1
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
2
|
Si HR, Sun SS, Liu YK, Qiu LY, Tang B, Liu F, Fu Q, Xu CD, Wan PJ. Roles of GFAT and PFK genes in energy metabolism of brown planthopper, Nilaparvata lugens. Front Physiol 2023; 14:1213654. [PMID: 37415905 PMCID: PMC10320585 DOI: 10.3389/fphys.2023.1213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferases (GFATs) and phosphofructokinase (PFKs) are the principal rate-limiting enzymes involved in hexosamine biosynthesis pathway (HBP) and glycolysis pathway, respectively. In this study, the NlGFAT and NlPFK were knocked down through RNA interference (RNAi) in Nilaparvata lugens, the notorious brown planthopper (BPH), and the changes in energy metabolism were determined. Knockdown of either NlGFAT or NlPFK substantially reduced gene expression related to trehalose, glucose, and glycogen metabolism pathways. Moreover, trehalose content rose significantly at 72 h after dsGFAT injection, and glycogen content increased significantly at 48 h after injection. Glucose content remained unchanged throughout the experiment. Conversely, dsPFK injection did not significantly alter trehalose, but caused an extreme increase in glucose and glycogen content at 72 h after injection. The Knockdown of NlGFAT or NlPFK significantly downregulated the genes in the glycolytic pathway, as well as caused a considerable and significant decrease in pyruvate kinase (PK) activity after 48 h and 72 h of inhibition. After dsGFAT injection, most of genes in TCA cycle pathway were upregulated, but after dsNlPFK injection, they were downregulated. Correspondingly, ATP content substantially increased at 48 h after NlGFAT knockdown but decreased to an extreme extent by 72 h. In contrast, ATP content decreased significantly after NlPFK was knocked down and returned. The results have suggested the knockdown of either NlGFAT or NlPFK resulted in metabolism disorders in BPHs, highlighting the difference in the impact of those two enzyme genes on energy metabolism. Given their influence on BPHs energy metabolism, developing enzyme inhibitors or activators may provide a biological control for BPHs.
Collapse
Affiliation(s)
- Hui-Ru Si
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Si-Si Sun
- Guizhou Institute of Mountainous Environment and Climate, Guiyang, China
| | - Yong-Kang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ling-Yu Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fang Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Cai-Di Xu
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Liu X, Blaženović I, Contreras AJ, Pham TM, Tabuloc CA, Li YH, Ji J, Fiehn O, Chiu JC. Hexosamine biosynthetic pathway and O-GlcNAc-processing enzymes regulate daily rhythms in protein O-GlcNAcylation. Nat Commun 2021; 12:4173. [PMID: 34234137 PMCID: PMC8263742 DOI: 10.1038/s41467-021-24301-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.
Collapse
Affiliation(s)
- Xianhui Liu
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Ivana Blaženović
- grid.27860.3b0000 0004 1936 9684West Coast Metabolomics Center, University of California, Davis, CA USA
| | - Adam J. Contreras
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Thu M. Pham
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Christine A. Tabuloc
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Ying H. Li
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Jian Ji
- grid.509509.00000 0004 7699 6596School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu China
| | - Oliver Fiehn
- grid.27860.3b0000 0004 1936 9684West Coast Metabolomics Center, University of California, Davis, CA USA
| | - Joanna C. Chiu
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| |
Collapse
|
5
|
Ruegenberg S, Mayr FAMC, Atanassov I, Baumann U, Denzel MS. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1. Nat Commun 2021; 12:2176. [PMID: 33846315 PMCID: PMC8041777 DOI: 10.1038/s41467-021-22320-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
The hexosamine pathway (HP) is a key anabolic pathway whose product uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor for glycosylation processes in mammals. It modulates the ER stress response and HP activation extends lifespan in Caenorhabditis elegans. The highly conserved glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting HP enzyme. GFAT-1 activity is modulated by UDP-GlcNAc feedback inhibition and via phosphorylation by protein kinase A (PKA). Molecular consequences of GFAT-1 phosphorylation, however, remain poorly understood. Here, we identify the GFAT-1 R203H substitution that elevates UDP-GlcNAc levels in C. elegans. In human GFAT-1, the R203H substitution interferes with UDP-GlcNAc inhibition and with PKA-mediated Ser205 phosphorylation. Our data indicate that phosphorylation affects the interactions of the two GFAT-1 domains to control catalytic activity. Notably, Ser205 phosphorylation has two discernible effects: it lowers baseline GFAT-1 activity and abolishes UDP-GlcNAc feedback inhibition. PKA controls the HP by uncoupling the metabolic feedback loop of GFAT-1.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Felix A. M. C. Mayr
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ilian Atanassov
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Martin S. Denzel
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Xu CD, Liu YK, Qiu LY, Wang SS, Pan BY, Li Y, Wang SG, Tang B. GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens. Sci Rep 2021; 11:5246. [PMID: 33664411 PMCID: PMC7933274 DOI: 10.1038/s41598-021-84760-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased significantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition significantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2-4, Cht6-7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite effects on these genes. These results may be beneficial to develop new chitin synthesis inhibitors for pest control.
