1
|
Ácsová A, Hojerová J, Tobolková B, Martiniaková S. Antioxidant Efficacy of Natural Ubiquinol Compared to Synthetic References – In Vitro Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202100315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aneta Ácsová
- Institute of Food Sciences and Technology Slovak University of Technology in Bratislava Faculty of Chemical and Food Technology Radlinského 9 812 37 Bratislava Slovakia
| | - Jarmila Hojerová
- Institute of Food Sciences and Technology Slovak University of Technology in Bratislava Faculty of Chemical and Food Technology Radlinského 9 812 37 Bratislava Slovakia
| | - Blanka Tobolková
- Department of Chemistry and Food Analysis National Agricultural and Food Centre – Food Research Institute Priemyselna 4, P. O. Box 25 824 75 Bratislava Slovakia
| | - Silvia Martiniaková
- Institute of Food Sciences and Technology Slovak University of Technology in Bratislava Faculty of Chemical and Food Technology Radlinského 9 812 37 Bratislava Slovakia
| |
Collapse
|
2
|
McGill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 2020; 52:472-500. [PMID: 33103516 DOI: 10.1080/03602532.2020.1832112] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) was first synthesized in the 1800s, and came on the market approximately 65 years ago. Since then, it has become one of the most used drugs in the world. However, it is also a major cause of acute liver failure. Early investigations of the mechanisms of toxicity revealed that cytochrome P450 enzymes catalyze formation of a reactive metabolite in the liver that depletes glutathione and covalently binds to proteins. That work led to the introduction of N-acetylcysteine (NAC) as an antidote for APAP overdose. Subsequent studies identified the reactive metabolite N-acetyl-p-benzoquinone imine, specific P450 enzymes involved, the mechanism of P450-mediated oxidation, and major adducted proteins. Significant gaps remain in our understanding of the mechanisms downstream of metabolism, but several events appear critical. These events include development of an initial oxidative stress, reactive nitrogen formation, altered calcium flux, JNK activation and mitochondrial translocation, inhibition of mitochondrial respiration, the mitochondrial permeability transition, and nuclear DNA fragmentation. Additional research is necessary to complete our knowledge of the toxicity, such as the source of the initial oxidative stress, and to greatly improve our understanding of liver regeneration after APAP overdose. A better understanding of these mechanisms may lead to additional treatment options. Even though NAC is an excellent antidote, its effectiveness is limited to the first 16 hours following overdose.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, Little Rock, AR, USA.,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jack A Hinson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
3
|
Astolfi P, Clément JL, Gigmes D, Armeni T, Carloni P, Greci L. Reaction of endogenous Coenzyme Q 10 with nitrogen monoxide and its metabolite nitrogen dioxide. Redox Rep 2019; 24:56-61. [PMID: 31348723 PMCID: PMC6748585 DOI: 10.1080/13510002.2019.1647005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Objectives: Coenzyme Q10, incorporated in DOPC lyposomes or naturally present in liver bovine mitochondria or in human blood plasma, was reacted with nitrogen dioxide •NO2 or with a •NO/•NO2 mixture. Methods and Results: The reaction course was monitored by Electron Paramagnetic Resonance (EPR) spectroscopy and in all cases the formation of a di-tert-alkyl nitroxide was observed, deriving from the addition of •NO2 to one of the double bonds, most likely the terminal one, of the isoprenic chain. The rate constant for nitroxide formation was also determined by EPR spectroscopy and an initial rate of ca. 7 × 10-8 M s-1 was obtained.
Collapse
Affiliation(s)
- Paola Astolfi
- a Dipartimento SIMAU, Università Politecnica delle Marche , Ancona , Italy
| | - Jean-Louis Clément
- b Institut de Chimie Radicalaire, UMR 272, Aix Marseille Université , Marseille , France
| | - Didier Gigmes
- b Institut de Chimie Radicalaire, UMR 272, Aix Marseille Université , Marseille , France
| | - Tatiana Armeni
- c Dipartimento DISCO, Università Politecnica delle Marche , Ancona , Italy
| | - Patricia Carloni
- d Dipartimento D3A, Università Politecnica delle Marche , Ancona , Italy
| | - Lucedio Greci
- e Dipartimento DISVA, Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
4
|
Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A 2018; 115:5839-5848. [PMID: 29802228 DOI: 10.1073/pnas.1804932115] [Citation(s) in RCA: 643] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxygen-derived free radicals and related oxidants are ubiquitous and short-lived intermediates formed in aerobic organisms throughout life. These reactive species participate in redox reactions leading to oxidative modifications in biomolecules, among which proteins and lipids are preferential targets. Despite a broad array of enzymatic and nonenzymatic antioxidant systems in mammalian cells and microbes, excess oxidant formation causes accumulation of new products that may compromise cell function and structure leading to cell degeneration and death. Oxidative events are associated with pathological conditions and the process of normal aging. Notably, physiological levels of oxidants also modulate cellular functions via homeostatic redox-sensitive cell signaling cascades. On the other hand, nitric oxide (•NO), a free radical and weak oxidant, represents a master physiological regulator via reversible interactions with heme proteins. The bioavailability and actions of •NO are modulated by its fast reaction with superoxide radical ([Formula: see text]), which yields an unusual and reactive peroxide, peroxynitrite, representing the merging of the oxygen radicals and •NO pathways. In this Inaugural Article, I summarize early and remarkable developments in free radical biochemistry and the later evolution of the field toward molecular medicine; this transition includes our contributions disclosing the relationship of •NO with redox intermediates and metabolism. The biochemical characterization, identification, and quantitation of peroxynitrite and its role in disease processes have concentrated much of our attention. Being a mediator of protein oxidation and nitration, lipid peroxidation, mitochondrial dysfunction, and cell death, peroxynitrite represents both a pathophysiologically relevant endogenous cytotoxin and a cytotoxic effector against invading pathogens.
