1
|
Schissel CK, Farquhar CE, Loas A, Malmberg AB, Pentelute BL. In-Cell Penetration Selection-Mass Spectrometry Produces Noncanonical Peptides for Antisense Delivery. ACS Chem Biol 2023; 18:615-628. [PMID: 36857503 PMCID: PMC10460143 DOI: 10.1021/acschembio.2c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Peptide-mediated delivery of macromolecules in cells has significant potential therapeutic benefits, but no therapy employing cell-penetrating peptides (CPPs) has reached the market after 30 years of investigation due to challenges in the discovery of new, more efficient sequences. Here, we demonstrate a method for in-cell penetration selection-mass spectrometry (in-cell PS-MS) to discover peptides from a synthetic library capable of delivering macromolecule cargo to the cytosol. This method was inspired by recent in vivo selection approaches for cell-surface screening, with an added spatial dimension resulting from subcellular fractionation. A representative peptide discovered in the cytosolic extract, Cyto1a, is nearly 100-fold more active toward antisense phosphorodiamidate morpholino oligomer (PMO) delivery compared to a sequence identified from a whole cell extract, which includes endosomes. Cyto1a is composed of d-residues and two non-α-amino acids, is more stable than its all-l isoform, and is less toxic than known CPPs with comparable activity. Pulse-chase and microscopy experiments revealed that while the PMO-Cyto1a conjugate is likely taken up by endosomes, it can escape to localize to the nucleus without nonspecifically releasing other endosomal components. In-cell PS-MS introduces a means to empirically discover unnatural synthetic peptides for subcellular delivery of therapeutically relevant cargo.
Collapse
Affiliation(s)
- Carly K Schissel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charlotte E Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Annika B Malmberg
- Sarepta Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Ghezzi C, Calmettes G, Morand P, Ribalet B, John S. Real-time imaging of sodium glucose transporter (SGLT1) trafficking and activity in single cells. Physiol Rep 2018; 5:5/3/e13062. [PMID: 28193781 PMCID: PMC5309568 DOI: 10.14814/phy2.13062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 01/12/2023] Open
Abstract
The processes controlling targeting of glucose transporters to apical and basolateral membranes of polarized cells are complex and not-well understood. We have engineered SGLT1 and GLUT4 constructs linked to fluorescent proteins to highlight the differences in transporter expression and trafficking, in real time, in different cell types. Activity was assessed in parallel using a FRET glucose sensor. In COS cells and HEK cells, SGLT1 was distributed between the plasma membrane and intracellular compartments, but there was little expression in CHO cells. Trafficking was investigated using the lysosome inhibitors NH4Cl (10 mmol/L) and chloroquine (150 μmol/L) and the proteasome inhibitors MG-262 (1 μmol/L) and lactacystin (5 μmol/L). Lysosome inhibitors caused SGLT1 accumulation into intracellular bodies, whereas proteasome inhibitors induced SGLT1 accumulation in the plasma membrane, even in CHO cells. Our data suggest that a fraction of SGLT1 is rapidly degraded by lysosomes and never reached the plasma membrane; another fraction reaches the membrane and is subsequently degraded by lysosomes following internalization. The latter process is regulated by the ubiquitin/proteasome pathway, acting at a late stage of the lysosomal pathway. Using the cholesterol inhibitor MβCD (3 mmol/L), a dominant negative dynamin (K44A) and caveolin, we showed that SGLT1 internalization is lipid raft-mediated, but caveolin-independent. In contrast, GLUT4 internalization is dynamin-dependent, but cholesterol-independent. The physiological relevance of these data is discussed in terms of differential membrane compartmentalization of the transporters and expression under stress conditions.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Departments of Physiology and Medicine and the Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Guillaume Calmettes
- Departments of Physiology and Medicine and the Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pauline Morand
- Departments of Physiology and Medicine and the Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bernard Ribalet
- Departments of Physiology and Medicine and the Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Scott John
- Departments of Physiology and Medicine and the Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
3
|