Collapse
Affiliation(s)
- Cai-Di Xu
- College of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yong-Kang Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Sha-Sha Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bi-Ying Pan
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yan Li
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Oliveira IA, Allonso D, Fernandes TVA, Lucena DMS, Ventura GT, Dias WB, Mohana-Borges RS, Pascutti PG, Todeschini AR. Enzymatic and structural properties of human glutamine:fructose-6-phosphate amidotransferase 2 (hGFAT2). J Biol Chem 2020; 296:100180. [PMID: 33303629 PMCID: PMC7948480 DOI: 10.1074/jbc.ra120.015189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugates play a central role in several cellular processes, and alteration in their composition is associated with numerous human pathologies. Substrates for cellular glycosylation are synthesized in the hexosamine biosynthetic pathway, which is controlled by the glutamine:fructose-6-phosphate amidotransfera-se (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer; however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in Escherichia coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the expected ordered bi–bi mechanism, and performs the glucosamine-6-phosphate synthesis much more slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerize fructose-6-phosphate into glucose-6-phosphate even in the presence of equimolar amounts of glutamine, which results in unproductive glutamine hydrolysis. Structural analysis of a three-dimensional model of rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in the glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations suggest that this loop is the most flexible portion of the protein and plays a key role on conformational states of hGFAT2. Thus, our study provides the first comprehensive set of data on the structure, kinetics, and mechanics of hGFAT2, which will certainly contribute to further studies on the (patho)physiology of hGFAT2.
Collapse
Affiliation(s)
- Isadora A Oliveira
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Diego Allonso
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Tácio V A Fernandes
- Laboratório de Modelagem e Dinâmica Molecular, IBCCF, UFRJ, Rio de Janeiro, RJ, Brazil; Laboratório de Macromoléculas, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | - Daniela M S Lucena
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gustavo T Ventura
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Wagner Barbosa Dias
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Pedro G Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, IBCCF, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Adriane R Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Chen P, Visokay S, Abrams JM. Drosophila GFAT1 and GFAT2 enzymes encode obligate developmental functions. Fly (Austin) 2020; 14:3-9. [PMID: 32615907 DOI: 10.1080/19336934.2020.1784674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glutamine: fructose-6-phosphate amidotransferase (GFAT) enzymes catalyse the first committed step of the hexosamine biosynthesis pathway (HBP) using glutamine and fructose-6-phosphate to form glucosamine-6-phosphate (GlcN6P). Numerous species (e.g. mouse, rat, zebrafish, chicken) including humans and Drosophila encode two broadly expressed copies of this enzyme but whether these perform redundant, partially overlapping or distinct functions is not known. To address this question, we produced single gene null mutations in the fly counterparts of gfat1 and gfat2. Deletions for either enzyme were fully lethal and homozygotes lacking either GFAT1 or GFAT2 died at or prior to the first instar larval stage. Therefore, when genetically eliminated, neither isoform was able to compensate for the other. Importantly, dietary supplementation with D-glucosamine-6-phosphate rescued GFAT2 deficiency and restored viability to gfat2-/- mutants. In contrast, glucosamine-6-phosphate did not rescue gfat1-/- animals.