Collapse
|
5
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Acuña-Castroviejo D, Rahim I, Acuña-Fernández C, Fernández-Ortiz M, Solera-Marín J, Sayed RKA, Díaz-Casado ME, Rusanova I, López LC, Escames G. Melatonin, clock genes and mitochondria in sepsis. Cell Mol Life Sci 2017; 74:3965-3987. [PMID: 28785808 PMCID: PMC11107653 DOI: 10.1007/s00018-017-2610-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
After the characterization of the central pacemaker in the suprachiasmatic nucleus, the expression of clock genes was identified in several peripheral tissues including the immune system. The hierarchical control from the central clock to peripheral clocks extends to other functions including endocrine, metabolic, immune, and mitochondrial responses. Increasing evidence links the disruption of the clock genes expression with multiple diseases and aging. Chronodisruption is associated with alterations of the immune system, immunosenescence, impairment of energy metabolism, and reduction of pineal and extrapineal melatonin production. Regarding sepsis, a condition coursing with an exaggerated response of innate immunity, experimental and clinical data showed an alteration of circadian rhythms that reflects the loss of the normal oscillation of the clock. Moreover, recent data point to that some mediators of the immune system affects the normal function of the clock. Under specific conditions, this control disappears reactivating the immune response. So, it seems that clock gene disruption favors the innate immune response, which in turn induces the expression of proinflammatory mediators, causing a further alteration of the clock. Here, the clock control of the mitochondrial function turns off, leading to a bioenergetic decay and formation of reactive oxygen species that, in turn, activate the inflammasome. This arm of the innate immunity is responsible for the huge increase of interleukin-1β and entrance into a vicious cycle that could lead to the death of the patient. The broken clock is recovered by melatonin administration, that is accompanied by the normalization of the innate immunity and mitochondrial homeostasis. Thus, this review emphasizes the connection between clock genes, innate immunity and mitochondria in health and sepsis, and the role of melatonin to maintain clock homeostasis.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain.
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain.
| | - Ibtissem Rahim
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- Département de Biologie et Physiologie Cellulaire, Faculté des Sciences de la Nature et de la Vie, Université Blida 1, Blida, Algeria
| | - Carlos Acuña-Fernández
- Unidad of Anestesiología y Reanimación, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Jorge Solera-Marín
- Unidad of Anestesiología y Reanimación, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ramy K A Sayed
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohâg, Egypt
| | - María E Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Luis C López
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| |
Collapse
|
7
|
Ullrich V, Schildknecht S. Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation. Antioxid Redox Signal 2014; 20:325-38. [PMID: 22793377 DOI: 10.1089/ars.2012.4788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Sudden hypoxia requires a rapid response in tissues with high energy demand. Mitochondria are rapid sensors for a lack of oxygen, but no consistent mechanism for the sensing process and the subsequent counter-regulation has been described. RECENT ADVANCES In the present hypothesis review, we suggest an oxygen-sensing mechanism by mitochondria that is initiated at low oxygen tension by electrons from the respiratory chain, leading to the reduction of intracellular nitrite to nitric oxide ((•)NO) that would subsequently compete with oxygen for binding to cytochrome c oxidase. This allows superoxide ((•)O2(-)) formation in hypoxic areas, leading to S-nitrosation and the inhibition of mitochondrial Krebs cycle enzymes. With more formation of (•)O2(-), peroxynitrite is generated and known to damage the connection between the mitochondrial matrix and the outer membrane. CRITICAL ISSUES A fundamental question on a regulatory mechanism is its reversibility. Readmission of oxygen and opening of the mitochondrial KATP-channel would allow electrons from glycerol-3-phosphate to selectively reduce the ubiquinone pool to generate (•)O2(-) at both sides of the inner mitochondrial membrane. On the cytosolic side, superoxide is dismutated and will support H2O2/Fe(2+)-dependent transcription processes and on the mitochondrial matrix side, it could lead to the one-electron reduction and reactivation of S-nitrosated proteins. FUTURE DIRECTIONS It remains to be elucidated up to which stage the herein proposed silencing of mitochondria remains reversible and when irreversible changes that ultimately lead to classical reperfusion injury are initiated.
Collapse
Affiliation(s)
- Volker Ullrich
- Department of Biology, University of Konstanz , Konstanz, Germany
| | | |
Collapse
|
8
|
A mouse model of familial ALS has increased CNS levels of endogenous ubiquinol9/10 and does not benefit from exogenous administration of ubiquinol10. PLoS One 2013; 8:e69540. [PMID: 23936040 PMCID: PMC3720666 DOI: 10.1371/journal.pone.0069540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and mitochondrial impairment are the main pathogenic mechanisms of Amyotrophic Lateral Sclerosis (ALS), a severe neurodegenerative disease still lacking of effective therapy. Recently, the coenzyme-Q (CoQ) complex, a key component of mitochondrial function and redox-state modulator, has raised interest for ALS treatment. However, while the oxidized form ubiquinone10 was ineffective in ALS patients and modestly effective in mouse models of ALS, no evidence was reported on the effect of the reduced form ubiquinol10, which has better bioavailability and antioxidant properties. In this study we compared the effects of ubiquinone10 and a new stabilized formulation of ubiquinol10 on the disease course of SOD1G93A transgenic mice, an experimental model of fALS. Chronic treatments (800 mg/kg/day orally) started from the onset of disease until death, to mimic the clinical trials that only include patients with definite ALS symptoms. Although the plasma levels of CoQ10 were significantly increased by both treatments (from <0.20 to 3.0–3.4 µg/mL), no effect was found on the disease progression and survival of SOD1G93A mice. The levels of CoQ10 in the brain and spinal cord of ubiquinone10- or ubiquinol10-treated mice were only slightly higher (≤10%) than the endogenous levels in vehicle-treated mice, indicating poor CNS availability after oral dosing and possibly explaining the lack of pharmacological effects. To further examine this issue, we measured the oxidized and reduced forms of CoQ9/10 in the plasma, brain and spinal cord of symptomatic SOD1G93A mice, in comparison with age-matched SOD1WT. Levels of ubiquinol9/10, but not ubiquinone9/10, were significantly higher in the CNS, but not in plasma, of SOD1G93A mice, suggesting that CoQ redox system might participate in the mechanisms trying to counteract the pathology progression. Therefore, the very low increases of CoQ10 induced by oral treatments in CNS might be not sufficient to provide significant neuroprotection in SOD1G93A mice.
