
Pattison G. Assessing the rigidity of cubanes and bicyclo(1.1.1)pentanes as benzene bioisosteres. Bioorg Med Chem 2024; 102:117652. [PMID: 38442523 DOI: 10.1016/j.bmc.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Aromatic rings are critical core substructures in the majority of pharmaceutical compounds. There is much recent interest in replacing aromatic structures with saturated bioisosteres of benzene, which are generally fused or bridged ring systems. These bioisosteres often show improved solubility properties compared to benzene, and may also undergo fewer unwanted metabolic processes. One key reason why aromatic rings have proven so successful in drug design is their rigidity. This paper uses molecular dynamics simulations supported by crystallographic data to assess the rigidity of bicyclopentane and cubane ring systems as two of the most common benzene bioisosteres and compares this to benzene. Whilst a benzene ring is shown to be more flexible than these two bioisosteres in terms of its dihedral ring flexibility, substituents around the ring tend to behave in a much more similar way in both benzene and the bioisosteric systems.
Collapse
Affiliation(s)
- Graham Pattison
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, UK LN6 7DL.
| |
Collapse
|
20
|
Prysiazhniuk K, Datsenko OP, Polishchuk O, Shulha S, Shablykin O, Nikandrova Y, Horbatok K, Bodenchuk I, Borysko P, Shepilov D, Pishel I, Kubyshkin V, Mykhailiuk PK. Spiro[3.3]heptane as a Saturated Benzene Bioisostere. Angew Chem Int Ed Engl 2024; 63:e202316557. [PMID: 38251921 DOI: 10.1002/anie.202316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.
Collapse
Affiliation(s)
| | | | | | | | - Oleh Shablykin
- Enamine Ltd., Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Iryna Pishel
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | | |
Collapse
|