Collapse
Affiliation(s)
- Po Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - Sarah Visokay
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, TX, USA
| |
Collapse
|
9
|
Alme EB, Stevenson E, Krogan NJ, Swaney DL, Toczyski DP. The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genet 2020; 16:e1008840. [PMID: 32579556 PMCID: PMC7340321 DOI: 10.1371/journal.pgen.1008840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/07/2020] [Accepted: 05/08/2020] [Indexed: 11/18/2022] Open
Abstract
The S. cerevisiae ISR1 gene encodes a putative kinase with no ascribed function. Here, we show that Isr1 acts as a negative regulator of the highly-conserved hexosamine biosynthesis pathway (HBP), which converts glucose into uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the carbohydrate precursor to protein glycosylation, GPI-anchor formation, and chitin biosynthesis. Overexpression of ISR1 is lethal and, at lower levels, causes sensitivity to tunicamycin and resistance to calcofluor white, implying impaired protein glycosylation and reduced chitin deposition. Gfa1 is the first enzyme in the HBP and is conserved from bacteria and yeast to humans. The lethality caused by ISR1 overexpression is rescued by co-overexpression of GFA1 or exogenous glucosamine, which bypasses GFA1's essential function. Gfa1 is phosphorylated in an Isr1-dependent fashion and mutation of Isr1-dependent sites ameliorates the lethality associated with ISR1 overexpression. Isr1 contains a phosphodegron that is phosphorylated by Pho85 and subsequently ubiquitinated by the SCF-Cdc4 complex, largely confining Isr1 protein levels to the time of bud emergence. Mutation of this phosphodegron stabilizes Isr1 and recapitulates the overexpression phenotypes. As Pho85 is a cell cycle and nutrient responsive kinase, this tight regulation of Isr1 may serve to dynamically regulate flux through the HBP and modulate how the cell's energy resources are converted into structural carbohydrates in response to changing cellular needs.
Collapse
Affiliation(s)
- Emma B. Alme
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
10
|
Ferron M, Cadiet J, Persello A, Prat V, Denis M, Erraud A, Aillerie V, Mevel M, Bigot E, Chatham JC, Gauthier C, Rozec B, Lauzier B. O-GlcNAc stimulation: A new metabolic approach to treat septic shock. Sci Rep 2019; 9:18751. [PMID: 31822776 PMCID: PMC6904741 DOI: 10.1038/s41598-019-55381-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Septic shock is a systemic inflammation associated with cell metabolism disorders and cardiovascular dysfunction. Increases in O-GlcNAcylation have shown beneficial cardiovascular effects in acute pathologies. We used two different rat models to evaluate the beneficial effects of O-GlcNAc stimulation at the early phase of septic shock. Rats received lipopolysaccharide (LPS) to induce endotoxemic shock or saline (control) and fluid resuscitation (R) with or without O-GlcNAc stimulation (NButGT-10 mg/kg) 1 hour after shock induction. For the second model, rats received cecal ligature and puncture (CLP) surgery and fluid therapy with or without NButGT. Cardiovascular function was evaluated and heart and blood samples were collected and analysed. NButGT treatment efficiently increased total O-GlcNAc without modification of HBP enzyme expression.Treatment improved circulating parameters and cardiovascular function in both models, and restored SERCA2a expression levels. NButGT treatment also reduced animal mortality. In this study, we demonstrate that in septic shock O-GlcNAc stimulation improves global animal and cardiovascular function outcomes associated with a restoration of SERCA2a levels. This pre-clinical study opens avenues for a potential therapy of early-stage septic shock.
