1
|
Zhou D, Liu H, Zheng L, Liu A, Zhuan Q, Luo Y, Zhou G, Meng L, Hou Y, Wu G, Li J, Fu X. Metformin alleviates cryoinjuries in porcine oocytes by reducing membrane fluidity through the suppression of mitochondrial activity. Commun Biol 2024; 7:925. [PMID: 39090373 PMCID: PMC11294456 DOI: 10.1038/s42003-024-06631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.
Collapse
Affiliation(s)
- Dan Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongyu Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lv Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
2
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
3
|
Kolarić TO, Ninčević V, Smolić R, Smolić M, Wu GY. Mechanisms of Hepatic Cholestatic Drug Injury. J Clin Transl Hepatol 2019; 7:86-92. [PMID: 30944824 PMCID: PMC6441637 DOI: 10.14218/jcth.2018.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Drug-induced cholestasis represents a form of drug-induced liver disease that can lead to severe impairment of liver function. Numerous drugs have been shown to cause cholestasis and consequently bile duct toxicity. However, there is still lack of therapeutic tools that can prevent progression to advanced stages of liver injury. This review focuses on the various pathological mechanisms by which drugs express their hepatotoxic effects, as well as consequences of increased bile acid and toxin accumulation in the hepatocytes.
Collapse
Affiliation(s)
- Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Vjera Ninčević
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Robert Smolić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
| | - Martina Smolić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
- *Correspondence to: Martina Smolic, Department of Pharmacology, Faculty of Medicine Osijek, J. Huttlera 4, Osijek 31000, Croatia. Tel: +38-531512800, E-mail:
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
4
|
Wolters JEJ, van Herwijnen MHM, Theunissen DHJ, Jennen DGJ, Van den Hof WFPM, de Kok TMCM, Schaap FG, van Breda SGJ, Kleinjans JCS. Integrative “-Omics” Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol 2016; 29:2164-2174. [DOI: 10.1021/acs.chemrestox.6b00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jarno E. J. Wolters
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marcel H. M. van Herwijnen
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Daniel H. J. Theunissen
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Danyel G. J. Jennen
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Wim F. P. M. Van den Hof
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Theo M. C. M. de Kok
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frank G. Schaap
- Department of Surgery, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Simone G. J. van Breda
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jos C. S. Kleinjans
- Department of Toxicogenomics,
GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
5
|
Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, Brock WJ, Brouwer KLR. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury? Toxicol Sci 2015; 149:237-50. [PMID: 26507107 DOI: 10.1093/toxsci/kfv231] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.
Collapse
Affiliation(s)
- Jason R Slizgi
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| | - Yang Lu
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | | | | | - Maxwell Pan
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Kim L R Brouwer
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| |
Collapse
|
6
|
Hanafusa H, Morikawa Y, Uehara T, Kaneto M, Ono A, Yamada H, Ohno Y, Urushidani T. Comparative gene and protein expression analyses of a panel of cytokines in acute and chronic drug-induced liver injury in rats. Toxicology 2014; 324:43-54. [PMID: 25051504 DOI: 10.1016/j.tox.2014.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/29/2022]
Abstract
Drug-induced liver injury (DILI) is a significant safety issue associated with medication use, and is the major cause of failures in drug development and withdrawal in post marketing. Cytokines are signaling molecules produced and secreted by immune cells and play crucial roles in the progression of DILI. Although there are numerous reports of cytokine changes in several DILI models, a comprehensive analysis of cytokine expression changes in rat liver injury induced by various compounds has, to the best of our knowledge, not been performed. In the past several years, we have built a public, free, large-scale toxicogenomics database, called Open TG-GATEs, containing microarray data and toxicity data of the liver of rats treated with various hepatotoxic compounds. In this study, we measured the protein expression levels of a panel of 24 cytokines in frozen liver of rats treated with a total of 20 compounds, obtained in the original study that formed the basis of the Open TG-GATEs database and analyzed protein expression profiles combined with mRNA expression profiles to investigate the correlation between mRNA and protein expression levels. As a result, we demonstrated significant correlations between mRNA and protein expression changes for interleukin (IL)-1β, IL-1α, monocyte chemo-attractant protein (MCP)-1/CC-chemokine ligand (Ccl)2, vascular endothelial growth factor A (VEGF-A), and regulated upon activation normal T cell expressed and secreted (RANTES)/Ccl5 in several different types of DILI. We also demonstrated that IL-1β protein and MCP-1/Ccl2 mRNA were commonly up-regulated in the liver of rats treated with different classes of hepatotoxicants and exhibited the highest accuracy in the detection of hepatotoxicity. The results also demonstrate that hepatic mRNA changes do not always correlate with protein changes of cytokines in the liver. This is the first study to provide a comprehensive analysis of mRNA-protein correlations of factors involved in various types of DILI, as well as additional insights into the importance of understanding complex cytokine expression changes in assessing DILI.