Collapse
|
9
|
Madathil KS, Karuppagounder SS, Haobam R, Varghese M, Rajamma U, Mohanakumar KP. Nitric oxide synthase inhibitors protect against rotenone-induced, oxidative stress mediated parkinsonism in rats. Neurochem Int 2013; 62:674-83. [PMID: 23353925 DOI: 10.1016/j.neuint.2013.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 12/24/2012] [Accepted: 01/08/2013] [Indexed: 12/14/2022]
Abstract
Rotenone is known to cause progressive dopaminergic neuronal loss in rodents, but it remains unclear how this mitochondrial complex-I inhibitor mediates neurodegeneration specific to substantia nigra pars compacta (SNpc). One of the proposed mechanisms is increased free radical generation owing to mitochondrial electron transport chain dysfunction following complex-I inhibition. The present study examined the role of nitric oxide (NO) and hydroxyl radicals (OH) in mediating rotenone-induced dopaminergic neurotoxicity. Indications of NO involvement are evidenced by inducible nitric oxide synthase (NOS) over-expression, and increased NADPH-diaphorase staining in SNpc neurons 96h following rotenone administration. Treatment of these animals with specific neuronal NOS inhibitor, 7-nitroindazole (7-NI) and non-specific NOS inhibitor, N-ω-nitro-l-argenine methyl ester (l-NAME) caused reversal of rotenone-induced striatal dopamine depletion, and attenuation of the neurotoxin-induced decrease in the number of tyrosine hydroxylase immunoreactive neurons in SNpc, as well as in apomorphine and amphetamine-induced unilateral rotations. Interestingly, the study also demonstrated the contribution of OH in mediating rotenone nigral toxicity since there appeared a significant generation of the reactive oxygen species in vivo 24h following rotenone administration, a copious loss of reduced and oxidized glutathione, and increased superoxide dismutase and catalase activities in the cytosolic fractions of the ipsilateral SNpc area on the 5th day. An OH scavenging capacity of 7-NI and l-NAME in a Fenton-like reaction, as well as complete reversal of the rotenone-induced increases in the antioxidant enzyme activities, and the loss in reduced and oxidized glutathione contents in the SNpc supported OH involvement in rotenone-induced dopaminergic neurotoxicity. While these results strongly suggest the contribution of both OH and NO, resulting in acute oxidative stress culminating in dopaminergic neurodegeneration caused by rotenone, the course of events indicated generation of OH as the primary event in the neurotoxic processes.
Collapse
Affiliation(s)
- K S Madathil
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | | | | | | | | | | |
Collapse
|
10
|
Astolfi P, Charles L, Gigmes D, Greci L, Rizzoli C, Sorana F, Stipa P. Reactions of nitric oxide and nitrogen dioxide with coenzyme Q: involvement of the isoprenic chain. Org Biomol Chem 2013; 11:1399-406. [DOI: 10.1039/c2ob27198b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
De Luca C, Kharaeva Z, Raskovic D, Pastore P, Luci A, Korkina L. Coenzyme Q(10), vitamin E, selenium, and methionine in the treatment of chronic recurrent viral mucocutaneous infections. Nutrition 2011; 28:509-14. [PMID: 22079390 DOI: 10.1016/j.nut.2011.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Host defense and latency determinants in viral recurrent dermatologic infections are not entirely understood, as conventional protocols are inadequate to achieve fast healing and relapse prevention. Endogenously produced oxygen/nitrogen reactive species (ROS/RNS) are essential for antiviral immune defense, while their excess may aggravate skin inflammation. Here, we sought a nutritional approach capable of controlling ROS/RNS balance to accelerate recovery and inhibit recurrences of two mucocutaneous chronic DNA-virus infections. METHODS Two controlled clinical trials evaluated the feasibility of ROS/RNS-modulating nutriceutical dosages of coenzyme Q(10), RRR-α-tocopherol, selenium aspartate, and L-methionine associated with established therapies. Clinical trial 1 evaluated 68 patients with relapsing human papillomavirus skin warts treated with cryotherapy followed by 180 d of nutriceutical/placebo administration. Clinical trial 2 compared the combination of acyclovir followed by 90 d of nutriceutical administration versus acyclovir alone in patients with recurrences of herpes simplex genitalis (n = 60) or herpes zoster (n = 29). Viral DNA levels were assessed by polymer chain reaction, biomarkers of antiviral defense (peroxynitrite and IFNα/γ) and antioxidant capacity (lipophilic antioxidants and glutathione) were assayed by biochemical/enzyme-linked immunosorbent assay techniques in blood fractions. RESULTS In both trials, the nutriceutical induced significantly faster healing (P < 0.01-0.05) with reduced incidence of relapses (P < 0.05) as compared to control groups, which was confirmed by decreased viral load and increased antiviral cytokine and peroxynitrite plasma levels. Plasma antioxidant capacity was higher (P < 0.01) in the experimental versus control groups. CONCLUSIONS Results document positive clinical outcomes of the selected nutriceutical associated with conventional protocols in the management of relapsing mucocutaneous human papillomavirus and herpes infections.
Collapse
Affiliation(s)
- Chiara De Luca
- Dermatology Research Institute (IDI IRCCS), Rome, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Agarwal R, Hennings L, Rafferty TM, Letzig LG, McCullough S, James LP, MacMillan-Crow LA, Hinson JA. Acetaminophen-induced hepatotoxicity and protein nitration in neuronal nitric-oxide synthase knockout mice. J Pharmacol Exp Ther 2011; 340:134-42. [PMID: 22001257 DOI: 10.1124/jpet.111.184192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In overdose acetaminophen (APAP) is hepatotoxic. Toxicity occurs by metabolism to N-acetyl-p-benzoquinone imine, which depletes GSH and covalently binds to proteins followed by protein nitration. Nitration can occur via the strong oxidant and nitrating agent peroxynitrite, formed from superoxide and nitric oxide (NO). In hepatocyte suspensions we reported that an inhibitor of neuronal nitric-oxide synthase (nNOS; NOS1), which has been reported to be in mitochondria, inhibited toxicity and protein nitration. We recently showed that manganese superoxide dismutase (MnSOD; SOD2) was nitrated and inactivated in APAP-treated mice. To understand the role of nNOS in APAP toxicity and MnSOD nitration, nNOS knockout (KO) and wild-type (WT) mice were administered APAP (300 mg/kg). In WT mice serum alanine aminotransferase (ALT) significantly increased at 6 and 8 h, and serum aspartate aminotransferase (AST) significantly increased at 4, 6 and 8 h; however, in KO mice neither ALT nor AST significantly increased until 8 h. There were no significant differences in hepatic GSH depletion, APAP protein binding, hydroxynonenal covalent binding, or histopathological assessment of toxicity. The activity of hepatic MnSOD was significantly lower at 1 to 2 h in WT mice and subsequently increased at 8 h. MnSOD activity was not altered at 0 to 6 h in KO mice but was significantly decreased at 8 h. There were significant increases in MnSOD nitration at 1 to 8 h in WT mice and 6 to 8 h in KO mice. Significantly more nitration occurred at 1 to 6 h in WT than in KO mice. MnSOD was the only observed nitrated protein after APAP treatment. These data indicate a role for nNOS with inactivation of MnSOD and ALT release during APAP toxicity.