Collapse
Affiliation(s)
- Marine Ferron
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| | - Julien Cadiet
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | - Valentine Prat
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Manon Denis
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Mathieu Mevel
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Edith Bigot
- Biochemistry Department, Laënnec Hospital, CHU Nantes, Nantes, France
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Birmingham, United States
| | | | - Bertrand Rozec
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | | |
Collapse
|
11
|
Pletcher RC, Hardman SL, Intagliata SF, Lawson RL, Page A, Tennessen JM. A Genetic Screen Using the Drosophila melanogaster TRiP RNAi Collection To Identify Metabolic Enzymes Required for Eye Development. G3 (BETHESDA, MD.) 2019; 9:2061-2070. [PMID: 31036678 PMCID: PMC6643872 DOI: 10.1534/g3.119.400193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
The metabolic enzymes that compose glycolysis, the citric acid cycle, and other pathways within central carbon metabolism have emerged as key regulators of animal development. These enzymes not only generate the energy and biosynthetic precursors required to support cell proliferation and differentiation, but also moonlight as regulators of transcription, translation, and signal transduction. Many of the genes associated with animal metabolism, however, have never been analyzed in a developmental context, thus highlighting how little is known about the intersection of metabolism and development. Here we address this deficiency by using the Drosophila TRiP RNAi collection to disrupt the expression of over 1,100 metabolism-associated genes within cells of the eye imaginal disc. Our screen not only confirmed previous observations that oxidative phosphorylation serves a critical role in the developing eye, but also implicated a host of other metabolic enzymes in the growth and differentiation of this organ. Notably, our analysis revealed a requirement for glutamine and glutamate metabolic processes in eye development, thereby revealing a role of these amino acids in promoting Drosophila tissue growth. Overall, our analysis highlights how the Drosophila eye can serve as a powerful tool for dissecting the relationship between development and metabolism.
Collapse
Affiliation(s)
- Rose C Pletcher
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sara L Hardman
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sydney F Intagliata
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Rachael L Lawson
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Aumunique Page
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Jason M Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| |
Collapse
|
12
|
Owings KG, Lowry JB, Bi Y, Might M, Chow CY. Transcriptome and functional analysis in a Drosophila model of NGLY1 deficiency provides insight into therapeutic approaches. Hum Mol Genet 2018; 27:1055-1066. [PMID: 29346549 PMCID: PMC5886220 DOI: 10.1093/hmg/ddy026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Autosomal recessive loss-of-function mutations in N-glycanase 1 (NGLY1) cause NGLY1 deficiency, the only known human disease of deglycosylation. Patients present with developmental delay, movement disorder, seizures, liver dysfunction and alacrima. NGLY1 is a conserved cytoplasmic component of the Endoplasmic Reticulum Associated Degradation (ERAD) pathway. ERAD clears misfolded proteins from the ER lumen. However, it is unclear how loss of NGLY1 function impacts ERAD and other cellular processes and results in the constellation of problems associated with NGLY1 deficiency. To understand how loss of NGLY1 contributes to disease, we developed a Drosophila model of NGLY1 deficiency. Loss of NGLY1 function resulted in developmental delay and lethality. We used RNAseq to determine which processes are misregulated in the absence of NGLY1. Transcriptome analysis showed no evidence of ER stress upon NGLY1 knockdown. However, loss of NGLY1 resulted in a strong signature of NRF1 dysfunction among downregulated genes, as evidenced by an enrichment of genes encoding proteasome components and proteins involved in oxidation-reduction. A number of transcriptome changes also suggested potential therapeutic interventions, including dysregulation of GlcNAc synthesis and upregulation of the heat shock response. We show that increasing the function of both pathways rescues lethality. Together, transcriptome analysis in a Drosophila model of NGLY1 deficiency provides insight into potential therapeutic approaches.