Collapse
Affiliation(s)
- Hiroyuki Hanafusa
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan
| | - Yuji Morikawa
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan
| | - Takeki Uehara
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,.
| | - Masako Kaneto
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan
| | - Atsushi Ono
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,; National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan
| | - Yasuo Ohno
- National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Tetsuro Urushidani
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,; Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, Japan
| |
Collapse
|
7
|
Abstract
Recent progress in understanding the molecular mechanisms of bile formation and cholestasis have led to new insights into the pathogenesis of drug-induced cholestasis. This review summarizes their variable clinical presentations, examines the role of transport proteins in hepatic drug clearance and toxicity, and addresses the increasing importance of genetic determinants, as well as practical aspects of diagnosis and management.
Collapse
Affiliation(s)
- Manmeet S. Padda
- Division of Gastroenterology, Centennial Hills Hospital Medical Center, Las Vegas, NV
| | - Mayra Sanchez
- Department of Internal Medicine, Digestive Disease Section and Liver Center, Yale University School of Medicine 333 Cedar Street, P.O. Box 208019, New Haven, CT 06520-8019
| | - Abbasi J. Akhtar
- Division of Gastroenterology, Charles Drew University of Medicine and Science, Los Angeles, CA
| | - James L. Boyer
- Department of Internal Medicine, Digestive Disease Section and Liver Center, Yale University School of Medicine 333 Cedar Street, P.O. Box 208019, New Haven, CT 06520-8019
| |
Collapse
|
8
|
Stief J, Stempfle HU, Götzberger M, Uberfuhr P, Köpple M, Lehnert P, Kaiser C, Schiemann U. Biliary diseases in heart transplanted patients: a comparison between cyclosporine A versus tacrolimus-based immunosuppression. Eur J Med Res 2009; 14:206-9. [PMID: 19541577 PMCID: PMC3351979 DOI: 10.1186/2047-783x-14-5-206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A cyclosporine (CsA)-based immunosuppression is associated with an increased incidence of cholelithiasis after heart transplantation. It is not known if tacrolimus (Tac) has comparable biliary side effects in humans. We evaluated the incidence of gallbladder sludge and cholelithiasis under Tac-based immunosuppression by ultrasound examinations in 31 cardiac transplants (25 male, 6 female, mean age: 59 ± 11 years). Data were compared to 57 patients (47 male, 10 female, mean age: 58 ± 11 years) who received CsA-based immunosuppression. 6 patients receiving Tac and 6 patients receiving CsA had already gallstones prior to transplantation so that finally 25 patients of the Tac group and 51 patients of the CsA group could be evaluated. In the Tac group the incidence of biliary sludge was 4% (1 of 25), of gallstones 28% (7 of 25). In comparison, patients receiving CsA developed biliary sludge in also 4% (2 of 51) and gallstones in 25% (13 of 51). Nine of 42 males in the CsA group (21%) and eight of 20 males in the Tac group (40%) developed either gallstones or sludge (n.s). Six of nine females in the CsA group (67%), but none of five females in the Tac group (0%) developed either gallstones or sludge (p = 0.01). In summary, the incidence of biliary disease in patients with Tac is comparable with CsA-based immunosuppression. We recommend regular sonographical examinations to detect biliary diseases as early as possible. In cases of clinically, laboratory and sonographical signs of cholecystitis cholecystectomy is indicated. It seems that towards lithogenicity female patients benefit more from a Tac-based treatment because the occurrence of gallstones is rare.
Collapse
Affiliation(s)
- J Stief
- Klinik und Poliklinik für Allgemeine Innere Medizin, Inselspital Bern, Freiburgstr., 3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Xing L, Hu Y, Lai Y. Advancement of structure-activity relationship of multidrug resistance-associated protein 2 interactions. AAPS JOURNAL 2009; 11:406-13. [PMID: 19495992 DOI: 10.1208/s12248-009-9117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/18/2009] [Indexed: 11/30/2022]
Abstract
Multidrug resistance-associated protein 2 (MRP2/ABCC2) is mainly expressed in the apical phase of barrier membranes. It functions as a critical efflux pump in the biliary excretion of endogenous substances, such as conjugated bilirubin and bile salts, as well as many structurally diverse xenobiotics and their metabolites. Due to its important role in defining ADME/Tox properties, efforts have emerged to build the structure-activity relationship (SAR) for MRP2/ABCC2 at early stages of drug discovery process. MRP2/ABCC2 is a member of the integral membrane protein family whose high-resolution crystal structure has not been described. To overcome the obstacle of lacking detailed structural depiction, various molecular modeling approaches have been applied to derive the structural requirements for binding interactions with MRP2/ABCC2 protein, including two-dimensional (2D) and three-dimensional (3D) quantitative SAR (QSAR) analysis, pharmacophore models, and homology modeling of the transporter. Here we summarize recent progresses in understanding the SAR of MRP2/ABCC2 recognition of substrates and/or inhibitors, and describe some of the useful in vitro tools for characterizing the interactions with the transporter.
