1
|
Mutz M, Brüning V, Brüsseler C, Müller M, Noack S, Marienhagen J. Metabolic engineering of Corynebacterium glutamicum for the production of anthranilate from glucose and xylose. Microb Biotechnol 2024; 17:e14388. [PMID: 38206123 PMCID: PMC10832554 DOI: 10.1111/1751-7915.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Anthranilate and its derivatives are important basic chemicals for the synthesis of polyurethanes as well as various dyes and food additives. Today, anthranilate is mainly chemically produced from petroleum-derived xylene, but this shikimate pathway intermediate could be also obtained biotechnologically. In this study, Corynebacterium glutamicum was engineered for the microbial production of anthranilate from a carbon source mixture of glucose and xylose. First, a feedback-resistant 3-deoxy-arabinoheptulosonate-7-phosphate synthase from Escherichia coli, catalysing the first step of the shikimate pathway, was functionally introduced into C. glutamicum to enable anthranilate production. Modulation of the translation efficiency of the genes for the shikimate kinase (aroK) and the anthranilate phosphoribosyltransferase (trpD) improved product formation. Deletion of two genes, one for a putative phosphatase (nagD) and one for a quinate/shikimate dehydrogenase (qsuD), abolished by-product formation of glycerol and quinate. However, the introduction of an engineered anthranilate synthase (TrpEG) unresponsive to feedback inhibition by tryptophan had the most pronounced effect on anthranilate production. Component I of this enzyme (TrpE) was engineered using a biosensor-based in vivo screening strategy for identifying variants with increased feedback resistance in a semi-rational library of TrpE muteins. The final strain accumulated up to 5.9 g/L (43 mM) anthranilate in a defined CGXII medium from a mixture of glucose and xylose in bioreactor cultivations. We believe that the constructed C. glutamicum variants are not only limited to anthranilate production but could also be suitable for the synthesis of other biotechnologically interesting shikimate pathway intermediates or any other aromatic compound derived thereof.
Collapse
Affiliation(s)
- Mario Mutz
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Vincent Brüning
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Christian Brüsseler
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Moritz‐Fabian Müller
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Stephan Noack
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Jan Marienhagen
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
2
|
Abstract
This review intends to act as an overview of fructose malabsorption (FM) and its role in the aetiology of diseases including, but not limited to, irritable bowel syndrome (IBS) and infantile colic and the relationship between fructose absorption and the propagation of some cancers. IBS results in a variety of symptoms including stomach pains, cramps and bloating. Patients can be categorised into two groups, depending on whether the patients’ experiences either constipation (IBS-C) or diarrhoea (IBS-D). FM has been proposed as a potential cause of IBS-D and other diseases, such as infantile colic. However, our knowledge of FM is limited by our understanding of the biochemistry related to the absorption of fructose in the small intestine and FM’s relationship with small intestinal bacterial overgrowth. It is important to consider the dietary effects on FM and most importantly, the quantity of excess free fructose consumed. The diagnosis of FM is difficult and often requires indirect means that may result in false positives. Current treatments of FM include dietary intervention, such as low fermentable oligo-, di-, monosaccharides and polyols diets and enzymatic treatments, such as the use of xylose isomerase. More research is needed to accurately diagnose and effectively treat FM. This review is designed with the goal of providing a detailed outline of the issues regarding the causes, diagnosis and treatment of FM.
Collapse
|
3
|
Taberman H, Bury CS, van der Woerd MJ, Snell EH, Garman EF. Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:931-944. [PMID: 31274415 PMCID: PMC6613113 DOI: 10.1107/s1600577519005599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/23/2019] [Indexed: 05/29/2023]
Abstract
Xylose isomerase (XI) is an industrially important metalloprotein studied for decades. Its reaction mechanism has been postulated to involve movement of the catalytic metal cofactor to several different conformations. Here, a dose-dependent approach was used to investigate the radiation damage effects on XI and their potential influence on the reaction mechanism interpreted from the X-ray derived structures. Radiation damage is still one of the major challenges for X-ray diffraction experiments and causes both global and site-specific damage. In this study, consecutive high-resolution data sets from a single XI crystal from the same wedge were collected at 100 K and the progression of radiation damage was tracked over increasing dose (0.13-3.88 MGy). The catalytic metal and its surrounding amino acid environment experience a build-up of free radicals, and the results show radiation-damage-induced structural perturbations ranging from an absolute metal positional shift to specific residue motions in the active site. The apparent metal movement is an artefact of global damage and the resulting unit-cell expansion, but residue motion appears to be driven by the dose. Understanding and identifying radiation-induced damage is an important factor in accurately interpreting the biological conclusions being drawn.