Ferguson R, Subramanian V. The cellular uptake of angiogenin, an angiogenic and neurotrophic factor is through multiple pathways and largely dynamin independent. PLoS One 2018; 13:e0193302. [PMID: 29486010 PMCID: PMC5828446 DOI: 10.1371/journal.pone.0193302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/08/2018] [Indexed: 01/25/2023] Open
Abstract
Angiogenin (ANG), a member of the RNase superfamily (also known as RNase 5) has neurotrophic, neuroprotective and angiogenic activities. Recently it has also been shown to be important in stem cell homeostasis. Mutations in ANG are associated with neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Fronto-temporal dementia (FTD). ANG is a secreted protein which is taken up by cells and translocated to the nucleus. However, the import pathway/s through which ANG is taken up is/are still largely unclear. We have characterised the uptake of ANG in neuronal, astrocytic and microglial cell lines as well as primary neurons and astrocytes using pharmacological agents as well as dominant negative dynamin and Rab5 to perturb uptake and intracellular trafficking. We find that uptake of ANG is largely clathrin/dynamin independent and microtubule depolymerisation has a marginal effect. Perturbation of membrane ruffling and macropinocytosis significantly inhibited ANG uptake suggesting an uptake mechanism similar to RNase A. Our findings shed light on why mutations which do not overtly affect RNase activity but cause impaired localization are associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Abstract
BACKGROUND AND OBJECTIVES Recent studies have demonstrated an effect of photodamage on the endocytic pathway involved in recycling of membrane components. Using a series of agents with known sub-cellular targets, we explored the determinants of photodynamic inhibition of endocytic processes in three cell lines: A murine leukemia, a murine hepatoma, and a non-malignant epithelial cell line of human origin. STUDY DESIGN/MATERIALS AND METHODS The PI-3 kinase antagonist wortmannin blocks endosomal processing pathway dependent on this enzyme, providing an indication of the "flux" of endocytosis. Microscopic observations were used to assess the effect of photodamage on this pathway. Photosensitizing agents specific for mitochondrial, endoplasmic reticulum (ER), lysosomal, and endosomal photodamage were employed. RESULTS Sub-lethal photodamage directed against endosomes or lysosomes interrupted early steps in this endocytic process in the hepatoma cell line. A mechanism for these effects is proposed. Mitochondrial photodamage could interrupt endocytosis, but at levels that also induced apoptosis. ER photodamage did not affect endocytosis even at lethal levels. Somewhat similar results were obtained with other cell lines, but there were sufficient differences to indicate that the cell phenotype is, in part, a determinant of the endocytic response to PDT. CONCLUSIONS PDT is therefore seen to have an effect on endocytic processes. Further work will be needed to delineate the role of these endocytic effects in the array of responses to photodynamic therapy.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
5
|
Chao TY, Raines RT. Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides. Biochemistry 2011; 50:8374-82. [PMID: 21827164 PMCID: PMC3242730 DOI: 10.1021/bi2009079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pancreatic-type ribonucleases can exert toxic activity by catalyzing the degradation of cellular RNA. Their ability to enter cells is essential for their cytotoxicity. Here, we determine the mechanism by which bovine pancreatic ribonuclease (RNase A) enters human cells. Inhibiting clathrin-dependent endocytosis with dynasore or chlorpromazine decreases RNase A-uptake by ~70%. Limited colocalization between RNase A and transferrin indicates that RNase A is not routed through recycling endosomes. Instead, vesicular staining of RNase A overlaps substantially with that of nona-arginine and the cationic peptide corresponding to residues 47-57 of the HIV-1 TAT protein. At low concentrations (<5 μM), internalization of RNase A and these cell-penetrating peptides (CPPs) is inhibited by chlorpromazine as well as the macropinocytosis inhibitors cytochalasin D and 5-(N-ethyl-N-isopropyl)amiloride to a similar extent, indicative of common endocytic mechanism. At high concentrations, CPPs adopt a nonendocytic mechanism of cellular entry that is not shared by RNase A. Collectively, these data suggest that RNase A is internalized via a multipathway mechanism that involves both clathrin-coated vesicles and macropinosomes. The parallel between the uptake of RNase A and CPPs validates reference to RNase A as a "cell-penetrating protein".