Collapse
Affiliation(s)
- Li Xing
- St Louis Laboratories, Pfizer Global Research and Development, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | | | | |
Collapse
|
10
|
Barth A, Braun J, Müller D. Influence of Verapamil and Cyclosporin A on bile acid metabolism and transport in rat liver slices. ACTA ACUST UNITED AC 2006; 58:31-7. [PMID: 16793245 DOI: 10.1016/j.etp.2006.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 04/10/2006] [Indexed: 11/25/2022]
Abstract
Verapamil (V) is a specific inhibitor of the P-glycoprotein (mdr1) in the hepatocyte canalicular membrane. Cyclosporin A (CsA) as an essential immunosuppressive drug has potentially cholestatic adverse effects on the liver, but increases the expression of mdr1. In precision-cut liver slices from 34- to 40-day-old male Wistar rats 26 individual free and conjugated bile acids (BAs) as markers of hepatic transport and synthesis function were analysed after 4 h incubation with V (100 microM) or CsA (5 microM) in Krebs-Henseleit buffer. Some slices were loaded with cholic acid (CA 5 microM) or tauro-ursodeoxycholic acid (T-UDCA 5 microM) to investigate the V and CsA effects under conditions of BA supplementation. BAs were determined in tissue and medium by HPLC with postcolumn derivatisation and fluorescence detection. V and CsA, influencing different targets in BA transport, enhanced slice concentrations of T- and glyco- (G-) conjugated CA only when exogenous CA was given additionally. This BA accumulation in tissue is more reflected at decreased medium concentrations of these BAs after V and CsA incubations. Both V and CsA also inhibited CA uptake into the slices. The acidic chenodeoxycholic acid (CDCA) synthesis pathway is disturbed: T- and G-CDCA concentrations are diminished in slices and medium after V and CsA incubations. T-UDCA plus V or CsA enhanced not only its own slice concentration but also the concentration of the trihydroxylated tauro-muricholic acid (T-beta-MCA), reflecting the conversion of the accumulated dihydroxylated T-UDCA into the T-beta-MCA. The similar effects of V and CsA on BA transport and metabolism can be explained by mdr1 mediated disturbances of cellular ATP transport rather than by inhibition of individual BA transporters.
Collapse
Affiliation(s)
- Astrid Barth
- Institute of Pharmacology and Toxicology, Friedrich Schiller University Jena, D-07740 Jena, Germany.
| | | | | |
Collapse
|
11
|
Nishioka T, Hyogo H, Numata Y, Yamaguchi A, Kobuke T, Komichi D, Nonaka M, Inoue M, Nabeshima Y, Ogi M, Iwamoto K, Ishitobi T, Ajima T, Chayama K, Tazuma S. A nuclear receptor-mediated choleretic action of fibrates is associated with enhanced canalicular membrane fluidity and transporter activity mediating bile acid-independent bile secretion. J Atheroscler Thromb 2005; 12:211-7. [PMID: 16141625 DOI: 10.5551/jat.12.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fibrates are commonly used lipid-lowering agents that act via PPARalpha, a member of the nuclear hormone receptor superfamily. The mechanism(s) of fibrate-induced changes in the hepatic canalicular membrane and bile lipids are still unknown. Therefore, the aim of this study was to investigate the influence of fibrates on hepatic lipid metabolism and to assess the hepatocellular cytoprotective effect on hepatocyte canalicular membrane. Male ICR mice were fed standard chow with or without bezafibrate (100 mg/kg) for 6 days. The expression of canalicular membrane transporters (Mdr2 and Mrp2) was evaluated by RT-PCR and Western blotting. Canalicular membrane fluidity was also investigated. Canalicular membrane fluidity was markedly increased by fibrates. The expression of mdr 2 and mrp2 mRNA and protein showed a significant increase in fibrate-treated mice. These results suggested that fibrates improve liver function by enhancing bile secretion. The mechanism of the choleretic action of fibrate therapy might involve the enhancement of bile acid-independent bile secretion, since increased expression of Mdr2 and Mrp2 was found in fibrate-treated animals. These changes were very likely mediated by PPARalpha, and the increase of canalicular membrane fluidity may have been partly associated with enhancement of this transporter activity.