Collapse
Affiliation(s)
- Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joshua B Lowry
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yiling Bi
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Matthew Might
- Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
- School of Computing, University of Utah, Salt Lake City, UT 84112, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Liu Y, Cai DX, Wang L, Li JZ, Wang WN. Glucosamine: fructose-6-phosphate amidotransferase in the white shrimp Litopenaeus vannamei: characterization and regulation under alkaline and cadmium stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1754-1764. [PMID: 25956985 DOI: 10.1007/s10646-015-1480-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Heavy metal residues and chemical contaminators considered as relevant sources of aquatic environmental pollutants have a generally immunosuppressive effect on aquatic organisms, depressing metabolic activities and immune response. Glutamine: fructose-6-phosphate aminotransferase (GFAT, EC2.6.1.16) is the first, and rate-limiting, enzyme in the hexosamine biosynthetic pathway, and is involved in the regulation of chitin biosynthesis and glycosylation of proteins. We have isolated and characterized GFAT from the white shrimp Litopenaeus vannamei. Amino acid sequence similarity of the Lv-GFAT (L.vannamei-GFAT) was highest to GFATs isolated from insects and mammals (83 % similarity to that of Haemaphysalis longicornis). The open-reading frame of the Lv-GFAT codes for a protein of 41.6 kDa with a calculated isoelectric point of 5.03. RT-PCR assays showed that endogenous Lv-GFAT mRNA is most strongly expressed in the intestine. Further analysis of Lv-GFAT gene expression in hepatopancreas by quantitative real-time PCR demonstrated that Lv-GFAT transcript levels increased when the shrimp were exposed to alkaline pH (9.3) and cadmium stress, but the time when its mRNA expression level peaked differed under these stresses. We also first expressed the recombinant protein of GFAT from shrimps in Escherichia coli. Western blot analyses confirmed that the Lv-GFAT protein was strongly expressed in the hepatopancreas after exposure to the LC-Cd stress. These results suggest that Lv-GFAT expression is stimulated by alkaline pH and cadmium stress and that it may play important roles in resistance of shrimp to environmental stresses.
Collapse
Affiliation(s)
- Y Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - D X Cai
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - L Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - J Z Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - W N Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
14
|
Wang LH, Chi YH, Guo FG, Li-Byarlay H, Balfe S, Fang JC, Pittendrigh BR, Zhu-Salzman K. Transcriptomic response of cowpea bruchids to N-acetylglucosamine-specific lectins. INSECT SCIENCE 2015; 22:83-94. [PMID: 24446316 DOI: 10.1111/1744-7917.12108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
Griffonia simplicifolia lectin II (GSII) and wheat germ agglutinin (WGA) are N-acetylglucosamine-binding lectins. Previous studies demonstrated that they have anti-insect activity, a property potentially useful in pest control. To gain some insight into the insect response to dietary lectins, we performed transcriptomic analysis using the cowpea bruchid (Callosobruchus maculatus) midgut microarray platform we built. Compared to the nonnutritional cellulose treatment, dietary lectins induced more profound changes in gene expression. Ingestion of relatively high doses of lectins for 24 h resulted in alteration of gene expression involved in sugar and lipid metabolism, transport, development, defense, and stress tolerance. Metabolic genes were largely downregulated. Moreover, we observed disorganized microvilli resulting from ingestion of WGA. This morphological change is consistent with the lectin-induced changes in genes related to midgut epithelial cell repair. In addition, suboptimal nutrient conditions may serve as a stress signal to trigger senescence processes, leading to growth arrest and developmental delay.
Collapse
Affiliation(s)
- Li-Hua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dassanayaka S, Jones SP. O-GlcNAc and the cardiovascular system. Pharmacol Ther 2013; 142:62-71. [PMID: 24287310 DOI: 10.1016/j.pharmthera.2013.11.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/01/2013] [Indexed: 12/28/2022]
Abstract
The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Institute of Molecular Cardiology, Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - Steven P Jones
- Institute of Molecular Cardiology, Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
16
|