Collapse
Affiliation(s)
- Rakhee Agarwal
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lam PY, Yin F, Hamilton RT, Boveris A, Cadenas E. Elevated neuronal nitric oxide synthase expression during ageing and mitochondrial energy production. Free Radic Res 2009; 43:431-9. [PMID: 19347761 DOI: 10.1080/10715760902849813] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study evaluated the effect of ageing on brain mitochondrial function mediated through protein post-translational modifications. Neuronal nitric oxide synthase increased with age and this led to a discreet pattern of nitration of mitochondrial proteins. LC/MS/MS analyses identified the nitrated mitochondrial proteins as succinyl-CoA-transferase and F1-ATPase; the latter was nitrated at Tyr269, suggesting deficient ADP binding to the active site. Activities of succinyl-CoA-transferase, F1-ATPase and cytochrome oxidase decreased with age. The decreased activity of the latter cannot be ascribed to protein modifications and is most likely due to a decreased expression and assembly of complex IV. Mitochondrial protein post-translational modifications were associated with a moderately impaired mitochondrial function, as indicated by the decreased respiratory control ratios as a function of age and by the release of mitochondrial cytochrome c to the cytosol, thus supporting the amplification of apoptotic cascades.
Collapse
Affiliation(s)
- Philip Y Lam
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
14
|
Tompkins AJ, Burwell LS, Digerness SB, Zaragoza C, Holman WL, Brookes PS. Mitochondrial dysfunction in cardiac ischemia–reperfusion injury: ROS from complex I, without inhibition. Biochim Biophys Acta Mol Basis Dis 2006; 1762:223-31. [PMID: 16278076 DOI: 10.1016/j.bbadis.2005.10.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 09/27/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
A key pathologic event in cardiac ischemia reperfusion (I-R) injury is mitochondrial energetic dysfunction, and several studies have attributed this to complex I (CxI) inhibition. In isolated perfused rat hearts, following I-R, we found that CxI-linked respiration was inhibited, but isolated CxI enzymatic activity was not. Using the mitochondrial thiol probe iodobutyl-triphenylphosphonium in conjunction with proteomic tools, thiol modifications were identified in several subunits of the matrix-facing 1alpha sub-complex of CxI. These thiol modifications were accompanied by enhanced ROS generation from CxI, but not complex III. Implications for the pathology of cardiac I-R injury are discussed.
Collapse
Affiliation(s)
- Andrew J Tompkins
- Departments of Anesthesiology, and Biochemistry & Molecular Biology, Box 604, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642, USA
| | | | | | | | | | | |
Collapse
|
15
|
Solaini G, Harris D. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 2006; 390:377-94. [PMID: 16108756 PMCID: PMC1198918 DOI: 10.1042/bj20042006] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heart tissue is remarkably sensitive to oxygen deprivation. Although heart cells, like those of most tissues, rapidly adapt to anoxic conditions, relatively short periods of ischaemia and subsequent reperfusion lead to extensive tissue death during cardiac infarction. Heart tissue is not readily regenerated, and permanent heart damage is the result. Although mitochondria maintain normal heart function by providing virtually all of the heart's ATP, they are also implicated in the development of ischaemic damage. While mitochondria do provide some mechanisms that protect against ischaemic damage (such as an endogenous inhibitor of the F1Fo-ATPase and antioxidant enzymes), they also possess a range of elements that exacerbate it, including ROS (reactive oxygen species) generators, the mitochondrial permeability transition pore, and their ability to release apoptotic factors. This review considers the process of ischaemic damage from a mitochondrial viewpoint. It considers ischaemic changes in the inner membrane complexes I-V, and how this might affect formation of ROS and high-energy phosphate production/degradation. We discuss the contribution of various mitochondrial cation channels to ionic imbalances which seem to be a major cause of reperfusion injury. The different roles of the H+, Ca2+ and the various K+ channel transporters are considered, particularly the K+(ATP) (ATP-dependent K+) channels. A possible role for the mitochondrial permeability transition pore in ischaemic damage is assessed. Finally, we summarize the metabolic and pharmacological interventions that have been used to alleviate the effects of ischaemic injury, highlighting the value of these or related interventions in possible therapeutics.
Collapse
Affiliation(s)
- Giancarlo Solaini
- *Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna, Classe Accademica di Scienze Sperimentali, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
| | - David A. Harris
- †Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Chan JYH, Chang AYW, Chan SHH. New insights on brain stem death: From bedside to bench. Prog Neurobiol 2005; 77:396-425. [PMID: 16376477 DOI: 10.1016/j.pneurobio.2005.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/31/2005] [Accepted: 11/03/2005] [Indexed: 01/07/2023]
Abstract
As much as brain stem death is currently the clinical definition of death in many countries and is a phenomenon of paramount medical importance, there is a dearth of information on its mechanistic underpinnings. A majority of the clinical studies are concerned only with methods to determine brain stem death. Whereas a vast amount of information is available on the cellular and molecular mechanisms of cell death, rarely are these studies directed specifically towards the understanding of brain stem death. This review presents a framework for translational research on brain stem death that is based on systematically coordinated clinical and laboratory efforts that center on this phenomenon. It begins with the identification of a novel clinical marker from patients that is related specifically to brain stem death. After realizing that this "life-and-death" signal is related to the functional integrity of the brain stem, its origin is traced to the rostral ventrolateral medulla (RVLM). Subsequent laboratory studies on this neural substrate in animal models of brain stem death provide credence to the notion that both "pro-life" and "pro-death" programs are at work during the progression towards death. Those programs (mitochondrial functions, nitric oxide, peroxynitrite, superoxide anion, coenzyme Q10, heat shock proteins and ubiquitin-proteasome system) hitherto identified from the RVLM are presented, along with their cellular and molecular mechanisms. It is proposed that outcome of the interplay between the "pro-life" and "pro-death" programs (dying) in this neural substrate determines the final fate of the individual (being dead). Thus, identification of additional programs in the RVLM and delineation of their regulatory mechanisms should shed new lights on future directions for clinical management of life-and-death.