Collapse
Affiliation(s)
- Helena Taberman
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein Straße 15, 12489 Berlin, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Charles S. Bury
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark J. van der Woerd
- Department of Enterprise Technology Services, 2001 Capitol Avenue, Cheyenne, WY 82001, USA
| | - Edward H. Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Gogoi P, Mordina P, Kanaujia SP. Structural insights into the catalytic mechanism of 5-methylthioribose 1-phosphate isomerase. J Struct Biol 2019; 205:67-77. [DOI: 10.1016/j.jsb.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
|
5
|
Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: a joint x-ray and neutron diffraction study. Structure 2010; 18:688-99. [PMID: 20541506 DOI: 10.1016/j.str.2010.03.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/11/2010] [Accepted: 03/08/2010] [Indexed: 11/21/2022]
Abstract
Conversion of aldo to keto sugars by the metalloenzyme D-xylose isomerase (XI) is a multistep reaction that involves hydrogen transfer. We have determined the structure of this enzyme by neutron diffraction in order to locate H atoms (or their isotope D). Two studies are presented, one of XI containing cadmium and cyclic D-glucose (before sugar ring opening has occurred), and the other containing nickel and linear D-glucose (after ring opening has occurred but before isomerization). Previously we reported the neutron structures of ligand-free enzyme and enzyme with bound product. The data show that His54 is doubly protonated on the ring N in all four structures. Lys289 is neutral before ring opening and gains a proton after this; the catalytic metal-bound water is deprotonated to hydroxyl during isomerization and O5 is deprotonated. These results lead to new suggestions as to how changes might take place over the course of the reaction.
Collapse
|
6
|
Pastinen O, Schoemaker HE, Leisola M. Xylose Isomerase Catalysed Novel Hexose Epimerization. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429909015238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Liu C, Li D, Liang YH, Li LF, Su XD. Ring-Opening Mechanism Revealed by Crystal Structures of NagB and Its ES Intermediate Complex. J Mol Biol 2008; 379:73-81. [DOI: 10.1016/j.jmb.2008.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 11/26/2022]
|
8
|
Tamura H, Saito Y, Ashida H, Inoue T, Kai Y, Yokota A, Matsumura H. Crystal structure of 5-methylthioribose 1-phosphate isomerase product complex from Bacillus subtilis: implications for catalytic mechanism. Protein Sci 2008; 17:126-35. [PMID: 18156470 DOI: 10.1110/ps.073169008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The methionine salvage pathway (MSP) plays a crucial role in recycling a sulphahydryl derivative of the nucleoside. Recently, the genes and reactions in MSP from Bacillus subtilis have been identified, where 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes a conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P). Herein, we report the crystal structures of B. subtilis M1Pi (Bs-M1Pi) in complex with its product MTRu-1-P, and a sulfate at 2.4 and 2.7 A resolution, respectively. The electron density clearly shows the presence of each compound in the active site. The structural comparison with other homologous proteins explains how the substrate uptake of Bs-M1Pi may be induced by an open/closed transition of the active site. The highly conserved residues at the active site, namely, Cys160 and Asp240 are most likely to be involved in catalysis. The structural analysis sheds light on its catalytic mechanism of M1Pi.
Collapse
Affiliation(s)
- Haruka Tamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Rhimi M, Juy M, Aghajari N, Haser R, Bejar S. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis. J Bacteriol 2007; 189:3556-63. [PMID: 17337581 PMCID: PMC1855884 DOI: 10.1128/jb.01826-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.
Collapse
Affiliation(s)
- Moez Rhimi
- Laboratoire d'Enzymes et de Métabolites des Procaryotes, Centre de Biotechnologie de Sfax BP K, 3038 Sfax, Tunisie
| | | | | | | | | |
Collapse
|
10
|
van Maris AJA, Winkler AA, Kuyper M, de Laat WTAM, van Dijken JP, Pronk JT. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:179-204. [PMID: 17846724 DOI: 10.1007/10_2007_057] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic engineering of Saccharomyces cerevisiae for ethanol production from D-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment D-xylose, the keto-isomer D-xylulose can be metabolised slowly. Conversion of D-xylose into D-xylulose is therefore crucial in metabolic engineering of xylose fermentation by S. cerevisiae. Expression of heterologous xylose reductase and xylitol dehydrogenase does enable D-xylose utilisation, but intrinsic redox constraints of this pathway result in undesirable byproduct formation in the absence of oxygen. In contrast, expression of xylose isomerase (XI, EC 5.3.1.5), which directly interconverts D-xylose and D-xylulose, does not have these constraints. However, several problems with the functional expression of various bacterial and Archaeal XI genes have precluded successful use of XI in yeast metabolic engineering. This changed with the discovery of a fungal XI gene in Piromyces sp. E2, expression of which led to high XI activities in S. cerevisiae. When combined with over-expression of the genes of the non-oxidative pentose phosphate pathway of S. cerevisiae, the resulting strain grew anaerobically on D-xylose with a doubling time of ca. 8 h, with the same ethanol yield as on glucose. Additional evolutionary engineering was used to improve the fermentation kinetics of mixed-substrate utilisation, resulting in efficient D-xylose utilisation in synthetic media. Although industrial pilot experiments have already demonstrated high ethanol yields from the D-xylose present in plant biomass hydrolysates, strain robustness, especially with respect to tolerance to inhibitors present in hydrolysates, can still be further improved.