Collapse
Affiliation(s)
- Tzu-Yuan Chao
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Barry NPE, Zava O, Dyson PJ, Therrien B. Excellent Correlation between Drug Release and Portal Size in Metalla-Cage Drug-Delivery Systems. Chemistry 2011; 17:9669-77. [DOI: 10.1002/chem.201003530] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/27/2011] [Indexed: 12/26/2022]
|
7
|
Poon Z, Chang D, Zhao X, Hammond PT. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS NANO 2011; 5:4284-92. [PMID: 21513353 PMCID: PMC3125426 DOI: 10.1021/nn200876f] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inspired by the simplicity and versatility of layer-by-layer (LbL) assembly, we applied multilayered polyelectrolyte assemblies on nanoparticles to create viable systemic delivery systems. Focusing on tumor-specific delivery, LbL nanoparticles that exhibit a pH-sensitive outer stealth layer are demonstrated to target and be retained in hypoxic tumor regions. The neutral layers shed in response to acidity to reveal a charged nanoparticle surface that is readily taken up by tumor cells. The first in vivo demonstration of this mechanism of targeting is presented, as well as an initial examination of the mechanism of uptake of the nanoparticles. We further demonstrate that this concept for tumor targeting is potentially valid for a broad range of cancers, with applicability for therapies that target hypoxic tumor tissue.
Collapse
Affiliation(s)
- Zhiyong Poon
- The Koch Institute for Integrative Cancer Research at MIT, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
8
|
Kessel D, Price M, Caruso J, Reiners J. Effects of photodynamic therapy on the endocytic pathway. Photochem Photobiol Sci 2010; 10:491-8. [PMID: 21125114 DOI: 10.1039/c0pp00276c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe an effect of photodynamic therapy (PDT) on membrane trafficking in murine 1c1c7 hepatoma cells. A brief exposure of 1c1c7 cells to a 20 nM concentration of the phosphatidylinositol kinase class-3 antagonist wortmannin led to the rapid appearance of cytoplasmic vacuoles. Fluorescence monitoring of plasma membrane-associated 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TDPH) over time demonstrated that the wortmannin-induced vacuoles were derived from endocytosed plasma membrane. Low-dose photodamage catalyzed by the lysosomal photosensitizer NPe6, prior to the addition of wortmannin, prevented formation of these vacuoles. NPe6 was found to suppress for several hours the normal trafficking of TDPH-labeled plasma membrane to the cytosol, and the formation of punctate TDPH-labeled cytoplasmic vesicles. The ability of NPe6-induced photodamage to suppress wortmannin-induced vacuolization occurred under conditions that did not disrupt lysosomes and were at or below the threshold of cytostatic/cytotoxic effects. Furthermore, the suppressive effects of NPe6-PDT were not prevented by inclusion of an agent that stabilized lysosomal membranes, or by E64d, an inhibitor of lysosomal cathepsin proteases. Mitochondrial photodamage was less effective at preventing wortmannin-induced vacuole formation and PDT directed against the ER had no effect. The role of photodamage to the endocytic pathway may be a hitherto unexplored effect on cells that selectively accumulate photosensitizing agents. These results indicate that photodamage directed against endosomes/lysosomes has effects independent of the release of lysosomal proteases.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
9
|
Palm M, Garigliany MM, Cornet F, Desmecht D. Interferon-induced Sus scrofa Mx1 blocks endocytic traffic of incoming influenza A virus particles. Vet Res 2010; 41:29. [PMID: 20167191 PMCID: PMC2826089 DOI: 10.1051/vetres/2010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/07/2010] [Indexed: 01/13/2023] Open
Abstract
The interferon-induced Mx proteins of vertebrates are dynamin-like GTPases, some isoforms of which can additionally inhibit the life cycle of certain RNA viruses. Here we show that the porcine Mx1 protein (poMx1) inhibits replication of influenza A virus and we attempt to identify the step at which the viral life cycle is blocked. In infected cells expressing poMx1, the level of transcripts encoding the viral nucleoprotein is significantly lower than normal, even when secondary transcription is prevented by exposure to cycloheximide. This reveals that a pretranscriptional block participates to the anti-influenza activity. Binding and internalization of incoming virus particles are normal in the presence of poMx1 but centripetal traffic to the late endosomes is interrupted. Surprisingly but decisively, poMx1 significantly alters binding of early endosome autoantigen 1 to early endosomes and/or early endosome size and spatial distribution. This is compatible with impairment of traffic of the endocytic vesicles to the late endosomes.