Mouilleron S, Badet-Denisot MA, Pecqueur L, Madiona K, Assrir N, Badet B, Golinelli-Pimpaneau B. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer. J Biol Chem 2012; 287:34533-46. [PMID: 22851174 DOI: 10.1074/jbc.m112.380378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The amino-terminal cysteine of glucosamine-6-phosphate synthase (GlmS) acts as a nucleophile to release and transfer ammonia from glutamine to fructose 6-phosphate through a channel. The crystal structure of the C1A mutant of Escherichia coli GlmS, solved at 2.5 Å resolution, is organized as a hexamer, where the glutaminase domains adopt an inactive conformation. Although the wild-type enzyme is active as a dimer, size exclusion chromatography, dynamic and quasi-elastic light scattering, native polyacrylamide gel electrophoresis, and ultracentrifugation data show that the dimer is in equilibrium with a hexameric state, in vitro and in cellulo. The previously determined structures of the wild-type enzyme, alone or in complex with glucosamine 6-phosphate, are also consistent with a hexameric assembly that is catalytically inactive because the ammonia channel is not formed. The shift of the equilibrium toward the hexameric form in the presence of cyclic glucosamine 6-phosphate, together with the decrease of the specific activity with increasing enzyme concentration, strongly supports product inhibition through hexamer stabilization. Altogether, our data allow us to propose a morpheein model, in which the active dimer can rearrange into a transiently stable form, which has the propensity to form an inactive hexamer. This would account for a physiologically relevant allosteric regulation of E. coli GlmS. Finally, in addition to cyclic glucose 6-phosphate bound at the active site, the hexameric organization of E. coli GlmS enables the binding of another linear sugar molecule. Targeting this sugar-binding site to stabilize the inactive hexameric state is therefore suggested for the development of specific antibacterial inhibitors.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cardiovascular function is regulated at multiple levels. Some of the most important aspects of such regulation involve alterations in an ever-growing list of posttranslational modifications. One such modification orchestrates input from numerous metabolic cues to modify proteins and alter their localization and/or function. Known as the beta-O-linkage of N-acetylglucosamine (ie, O-GlcNAc) to cellular proteins, this unique monosaccharide is involved in a diverse array of physiological and pathological functions. This review introduces readers to the general concepts related to O-GlcNAc, the regulation of this modification, and its role in primary pathophysiology. Much of the existing literature regarding the role of O-GlcNAcylation in disease addresses the protracted elevations in O-GlcNAcylation observed during diabetes. In this review, we focus on the emerging evidence of its involvement in the cardiovascular system. In particular, we highlight evidence of protein O-GlcNAcylation as an autoprotective alarm or stress response. We discuss recent literature supporting the idea that promoting O-GlcNAcylation improves cell survival during acute stress (eg, hypoxia, ischemia, oxidative stress), whereas limiting O-GlcNAcylation exacerbates cell damage in similar models. In addition to addressing the potential mechanisms of O-GlcNAc-mediated cardioprotection, we discuss technical issues related to studying protein O-GlcNAcylation in biological systems. The reader should gain an understanding of what protein O-GlcNAcylation is and that its roles in the acute and chronic disease settings appear distinct.
Collapse
Affiliation(s)
- Gladys A Ngoh
- Institute of Molecular Cardiology, University of Louisville, 580 South Preston St, 404C, Baxter II-404C, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
18
|
Durand P, Golinelli-Pimpaneau B, Mouilleron S, Badet B, Badet-Denisot MA. Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 2008; 474:302-17. [PMID: 18279655 DOI: 10.1016/j.abb.2008.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
L-Glutamine:d-fructose-6-phosphate amidotransferase, also known as glucosamine-6-phosphate synthase (GlcN6P synthase), which catalyzes the first step in a pathway leading to the formation of uridine 5'-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), is a key point in the metabolic control of the biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of the reaction catalyzed by GlcN6P synthase is complex and involves amide bond cleavage followed by ammonia channeling and sugar isomerization. This article provides a comprehensive overview of the present knowledge on this multi-faceted enzyme emphasizing the progress made during the last five years.