Collapse
Affiliation(s)
- Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, ROC
| | | | | |
Collapse
|
17
|
Miles L, Miles MV, Tang PH, Horn PS, Quinlan JG, Wong B, Wenisch A, Bove KE. Ubiquinol: A potential biomarker for tissue energy requirements and oxidative stress. Clin Chim Acta 2005; 360:87-96. [PMID: 15935338 DOI: 10.1016/j.cccn.2005.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/21/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Coenzyme Q (CoQ) has been suggested as a biomarker for tissue redox status. The aims are (1) to compare ubiquinol-9, ubiquinol-10, ubiquinone-9, ubiquinone-10, total CoQ content and CoQ redox ratio in quadriceps muscle, heart, brain and liver tissues of mdx mice with wild-type controls; and (2) to determine if ubiquinol content and CoQ redox ratio changes are associated with pathological findings in mdx mouse. METHODS CoQ contents were determined in homogenized quadriceps muscle, heart, liver and brain of age-matched mdx and wild-type control mice by HPLC-EC. Light and electron microscopy studies were conducted using standard pathology methods. RESULTS Ubiquinol-9 and ubiquinol-10 concentrations are significantly increased in quadriceps and heart muscle of mdx mouse. Increased redox ratios of coenzyme Q(9) and coenzyme Q(10) are also evident in quadriceps, heart and liver tissues in mdx mouse, but not brain. Pathological examination shows marked myofiber regeneration and evidence of mitochondrial proliferation for mdx muscle. CONCLUSIONS Evidence that changes in ubiquinol content and CoQ redox ratio are related to pathological features in mdx skeletal and heart myofibers suggests that tissue ubiquinol content and CoQ redox ratio may be useful biomarkers for evaluating muscle disorders associated with mitochondrial proliferation and defects in oxidative phosphorylation.
Collapse
Affiliation(s)
- Lili Miles
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Carreras MC, Clara Franco M, P Converso D, Finocchieto P, Galli S, José Poderoso J. Cell H2O2 steady-state concentration and mitochondrial nitric oxide. Methods Enzymol 2005; 396:399-414. [PMID: 16291249 DOI: 10.1016/s0076-6879(05)96034-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
For many years, mitochondrial respiration was thought to follow an "all or nothing" paradigm supporting the notion that in the normal O2 concentration range, respiration is mainly controlled by tissue demands. However, nitric oxide produced by cytosol or mitochondrial nitric oxide synthases adapts respiration to different physiologic conditions and increases the mitochondrial production of O2 active species that contributes to NO clearance. Because mitochondrial NO utilization is sensitive to environmental or hormonal modulation, and because diffusible active species, like H2O2, are able to regulate genes related to proliferation, quiescence, and death, we surmised that the two mechanisms converge to elicit the different responses in cell physiology.
Collapse
Affiliation(s)
- Maria Cecilia Carreras
- Laboratory of Oxygen Metabolism, University Hospital and School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med 2004; 37:1472-8. [PMID: 15454287 DOI: 10.1016/j.freeradbiomed.2004.06.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/17/2004] [Accepted: 06/24/2004] [Indexed: 01/16/2023]
Abstract
In this study, heart and diaphragm mitochondria produced 0.69 and 0.77 nmol nitric oxide (NO)/min mg protein, rates that account for 67 and 24% of maximal cellular NO production, respectively. Endotoxemia and septic shock occur with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle seems to be one of the main target organs in septic shock, showing an increased NO production and early oxidative stress. The kinetic properties of mitochondrial nitric oxide synthase (mtNOS) of heart and diaphragm were determined. For diaphragm, the KM values for O2 and L-Arg were 4.6 and 37 microM and for heart were 3.3 and 36 microM. The optimal pH for mtNOS activity was 6.5 for diaphragm and 7.0 for heart. A marked increase in mtNOS activity was observed in endotoxemic rats, 90% in diaphragm and 30% in heart. Diaphragm and heart mitochondrial O2*- and H2O2 production were 2- to 3-fold increased during endotoxemia and Mn-SOD activity showed a 2-fold increase in treated animals, whereas catalase activity was unchanged. One of the current hypotheses for the molecular mechanisms underlying the complex condition of septic shock is that the enhanced NO production by mtNOS leads to excessive peroxynitrite production and protein nitration in the mitochondrial matrix, causing mitochondrial dysfunction and contractile failure.
Collapse
Affiliation(s)
- Silvia Alvarez
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | | |
Collapse
|
20
|
Bianchi A, Salomone S, Caraci F, Pizza V, Bernardini R, D'Amato CC. Role of Magnesium, Coenzyme Q10, Riboflavin, and Vitamin B12 in Migraine Prophylaxis. VITAMINS & HORMONES 2004; 69:297-312. [PMID: 15196887 DOI: 10.1016/s0083-6729(04)69011-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Migraine is a neurovascular syndrome characterized by recurrent headache associated with other symptoms, eventually preceded by aura. This chapter reviews the involvement of some mineral, coenzyme, and vitamin defects in the pathogenesis of migraine headaches and focuses on their potential therapeutic use in the preventive treatment for migraine. The therapeutic potential of magnesium, coenzyme Q(10), riboflavin, and vitamin B(12) can be cautiously inferred from some published open clinical trials; it should, however, be considered that double-blind randomized larger studies are needed to correctly estimate the impact of the placebo effect in these promising therapies.