Collapse
Affiliation(s)
- Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Häusler H, Weber H, Stütz* AE. D-XYLOSE (D-GLUCOSE) ISOMERASE (EC 5.3.1.5): OBSERVATIONS AND COMMENTS CONCERNING STRUCTURAL REQUIREMENTS OF SUBSTRATES AS WELL AS MECHANISTIC FEATURES. J Carbohydr Chem 2006. [DOI: 10.1081/car-100104860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Herwig Häusler
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| | - Hansjörg Weber
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| | - Arnold E. Stütz*
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| |
Collapse
|
12
|
Manjasetty BA, Chance MR. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production. J Mol Biol 2006; 360:297-309. [PMID: 16756997 DOI: 10.1016/j.jmb.2006.04.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/12/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.
Collapse
Affiliation(s)
- Babu A Manjasetty
- New York Structural Genomix Research Consortium, Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
13
|
Bartlett GJ, Borkakoti N, Thornton JM. Catalysing new reactions during evolution: economy of residues and mechanism. J Mol Biol 2003; 331:829-60. [PMID: 12909013 DOI: 10.1016/s0022-2836(03)00734-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diversity of function in some enzyme superfamilies shows that during evolution, enzymes have evolved to catalyse different reactions on the same structure scaffold. In this analysis, we examine in detail how enzymes can modify their chemistry, through a comparison of the catalytic residues and mechanisms in 27 pairs of homologous enzymes of totally different functions. We find that evolution is very economical. Enzymes retain structurally conserved residues to aid catalysis, including residues that bind catalytic metal ions and modulate cofactor chemistry. We examine the conservation of residue type and residue function in these structurally conserved residue pairs. Additionally, enzymes often retain common mechanistic steps catalyzed by structurally conserved residues. We have examined these steps in the context of their overall reactions.
Collapse
Affiliation(s)
- Gail J Bartlett
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
14
|
Lee HS, Hong J. Kinetics of glucose isomerization to fructose by immobilized glucose isomerase: anomeric reactivity of D-glucose in kinetic model. J Biotechnol 2001; 84:145-53. [PMID: 11090686 DOI: 10.1016/s0168-1656(00)00354-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The substrate specificity of immobilized D-glucose isomerase (EC 5.3. 1.5) is investigated with an immobilized enzyme-packed reactor. A series of isomerization experiments with alpha-, beta-, and equilibrated D-glucose solutions indicates that beta anomer as well as alpha anomer is a substrate of the glucose isomerase at pH 7.5 and 60 degrees C. For substrate concentration of 0.028 mol l(-1) (1% w/v), the initial conversion rate of alpha-D-glucose was 43% higher than that with equilibrated glucose at the same concentration and 113% higher than beta-D-glucose conversion rate. This anomeric reactivity of glucose isomerase is mathematically described with a set of kinetic equations based on the reaction steps complying with Briggs-Haldane mechanism and the experimentally determined kinetic constants. The proposed reaction mechanism includes the mutarotation and the isomerization reactions of alpha- and beta-D-glucose with different rate constants.
Collapse
Affiliation(s)
- H S Lee
- Department of Chemical and Biochemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | | |
Collapse
|
15
|
|
16
|
Pastinen O, Visuri K, Schoemaker HE, Leisola M. Novel reactions of xylose isomerase from Streptomyces rubiginosus. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00100-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Abstract
Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.
Collapse
Affiliation(s)
- S H Bhosale
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
18
|
Oliva G, Fontes MR, Garratt RC, Altamirano MM, Calcagno ML, Horjales E. Structure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 A resolution. Structure 1995; 3:1323-32. [PMID: 8747459 DOI: 10.1016/s0969-2126(01)00270-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldoseketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. RESULTS The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 A resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. CONCLUSIONS From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.
Collapse
Affiliation(s)
- G Oliva
- Instituto de Fisica de São Carlos, Universidade de São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|