Collapse
Affiliation(s)
- Philippe Durand
- Institut de Chimie des Substances Naturelles-CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
19
|
The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:215-26. [DOI: 10.1016/j.cbpb.2007.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 01/27/2023]
|
20
|
Huang X, Tsuji N, Miyoshi T, Motobu M, Islam MK, Alim MA, Fujisaki K. Characterization of glutamine: fructose-6-phosphate aminotransferase from the ixodid tick, Haemaphysalis longicornis, and its critical role in host blood feeding. Int J Parasitol 2007; 37:383-92. [PMID: 17222844 DOI: 10.1016/j.ijpara.2006.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Glutamine: fructose-6-phosphate aminotransferase (GFAT, EC2.6.1.16) is the first, and rate-limiting, enzyme in the hexosamine biosynthetic pathway, and is involved in the regulation of chitin biosynthesis and glycosylation of proteins. We report here the molecular characterization and potential functions of a novel GFAT (HlGFAT) from the ixodid tick Haemaphysalis longicornis. HlGFAT consists of 696 amino acids, possesses a class II glutamine aminotransferase domain and two sugar isomerase motifs, and has a close phylogenetic relationship to insect GFAT. HlGFAT was expressed at all stages of development and in multiple organs. The transcription levels in the cuticle and midgut were enhanced significantly by blood feeding during the first 3 days and decreased on the fifth day, while those in salivary glands maintained almost the same level during the first 3 days, and decreased to a rather low level at 5 days postinfestation. Endogenous HlGFAT was identified at all developmental stages and in multiple organs, such as epidermis, midgut epithelium, salivary gland, ovary, Malpigian's tubule and trachea. It was identified as a protein of 78.4 kDa using Western blot analysis. Following RNA interference of HlGFAT, engorgement by adult females was reduced significantly. One of the potential mechanisms for this effect may be that the inhibition of HlGFAT limits chitin biosynthesis, so disrupting cuticle growth and possibly peritrophic matrix formation during blood feeding.
Collapse
Affiliation(s)
- Xiaohong Huang
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Kato N, Mueller CR, Fuchs JF, Wessely V, Lan Q, Christensen BM. Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:1-9. [PMID: 16360944 DOI: 10.1016/j.ibmb.2005.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 05/05/2023]
Abstract
In mosquitoes, the peritrophic matrix is formed in response to blood feeding and can be a physical barrier when pathogens ingested with blood meal attempt to reach and transverse the midgut epithelium. The main components of the peritrophic matrix are chitin-biding-domain containing proteins, glycosylated proteins, and chitin fibrils. Chitin is synthesized from fructose-6-phosphate by a series of five enzymatic reactions. We previously found that blood feeding induces transcriptional up-regulation of glutamine: fructose-6-phosphate amidotransferase-1 (AeGfat-1) and chitin synthase (AeCs), the first and last enzymes of the biosynthetic pathway, respectively, in the midgut of Aedes aegypti. In this study, we demonstrated that formation of the peritrophic matrix is disrupted when the transcript abundance of either gene is knocked-down using RNAi methodologies. We also have shown that enzymatic activity of recombinant AeGFAT-1 is sensitive to feedback inhibition by UDP-N-acetylglucosamine, a substrate of chitin synthase. These findings demonstrate that in the midgut of adult Ae. aegypti, (1) chitin is synthesized de novo in response to blood feeding and is an essential component of the peritrophic matrix, and (2) chitin biosynthesis is negatively regulated, in part, by inhibitory sensitivity of AeGFAT-1 to UDP-N-acetylglucosamine.
Collapse
Affiliation(s)
- Nobutaka Kato
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. EUKARYOTIC CELL 2004; 2:886-900. [PMID: 14555471 PMCID: PMC219353 DOI: 10.1128/ec.2.5.886-900.2003] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane.
Collapse
Affiliation(s)
- Dorota A Bulik
- Department of Molecular and Cell Biology, School of Dental Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
23
|
Milewski S. Glucosamine-6-phosphate synthase--the multi-facets enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:173-92. [PMID: 12044898 DOI: 10.1016/s0167-4838(02)00318-7] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
L-Glutamine: D-fructose-6-phosphate amidotransferase, known under trivial name of glucosamine-6-phosphate synthase, as the only member of the amidotransferase subfamily of enzymes, does not display any ammonia-dependent activity. This enzyme, catalysing the first committed step in a pathway leading to the eventual formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), is an important point of metabolic control in biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of reaction catalysed by GlcN-6-P synthase is complex and involves both amino transfer and sugar isomerisation. Substantial alterations to the enzyme structure and properties have been detected in different neoplastic tissues. GlcN-6-P synthase is inflicted in phenomenon of hexosamine-induced insulin resistance in diabetes. Finally, this enzyme has been proposed as a promising target in antifungal chemotherapy. Most of these issues, especially their molecular aspects, have been extensively studied in recent years. This article provides a comprehensive overview of the present knowledge on this multi-facets enzyme.
Collapse
Affiliation(s)
- Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland.
| |
Collapse
|