Collapse
Affiliation(s)
- Alfredo Bianchi
- Department of Pharmaceutical Sciences, University of Salerno, 84084 Fisciano, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Lisdero CL, Carreras MC, Meulemans A, Melani M, Aubier M, Boczkowski J, Poderoso JJ. The Mitochondrial Interplay of Ubiquinol and Nitric Oxide in Endotoxemia. Methods Enzymol 2004; 382:67-81. [PMID: 15047096 DOI: 10.1016/s0076-6879(04)82004-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Affiliation(s)
- Constanza L Lisdero
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
22
|
Lemeshko VV, Lopez LF, Solano S, Torres R. The natural antioxidant otobaphenol delays the permeability transition of mitochondria and induces their aggregation. Antioxid Redox Signal 2003; 5:281-90. [PMID: 12880483 DOI: 10.1089/152308603322110869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The lignan otobaphenol, (8R,8'R,7R)-4'-hydroxy-5'-methoxy-3,4-methylenedioxy-2',7,8,8'-neolignan, extracted from Virola Aff. Pavonis leaves, completely inhibits at a concentration of 2.5 micro M the Fe(3+)-ascorbate-induced lipoperoxidation of rat liver mitochondria that was determined by oxygen consumption and accumulation of thiobarbituric acid-reactive species. At 25 micro M, it delays the mitochondrial permeability transition induced by tert-butyl hydroperoxide or Ca(2+), substantially inhibits the state 3 respiration, does not affect the state 4 respiration and the ADP/O ratio (with succinate), diminishes the rate of Ca(2+) uptake by mitochondria, and delays the ruthenium red-insensitive uncoupler-induced release of the loaded Ca(2+). Dose-dependent delaying of the calcium-induced swelling of mitochondria in the presence of otobaphenol nonlinearly correlates with its 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity. At 75 micro M and higher, this lignan causes mitochondrial aggregation and is able to aggregate itself, without mitochondria. The formed aggregates of otobaphenol do not cause an aggregation of subsequently added mitochondria. Thus, otobaphenol seems to be a promising target to prevent the oxidative stress death of cells.
Collapse
Affiliation(s)
- Victor V Lemeshko
- School of Physics, Science Department, National University of Colombia, Medellin Branch, AA3840 Medellin, Colombia.
| | | | | | | |
Collapse
|
23
|
Miles MV, Horn PS, Morrison JA, Tang PH, DeGrauw T, Pesce AJ. Plasma coenzyme Q10 reference intervals, but not redox status, are affected by gender and race in self-reported healthy adults. Clin Chim Acta 2003; 332:123-32. [PMID: 12763289 DOI: 10.1016/s0009-8981(03)00137-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormal concentrations of coenzyme Q(10) have been reported in many patient groups, including certain cardiovascular, neurological, hematological, neoplastic, renal, and metabolic diseases. However, controls in these studies are often limited in number, poorly screened, and inadequately evaluated statistically. The purpose of this study is to determine the reference intervals of plasma concentrations of ubiquinone-10, ubiquinol-10, and total coenzyme Q(10) for self-reported healthy adults. METHODS Adults (n=148), who were participants in the Princeton Prevalence Follow-up Study, were identified as healthy by questionnaire. Lipid profiles, ubiquinone-10, ubiquinol-10, and total coenzyme Q(10) concentrations were measured in plasma. The method used to determine the reference intervals is a procedure incorporating outlier detection followed by robust point estimates of the appropriate quantiles. RESULTS Significant differences between males and females were present for ubiquinol-10 and total coenzyme Q(10). Blacks had significantly higher Q(10) measures than whites in all cases except for the ubiquinol-10/total Q(10) fraction. CONCLUSIONS The fraction of ubiquinol-10/total coenzyme Q(10) is a tightly regulated measure in self-reported healthy adults, and is independent of sex and racial differences. Different reference intervals for certain coenzyme Q(10) measures may need to be established based upon sex and racial characteristics.
Collapse
Affiliation(s)
- Michael V Miles
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3030, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Audi SH, Zhao H, Bongard RD, Hogg N, Kettenhofen NJ, Kalyanaraman B, Dawson CA, Merker MP. Pulmonary arterial endothelial cells affect the redox status of coenzyme Q0. Free Radic Biol Med 2003; 34:892-907. [PMID: 12654478 DOI: 10.1016/s0891-5849(03)00025-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pulmonary endothelium is capable of reducing certain redox-active compounds as they pass from the systemic venous to the arterial circulation. This may have important consequences with regard to the pulmonary and systemic disposition and biochemistry of these compounds. Because quinones comprise an important class of redox-active compounds with a range of physiological, toxicological, and pharmacological activities, the objective of the present study was to determine the fate of a model quinone, coenzyme Q0 (Q), added to the extracellular medium surrounding pulmonary arterial endothelial cells in culture, with particular attention to the effect of the cells on the redox status of Q in the medium. Spectrophotometry, electron paramagnetic resonance (EPR), and high-performance liquid chromatography (HPLC) demonstrated that, when the oxidized form Q is added to the medium surrounding the cells, it is rapidly converted to its quinol form (QH2) with a small concentration of semiquinone (Q*-) also detectable. The isolation of cell plasma membrane proteins revealed an NADH-Q oxidoreductase located on the outer plasma membrane surface, which apparently participates in the reduction process. In addition, once formed the QH2 undergoes a cyanide-sensitive oxidation by the cells. Thus, the actual rate of Q reduction by the cells is greater than the net QH2 output from the cells.