Collapse
Affiliation(s)
- Mélanie Palm
- Department of Pathology, University of Liège, FMV Sart Tilman B43, 4000 Liège, Belgium
| | | | | | | |
Collapse
|
10
|
Huber C, Mårtensson A, Bokoch GM, Nemazee D, Gavin AL. FGD2, a CDC42-specific exchange factor expressed by antigen-presenting cells, localizes to early endosomes and active membrane ruffles. J Biol Chem 2008; 283:34002-12. [PMID: 18838382 DOI: 10.1074/jbc.m803957200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Fgd (faciogenital dysplasia) gene family encode a group of critical guanine nucleotide exchange factors (GEFs), which, by specifically activating Cdc42, control cytoskeleton-dependent membrane rearrangements. In its first characterization, we find that FGD2 is expressed in antigen-presenting cells, including B lymphocytes, macrophages, and dendritic cells. In the B lymphocyte lineage, FGD2 levels change with developmental stage. In both mature splenic B cells and immature bone marrow B cells, FGD2 expression is suppressed upon activation through the B cell antigen receptor. FGD2 has a complex intracellular localization, with concentrations found in membrane ruffles and early endosomes. Although endosomal localization of FGD2 is dependent on a conserved FYVE domain, its C-terminal pleckstrin homology domain mediates recruitment to membrane ruffles. FGD2 overexpression promotes the activation of Cdc42 and leads to elevated JNK1 activity in a Cdc42- but not Rac1-dependent fashion. These findings are consistent with a role of FGD2 in leukocyte signaling and vesicle trafficking in cells specialized to present antigen in the immune system.
Collapse
Affiliation(s)
- Christoph Huber
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
11
|
Haas TJ, Sliwinski MK, Martínez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. THE PLANT CELL 2007; 19:1295-312. [PMID: 17468262 PMCID: PMC1913750 DOI: 10.1105/tpc.106.049346] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In yeast and mammals, the AAA ATPase Vps4p/SKD1 (for Vacuolar protein sorting 4/SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT1) is required for the endosomal sorting of secretory and endocytic cargo. We identified a VPS4/SKD1 homolog in Arabidopsis thaliana, which localizes to the cytoplasm and to multivesicular endosomes. In addition, green fluorescent protein-SKD1 colocalizes on multivesicular bodies with fluorescent fusion protein endosomal Rab GTPases, such as ARA6/RabF1, RHA1/RabF2a, and ARA7/RabF2b, and with the endocytic marker FM4-64. The expression of SKD1(E232Q), an ATPase-deficient version of SKD1, induces alterations in the endosomal system of tobacco (Nicotiana tabacum) Bright Yellow 2 cells and ultimately leads to cell death. The inducible expression of SKD1(E232Q) in Arabidopsis resulted in enlarged endosomes with a reduced number of internal vesicles. In a yeast two-hybrid screen using Arabidopsis SKD1 as bait, we isolated a putative homolog of mammalian LYST-INTERACTING PROTEIN5 (LIP5)/SKD1 BINDING PROTEIN1 and yeast Vta1p (for Vps twenty associated 1 protein). Arabidopsis LIP5 acts as a positive regulator of SKD1 by increasing fourfold to fivefold its in vitro ATPase activity. We isolated a knockout homozygous Arabidopsis mutant line with a T-DNA insertion in LIP5. lip5 plants are viable and show no phenotypic alterations under normal growth conditions, suggesting that basal SKD1 ATPase activity is sufficient for plant development and growth.
Collapse
Affiliation(s)
- Thomas J Haas
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mazza R, Mannarino C, Imbrogno S, Barbieri SF, Adamo C, Angelone T, Corti A, Tota B. Crucial role of cytoskeleton reorganization in the negative inotropic effect of chromogranin A-derived peptides in eel and frog hearts. ACTA ACUST UNITED AC 2007; 138:145-51. [PMID: 17056132 DOI: 10.1016/j.regpep.2006.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
Vasostatins (VSs), i.e. the main biologically active peptides generated by the proteolytic processing of chromogranin A (CGA) N-terminus, exert negative inotropism in vertebrate hearts. Here, using isolated working eel (Anguilla anguilla) and frog (Rana esculenta) heart preparations, we have studied the role of the cytoskeleton in the VSs-mediated inotropic response. In both eel and frog hearts, VSs-mediated-negative inotropy was abolished by treatment with inhibitors of cytoskeleton reorganization, such as cytochalasin-D (eel: 10 nM; frog: 1 nM), an inhibitor of actin polymerisation, wortmannin (0.01 nM), an inhibitor of PI3-kinase (PI3-K)/protein kinase B (Akt) signal-transduction cascade, butanedione 2-monoxime (BDM) (eel: 100 nM; frog: 10 nM), an antagonist of myosin ATPase, and N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide (W7) (eel: 100 nM; frog: 1 nM), a calcium-calmodulin antagonist. These results demonstrate that changes in cytoskeletal dynamics play a crucial role in the negative inotropic influence of VSs on eel and frog hearts.