Collapse
Affiliation(s)
- Tomoji Nishioka
- Department of Medicine and Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Daoudaki M, Fouzas I, Stapf V, Ekmekcioglu C, Imvrios G, Andoniadis A, Demetriadou A, Thalhammer T. Cyclosporine a augments P-glycoprotein expression in the regenerating rat liver. Biol Pharm Bull 2003; 26:303-7. [PMID: 12612437 DOI: 10.1248/bpb.26.303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the liver, the multidrug resistance (MDR) protein P-glycoprotein (P-gp) is physiologically expressed at the bile canalicular membrane, where it participates in the biliary excretion of various lipophilic drugs and xenobiotics. Previous studies showed that the immunosuppressive agent cyclosporine A (CsA) modulates P-gp and exerts a hepatotrophic influence in the regenerating liver. Hepatocytes isolated from regenerating rat liver, after 2/3 partial hepatectomy (PH 2/3), were used as an in vivo experimental model of cells with high proliferating activity in order to investigate whether CsA influences cellular levels of P-gp in those cells. Male Wistar rats were treated with CsA (20 mg/kg body weight) for 4 d preoperatively and 1 d postoperatively, and regenerating hepatocytes were isolated by collagenase perfusion 12, 24 and 48 h after PH 2/3. Flow cytometry and Western blotting studies with the monoclonal antibodies C494 and C219 showed that after PH 2/3, cellular levels of P-gp were initially suppressed, 12 h after PH 2/3, by 23%, but were significantly elevated thereafter, 24 and 48 h after PH 2/3 by 28% and 73%, respectively. In CsA pretreated animals, P-gp levels were increased even in normal hepatocytes by 34%, and an additional augmentation was seen in hepatocytes from 24 and 48 h regenerating livers (60% and 56%, respectively). In summary, we demonstrate for the first time that CsA has an additive effect on the expression of P-glycoprotein during liver regeneration in the rat. Therefore, induction of P-gp might also be considered in patients receiving CsA after liver transplantation for hepatocellular carcinoma and chemotherapy as an adjuvant treatment for the prevention of tumor recurrence.
Collapse
Affiliation(s)
- Maria Daoudaki
- Department of Biological Chemistry, Aristotelian University of Thessaloniki Medical School, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
A disease gets manifested only when the host immune system is not strong enough to fight off the infective agents. A number of small peptides both from natural and synthetic origin are found to be capable of modulating the immune response. While immune adjuvants are known to strengthen the immune response and help the host not to give way to the pathogens thereby preventing their establishment, the immunosuppressors are found useful in autoimmune conditions as well as in facilitating the organ transplants. Recent understanding of immune network, however, reveals its cross connectivity with the endocrine and central nervous systems as well. Thus, the inhibition and control of disease by planned restoration of homeostatis in these systems through immunomodulation is also possible.
Collapse
Affiliation(s)
- Ranjna C Dutta
- Discovery Laboratory, Indian Institute of Chemical Technology, Uppal Road, Habsiguda, Hyderabad 500 007, India.
| |
Collapse
|
14
|
Abstract
Further insights into the molecular regulation of bile acid transport and metabolism have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Novel insights into the mechanisms of action of ursodeoxycholic acid should advance our understanding of the treatment of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes in both infants and adults as well as cholesterol gallstone disease. Important studies have been published on the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, drug-induced cholestasis, and cholestasis of pregnancy.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|
15
|
Asamoto Y, Tazuma S, Ochi H, Chayama K, Suzuki H. Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function. Biochem J 2001; 359:605-10. [PMID: 11672435 PMCID: PMC1222182 DOI: 10.1042/0264-6021:3590605] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bile-salt hydrophobicity regulates biliary phospholipid secretion and subselection. The aim of this study was to determine whether bile salts can influence liver plasma membrane phospholipids and fluidity in relation to the ATP-dependent transporter. Rats were depleted of bile salts by overnight biliary diversion and then sodium taurocholate was infused intravenously at a constant rate (200 nmol/min per 100 g of body weight), followed by infusion of bile salts with various hydrophobicities (taurochenodeoxycholate, tauroursodeoxycholate, tauro-beta-muricholate, tauro-alpha-muricholate at 200 nmol/min per 100 g of body weight). The hydrophobicity of the infused bile salts correlated with that of biliary phospholipids, but was inversely related to that of the canalicular membrane bilayer. Canalicular membrane fluidity (estimated by 1,6-diphenyl-1,3,5-hexatriene fluorescence depolarization) and expression of multidrug-resistance proteins (Mrp2, Mrp3) and apical Na(+)-dependent bile-salt transporter (ASBT) were increased by hydrophilic bile salts, although there was no marked change in the expression of P-glycoprotein subfamilies (Mdr2). Bile-salt export pump (Bsep) expression was increased along with increasing bile-salt hydrophobicity. Bile salts modulate canalicular membrane phospholipids and membrane fluidity, as well as the ATP-dependent transporter expression and function, and these actions are associated with their hydrophobicity. The cytoprotective effect of hydrophilic bile salts seems to be associated with induction of Mrp2, Mrp3 and ASBT.
Collapse
Affiliation(s)
- Y Asamoto
- First Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|