Collapse
Affiliation(s)
- Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Excessive generation of nitric oxide (NO) has been implicated in the pathogenesis of several neurodegenerative disorders. Damage to the mitochondrial electron transport chain has also been implicated in these disorders. NO and its toxic metabolite peroxynitrite (ONOO(-)) can inhibit the mitochondrial respiratory chain, leading to energy failure and ultimately cell death. There appears to be a differential susceptibility of brain cell types to NO/ONOO(-), which may be influenced by factors including cellular antioxidant status and the ability to maintain energy requirements in the face of marked respiratory chain damage. Although formation of NO/ONOO(-) following cytokine exposure does not affect astrocyte survival, these molecules may diffuse out and cause mitochondrial damage to neighboring NO/ONOO(-)-sensitive cells such as neurons. Evidence suggests that NO/ONOO(-) causes release of neuronal glutamate, leading to glutamate-induced activation of neuronal NO synthase and generation of further damaging species. While neurons appear able to recover from short-term exposure to NO/ONOO(-), extending the period of exposure results in persistent damage to the respiratory chain and cell death ensues. These findings have important implications for acute infection vs. chronic neuroinflammatory disease states. The evidence for NO/ONOO(-)-mediated mitochondrial damage in neurodegenerative disorders is reviewed and potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Victoria C Stewart
- Department of Molecular Pathogenesis, Division of Neurochemistry, Institute of Neurology, University College London, London, England
| | | |
Collapse
|
26
|
Abstract
Mitochondria constitute a primary locus for the intracellular formation and reactions of peroxynitrite, and these interactions are recognized to contribute to the biological and pathological effects of both nitric oxide ((*)NO) and peroxynitrite. Extra- or intramitochondrially formed peroxynitrite can diffuse through mitochondrial compartments and undergo fast direct and free radical-dependent target molecule reactions. These processes result in oxidation, nitration, and nitrosation of critical components in the matrix, inner and outer membrane, and intermembrane space. Mitochondrial scavenging and repair systems for peroxynitrite-dependent oxidative modifications operate but they can be overwhelmed under enhanced cellular (*)NO formation as well as under conditions that lead to augmented superoxide formation by the electron transport chain. Peroxynitrite can lead to alterations in mitochondrial energy and calcium homeostasis and promote the opening of the permeability transition pore. The effects of peroxynitrite in mitochondrial physiology can be largely rationalized based on the reactivities of peroxynitrite and peroxynitrite-derived carbonate, nitrogen dioxide, and hydroxyl radicals with critical protein amino acids and transition metal centers of key mitochondrial proteins. In this review we analyze (i) the existing evidence for the intramitochondrial formation and reactions of peroxynitrite, (ii) the key reactions and fate of peroxynitrite in mitochondria, and (iii) their impact in mitochondrial physiology and signaling of cell death.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
27
|
Abstract
The energy-transducing NADH: quinone (Q) oxidoreductase (complex I) is the largest and most complicated enzyme complex in the oxidative phosphorylation system. Complex I is a redox pump that uses the redox energy to translocate H(+) (or Na(+)) ions across the membrane, resulting in a significant contribution to energy production. The need to elucidate the molecular mechanisms of complex I has greatly increased. Many devastating neurodegenerative disorders have been associated with complex I deficiency. The structural and functional complexities of complex I have already been established. However, intricate biogenesis and activity regulation functions of complex I have just been identified. Based upon these recent developments, it is apparent that complex I research is entering a new era. The advancement of our knowledge of the molecular mechanism of complex I will not only surface from bioenergetics, but also from many other fields as well, including medicine. This review summarizes the current status of our understanding of complex I and sheds light on new theories and the future direction of complex I studies.
Collapse
Affiliation(s)
- Takahiro Yano
- Department of Biochemistry and Biophysics, School of Medicine, Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
28
|
|
29
|
Souza JM, Chen Q, Blanchard-Fillion B, Lorch SA, Hertkorn C, Lightfoot R, Weisse M, Friel T, Paxinou E, Themistocleous M, Chov S, Ischiropoulos H. Reactive nitrogen species and proteins: biological significance and clinical relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:169-74. [PMID: 11764931 DOI: 10.1007/978-1-4615-0667-6_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- J M Souza
- Stokes Research Institute and Department of Biochemistry and Biophysics, Children's Hospital of Philadelphia and The University of Pennsylvania, 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Nitric oxide (*NO) and peroxynitrite (ONOO-) avidly interact with mitochondrial components, leading to a range of biological responses spanning from the modulation of mitochondrial respiration, mitochondrial dysfunction to the signaling of apoptotic cell death. Physiological levels of *NO primarily interact with cytochrome c oxidase, leading to a competitive and reversible inhibition of mitochondrial oxygen uptake. In turn, this leads to alterations in electrochemical gradients, which affect calcium uptake and may regulate processes such as mitochondrial transition pore (MTP) opening and the release of pro-apoptotic proteins. Large or persistent levels of *NO in mitochondria promote mitochondrial oxidant formation. Peroxynitrite formed either extra- or intra-mitochondrially leads to oxidative damage, most notably at complexes I and II of the electron transport chain, ATPase, aconitase and Mn-superoxide dismutase. Mitochondrial scavenging systems for peroxynitrite and peroxynitrite-derived radicals such as carbonate (CO3*-) and nitrogen dioxide radicals (*NO2) include cytochrome c oxidase, glutathione and ubiquinol and serve to partially attenuate the reactions of these oxidants with critical mitochondrial targets. Detection of nitrated mitochondrial proteins in vivo supports the concept that mitochondria constitute central loci of the toxic effects of excess reactive nitrogen species. In this review we will provide an overview of the biochemical mechanisms by which *NO and ONOO- regulate or alter mitochondrial functions.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | | | | |
Collapse
|
31
|
Boyd CS, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis. Biol Chem 2002; 383:411-23. [PMID: 12033432 DOI: 10.1515/bc.2002.045] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide, generated by endogenous nitric oxide synthases or nitric oxide donors, can promote or prevent apoptosis induced by diverse pro-apoptotic stimuli in cell culture models. Both mitochondrial-dependent and -independent apoptotic signaling pathways mediate this dichotomous cellular response to nitric oxide. The molecular mechanisms behind these effects are complex and involve a number of nitrogen oxide-related species that are more reactive than nitric oxide itself. The local cellular environment plays a dynamic role in determining the nature and concentration of these species. Important components of the microenvironment include: the cellular redox state, glutathione, transition metals and the presence of other oxygen- and nitrogen-centered radicals. In particular, redox-sensitive nitrosating species are favorably generated under physiological conditions and capable of modifying multiple cell signaling pathways through reversible S-nitrosation reactions. Cytochrome c release from mitochondria is an important mechanism for the activation of caspase-3 and the initiation of cell death in response to 'intrinsic' pro-apoptotic stimuli, including oxidative and nitrosative stress. In turn, caspases and mitogen associated protein kinases may modulate cytochrome c release through their effects on the Bcl-2 family of proteins. This review will focus on (i) the importance of the cellular environment in determining the fate of nitric oxide and (ii) the ability of S-nitrosation to regulate mitochondrial-dependent apoptosis at the level of mitochondrial bioenergetics, cytochrome c release, caspases, mitogen associated protein kinases, and the Bcl-2 family of proteins.