Collapse
Affiliation(s)
- Rosa Mazza
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Miao Y, Yan PK, Kim H, Hwang I, Jiang L. Localization of green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar compartments in tobacco BY-2 cells. PLANT PHYSIOLOGY 2006; 142:945-62. [PMID: 16980567 PMCID: PMC1630755 DOI: 10.1104/pp.106.083618] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 09/08/2006] [Indexed: 05/11/2023]
Abstract
We have previously demonstrated that vacuolar sorting receptor (VSR) proteins are concentrated on prevacuolar compartments (PVCs) in plant cells. PVCs in tobacco (Nicotiana tabacum) BY-2 cells are multivesicular bodies (MVBs) as defined by VSR proteins and the BP-80 reporter, where the transmembrane domain (TMD) and cytoplasmic tail (CT) sequences of BP-80 are sufficient and specific for correct targeting of the reporter to PVCs. The genome of Arabidopsis (Arabidopsis thaliana) contains seven VSR proteins, but little is known about their individual subcellular localization and function. Here, we study the subcellular localization of the seven Arabidopsis VSR proteins (AtVSR1-7) based on the previously proven hypothesis that the TMD and CT sequences correctly target individual VSR to its final destination in transgenic tobacco BY-2 cells. Toward this goal, we have generated seven chimeric constructs containing signal peptide (sp) linked to green fluorescent protein (GFP) and TMD/CT sequences (sp-GFP-TMD/CT) of the seven individual AtVSR. Transgenic tobacco BY-2 cell lines expressing these seven sp-GFP-TMD-CT fusions all exhibited typical punctate signals colocalizing with VSR proteins by confocal immunofluorescence. In addition, wortmannin caused the GFP-marked prevacuolar organelles to form small vacuoles, and VSR antibodies labeled these enlarged MVBs in transgenic BY-2 cells. Wortmannin also caused VSR-marked PVCs to vacuolate in other cell types, including Arabidopsis, rice (Oryza sativa), pea (Pisum sativum), and mung bean (Vigna radiata). Therefore, the seven AtVSRs are localized to MVBs in tobacco BY-2 cells, and wortmannin-induced vacuolation of PVCs is a general response in plants.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Biology and Molecular Biotechnology Program, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
14
|
Sarkar K, Kruhlak MJ, Erlandsen SL, Shaw S. Selective inhibition by rottlerin of macropinocytosis in monocyte-derived dendritic cells. Immunology 2005; 116:513-24. [PMID: 16313365 PMCID: PMC1802442 DOI: 10.1111/j.1365-2567.2005.02253.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/02/2005] [Accepted: 08/05/2005] [Indexed: 11/30/2022] Open
Abstract
We present here the analysis of fluid-phase endocytosis (FPE) in human blood monocytes and monocyte-derived dendritic cells (MDDC) facilitated by our serendipitous identification of rottlerin as an efficient inhibitor of dendritic cell FPE (IC(50) of 0.4 microM). Rottlerin was found to be an excellent tool for FPE analysis: rapid-acting, irreversible and selective for FPE (as opposed to receptor-mediated endocytosis) at concentrations of 3 microM and below. The inhibitory effect was not due to toxicity or visible change in membrane ruffles, but affects on cytoskeletal reorganization were evident in MDDC treated with relevant rottlerin concentrations during adhesion. A marked increase in FPE was observed in 1 hr interleukin (IL)-4 and granulocyte macrophage-colony stimulating factor (GM-CSF)-stimulated monocytes. Moreover, rottlerin inhibited the augmented FPE of 1-day cytokine treated monocytes and their augmented ability to induce T cell proliferative responses to tetanus toxoid. We conclude that rottlerin is a useful tool for investigating FPE and its functional importance.
Collapse
Affiliation(s)
- Kakali Sarkar
- Experimental Immunology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Stanley L Erlandsen
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolis, MN, USA
| | - Stephen Shaw
- Experimental Immunology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
15
|
Kzhyshkowska J, Gratchev A, Brundiers H, Mamidi S, Krusell L, Goerdt S. Phosphatidylinositide 3-kinase activity is required for stabilin-1-mediated endosomal transport of acLDL. Immunobiology 2005; 210:161-73. [PMID: 16164023 DOI: 10.1016/j.imbio.2005.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stabilin-1 is a type 1 transmembrane receptor specifically expressed by tissue macrophages and sinusoidal endothelial cells. We recently demonstrated that stabilin-1 is involved in the endocytic/recycling pathway and shuttles between the endosomal system and the trans-Golgi network (TGN) in human macrophages. In the present study, we designed a model cell system to study the mechanisms of stabilin-1-mediated endocytosis. Using CHO-K1 cells stably transfected with stabilin-1, we demonstrated that acetylated low-density lipoprotein (acLDL) induces recruitment of stabilin-1 into the endocytic pathway. Stabilin-1 mediates internalisation of acLDL and its delivery to early endosomes, and it is translocated together with its ligand to the late endosomal compartment. Treatment with wortmannin, a specific inhibitor of phosphatidylinositide 3-kinase (PI3K), did not block stabilin-1 mediated internalisation of acLDL as well as its trafficking to early endosomes, whereas it induced enlargement of stabilin-1/acLDL positive endosomes as well as partial dissociation of EEA1 from these structures. The major effect of wortmannin was the abrogation of stabilin-1/acLDL trafficking into the late endocytic pathway. In stabilin-1 positive human type 2 macrophages, wortmannin treatment resulted in formation of both enlarged and small stabilin-1 positive endosomes. This effect, however, was significantly weaker in macrophages as compared to CHO-stabilin-1 cells. Our data indicate that PI3K activity is required for the transfer of stabilin-1 and its ligand acLDL from early to late endosomal compartments.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Mousavi S, Sato M, Sporstøl M, Smedsrød B, Berg T, Kojima N, Senoo H. Uptake of denatured collagen into hepatic stellate cells: evidence for the involvement of urokinase plasminogen activator receptor-associated protein/Endo180. Biochem J 2005; 387:39-46. [PMID: 15506989 PMCID: PMC1134930 DOI: 10.1042/bj20040966] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue remodelling is dependent on the integration of signals that control turnover of ECM (extracellular matrix). Breakdown and endocytosis of collagen, a major component of the ECM, is central to this process. Whereas controlled secretion of matrix-degrading enzymes (such as matrix metalloproteinases) has long been known to mediate ECM breakdown, it is becoming clear that uPARAP/Endo180 (where uPARAP stands for urokinase plasminogen activator receptor-associated protein) serves as a receptor that mediates endocytosis of collagen by several types of cells. In the liver, the stellate cells play a major role in turnover of ECM including collagens. These cells synthesize various collagens and also produce matrix metalloproteinases. In the present study, we investigated the capacity of rat hepatic stellate cells to endocytose and degrade 125I-labelled heat-denatured collagen I. It was found that the collagen is efficiently taken up and degraded by these cells. Degradation was inhibited by inhibitors of lysosomal proteases (leupeptin and E-64d) and the vacuolar proton pump (concanamycin A), indicating that it takes place in lysosomes. Furthermore, endocytosed FITC-labelled collagen was shown to reach late endocytic compartments in which it colocalized with LysoTracker (a marker of late endocytic compartments). Competition experiments showed that uPA and unlabelled collagen are capable of inhibiting binding and uptake of [125I]collagen in a dose-dependent manner. Moreover, Western-blot analysis of cell lysate (using a polyclonal rabbit human-Endo180 antiserum) revealed a single band at 180 kDa. In addition, the antiserum was capable of reducing [125I]collagen binding to the cell surface. Finally, using two primers designed from the human uPARAP/Endo180 mRNA sequence, the expression of uPARAP/Endo180 mRNA was detected by reverse transcriptase-PCR. These results together suggest that uPARAP/Endo180 mediates endocytosis of collagen in rat liver stellate cells.