Collapse
Affiliation(s)
- Clinton S Boyd
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90089-9121, USA
| | | |
Collapse
|
32
|
Riobó NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem J 2001; 359:139-45. [PMID: 11563977 PMCID: PMC1222129 DOI: 10.1042/0264-6021:3590139] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was aimed at assessing the effects of long-term exposure to NO of respiratory activities in mitochondria from different tissues (with different ubiquinol contents), under conditions that either promote or prevent the formation of peroxynitrite. Mitochondria and submitochondrial particles isolated from rat heart, liver and brain were exposed either to a steady-state concentration or to a bolus addition of NO. NO induced the mitochondrial production of superoxide anions, hydrogen peroxide and peroxynitrite, the latter shown by nitration of mitochondrial proteins. Long-term incubation of mitochondrial membranes with NO resulted in a persistent inhibition of NADH:cytochrome c reductase activity, interpreted as inhibition of NADH:ubiquinone reductase (Complex I) activity, whereas succinate:cytochrome c reductase activity, including Complex II and Complex III electron transfer, remained unaffected. This selective effect of NO and derived species was partially prevented by superoxide dismutase and uric acid. In addition, peroxynitrite mimicked the effect of NO, including tyrosine nitration of some Complex I proteins. These results seem to indicate that the inhibition of NADH:ubiquinone reductase (Complex I) activity depends on the NO-induced generation of superoxide radical and peroxynitrite and that Complex I is selectively sensitive to peroxynitrite. Inhibition of Complex I activity by peroxynitrite may have critical implications for energy supply in tissues such as the brain, whose mitochondrial function depends largely on the channelling of reducing equivalents through Complex I.
Collapse
Affiliation(s)
- N A Riobó
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Córdoba 2351, 1120, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim KH, Rodriguez AM, Carrico PM, Melendez JA. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase. Antioxid Redox Signal 2001; 3:361-73. [PMID: 11491650 DOI: 10.1089/15230860152409013] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies from many laboratories have shown that overexpression of manganese superoxide dismutase (MnSOD) inhibits the growth of numerous tumor cell types. The inhibition of tumor cell growth can be attributed to the increase in the steady-state levels of H2O2 as a result of the increased dismuting activity of MnSOD. Here we demonstrate that overexpression of MnSOD enhances the activity of the superoxide (O2*-)-sensitive enzyme aconitase, decreases the intracellular GSH/GSSG ratio, and dose-dependently inhibits pyruvate carboxylase activity. Thus, alterations in the steady-state concentrations of mitochondrial O2*- and H2O2 as a result of MnSOD overexpression can alter the metabolic capacity of the cell leading to inhibition of cell growth. Furthermore, we propose that MnSOD overexpression can modulate the activity of nitric oxide (*NO) by preventing its reaction with O2*-. This hypothesis suggests that the redox environment of the mitochondria can be altered to favor the activity of *NO rather than peroxynitrite (ONOO-) and may explain the enhanced toxicity of *NO-generating compounds toward MnSOD-overexpressing cell lines. These findings indicate that therapeutic strategies targeted at overexpressing MnSOD in tumor tissue may be more effective when used in combination with agents that deplete the oxidant-buffering and enhance the *NO-generating capacity of the tumor and host, respectively.
Collapse
Affiliation(s)
- K H Kim
- Center for Immunology and Microbial Disease, Albany Medical College, NY 12208, USA
| | | | | | | |
Collapse
|
34
|
Pearce LL, Epperly MW, Greenberger JS, Pitt BR, Peterson J. Identification of respiratory complexes I and III as mitochondrial sites of damage following exposure to ionizing radiation and nitric oxide. Nitric Oxide 2001; 5:128-36. [PMID: 11292362 DOI: 10.1006/niox.2001.0338] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 32D cl 3 hematopoietic progenitor cells, the overexpression of manganese superoxide dismutase (MnSOD, SOD2), the enzyme normally found in mitochondria, protects against the damaging effects of ionizing radiation. In the presence of a nitric oxide donor, which exacerbates the damage, inhibition of mitochondrial function can be demonstrated to be associated with respiratory complexes I (NADH dehydrogenase) and III (cytochrome c reductase), but not II (succinate dehydrogenase), IV (cytochrome c oxidase), or V (ATP synthase). The same pattern of inhibition is observed in the case of isolated bovine heart mitochondria exposed to ionizing radiation and the nitric oxide donor. The addition of authentic peroxynitrite (ONO2(-)) to isolated mitochondria also results in damage to complexes I and III (but not II, IV, and V), as shown by assays of electron-transfer activities and electron paramagnetic resonance (EPR) spectroscopic measurements, suggesting ONO2(-) to be responsible for most of the observed radiation damage in both the cultured cell lines and isolated mitochondria. It is argued that, in general, production of ONO2(-) is an important contributor to radiation damage in biological systems and the implications of these findings in relation to possible mechanisms of oxidant-linked apoptosis are briefly considered.
Collapse
Affiliation(s)
- L L Pearce
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
35
|
Rigobello MP, Scutari G, Boscolo R, Bindoli A. Oxidation of adrenaline and its derivatives by S-nitrosoglutathione. Nitric Oxide 2001; 5:39-46. [PMID: 11178935 DOI: 10.1006/niox.2000.0323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An oxidizing effect of S-nitrosoglutathione toward adrenaline and its cyclic derivatives (adrenochrome and adrenolutin) is reported. The oxidation was monitored either spectrophotometrically or as oxygen uptake. Adrenaline was first oxidized to adrenochrome that, after isomerization to adrenolutin, was further oxidized to products monitored as fluorescence decrease. To occur to a significant extent, this oxidation requires copper ions that, in addition to a direct effect on the oxidation of the ortho-diphenol moiety, are also able to decompose nitrosothiols, giving rise to nitric oxide. The latter, after interaction with oxygen and superoxide, produces nitrogen oxides and peroxynitrite, respectively, that are important contributors to the oxidative process. In this context, catecholamines might act as regulatory factors toward nitric oxide and its derivatives.
Collapse
Affiliation(s)
- M P Rigobello
- Centro di Studio delle Biomembrane and Dipartmento di Chimica Biologica, Università di Padova, Padova, Italy
| | | | | | | |
Collapse
|