Collapse
Affiliation(s)
- Seyed Ali Mousavi
- *Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Mitsuru Sato
- †Department of Anatomy, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Marita Sporstøl
- *Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Baard Smedsrød
- ‡Department of Experimental Pathology, University of Tromsø, Norway
| | - Trond Berg
- *Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
- To whom correspondence should be addressed (email )
| | - Naosuke Kojima
- †Department of Anatomy, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Haruki Senoo
- †Department of Anatomy, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
17
|
Liu E, Law HKW, Lau YL. Insulin-like growth factor I promotes maturation and inhibits apoptosis of immature cord blood monocyte-derived dendritic cells through MEK and PI 3-kinase pathways. Pediatr Res 2003; 54:919-25. [PMID: 12930919 DOI: 10.1203/01.pdr.0000088067.04673.1b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
IGF-I has profound effects on the immune system. We previously reported that IGF-I promoted cord blood (CB)-naïve T-cell maturation and now show that IGF-I promoted maturation of CB monocyte-derived dendritic cells (DC) with up-regulation of CD83, CD86, CD40, and major histocompatibility complex (MHC) class II molecules, and down-regulation of mannose receptor. Furthermore, IGF-I inhibited apoptosis of CB DC and increased the production of tumor necrosis factor alpha (TNF-alpha). These effects were blocked by specific mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059) and phosphoinositol 3-kinase inhibitor (LY294002). PD98059 partially inhibited the IGF-I-induced up-regulation of MHC class II. In contrast, LY294002 was additive in the IGF-I-induced up-regulation of MHC class II. Moreover, LY294002 significantly increased the percentage of late apoptotic cells in CB. These results imply the involvement of different pathways for the differential regulation of co-stimulatory molecule expression and apoptosis. The addition of anti-TNF-alpha did not neutralize the effects of IGF-I on CB DC maturation and apoptosis. On the contrary, neutralizing TNF-alpha significantly increased the IGF-I-induced up-regulation of CD83 and CD40. We conclude that IGF-I has maturation and survival effects on CB DC. These effects are mediated through both MEK and PI 3-kinase pathways but not through the IGF-I induction of TNF-alpha production by the DC.
Collapse
Affiliation(s)
- Enmei Liu
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
18
|
Mousavi SA, Brech A, Berg T, Kjeken R. Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes. Biochem J 2003; 372:861-9. [PMID: 12646047 PMCID: PMC1223449 DOI: 10.1042/bj20021136] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 03/17/2003] [Accepted: 03/19/2003] [Indexed: 12/23/2022]
Abstract
To obtain information about the role of phosphoinositide 3-kinase (PI3K) in the endocytic pathway in hepatocytes, the uptake and intracellular transport of asialo-orosomucoid (ASOR) was followed in cells treated with wortmannin or LY294002. The two inhibitors, at concentrations known to inhibit the enzyme, did not affect internalization or the number of surface asialoglycoprotein receptors, but they caused a paradoxical increase (approx. 50% above control values) in the degradation of ASOR labelled with [(125)I]tyramine cellobiose ([(125)I]TC). Wortmannin or LY204002 inhibited the autophagic sequestration of lactate dehydrogenase very effectively, and the enhanced degradation of [(125)I]TC-ASOR could be an indirect effect of reduced autophagy, as an amino acid mixture known to inhibit autophagy also caused increased degradation of [(125)I]TC-ASOR, and its effect was not additive to that of wortmannin or LY294002. Wortmannin or LY294002 had pronounced effects on the late parts of the endocytic pathway in the hepatocytes: first, dense lysosomes disappeared and were replaced by swollen vesicles; secondly, degradation of [(125)I]TC-ASOR took place in an organelle of lower buoyant density (in a sucrose gradient) than the bulk of lysosomes (identified in the gradient by lysosomal marker enzymes). With increasing length of incubation with wortmannin or LY294002, the density distributions of the lysosomal markers also shifted to lower density and gradually approached that of the labelled degradation products. The labelled degradation products formed from [(125)I]TC-labelled proteins were trapped at the site of formation, because they did not penetrate the vesicle membranes. The results obtained indicate that internalization and intracellular transport of ASOR to lysomes may take place in the absence of PI3K activity in rat hepatocytes. On the other hand, fusion of late endosomes with lysosomes seems to produce 'hybrid organelles' (active lysosomes) that are unable to mature into dense lysosomes.
Collapse
Affiliation(s)
- Seyed Ali Mousavi
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, Post Box 1050, Blindern, Norway
| | | | | | | |
Collapse
|