1
|
Badawy AAB. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res 2017; 10:1178646917691938. [PMID: 28469468 PMCID: PMC5398323 DOI: 10.1177/1178646917691938] [Citation(s) in RCA: 697] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Regulatory and functional aspects of the kynurenine (K) pathway (KP) of tryptophan (Trp) degradation are reviewed. The KP accounts for ~95% of dietary Trp degradation, of which 90% is attributed to the hepatic KP. During immune activation, the minor extrahepatic KP plays a more active role. The KP is rate-limited by its first enzyme, Trp 2,3-dioxygenase (TDO), in liver and indoleamine 2,3-dioxygenase (IDO) elsewhere. TDO is regulated by glucocorticoid induction, substrate activation and stabilization by Trp, cofactor activation by heme, and end-product inhibition by reduced nicotinamide adenine dinucleotide (phosphate). IDO is regulated by IFN-γ and other cytokines and by nitric oxide. The KP disposes of excess Trp, controls hepatic heme synthesis and Trp availability for cerebral serotonin synthesis, and produces immunoregulatory and neuroactive metabolites, the B3 “vitamin” nicotinic acid, and oxidized nicotinamide adenine dinucleotide. Various KP enzymes are undermined in disease and are targeted for therapy of conditions ranging from immunological, neurological, and neurodegenerative conditions to cancer.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
2
|
γ-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 2015; 81:7656-65. [PMID: 26319878 DOI: 10.1128/aem.02422-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
The Rhodococcus jostii RHA1 gene cluster required for γ-resorcylate (GRA) catabolism was characterized. The cluster includes tsdA, tsdB, tsdC, tsdD, tsdR, tsdT, and tsdX, which encode GRA decarboxylase, resorcinol 4-hydroxylase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, an IclR-type regulator, a major facilitator superfamily transporter, and a putative hydrolase, respectively. The tsdA gene conferred GRA decarboxylase activity on Escherichia coli. Purified TsdB oxidized NADH in the presence of resorcinol, suggesting that tsdB encodes a unique NADH-specific single-component resorcinol 4-hydroxylase. Mutations in either tsdA or tsdB resulted in growth deficiency on GRA. The tsdC and tsdD genes conferred hydroxyquinol 1,2-dioxygenase and maleylacetate reductase activities, respectively, on E. coli. Inactivation of tsdT significantly retarded the growth of RHA1 on GRA. The growth retardation was partially suppressed under acidic conditions, suggesting the involvement of tsdT in GRA uptake. Reverse transcription-PCR analysis revealed that the tsd genes constitute three transcriptional units, the tsdBADC and tsdTX operons and tsdR. Transcription of the tsdBADC and tsdTX operons was induced during growth on GRA. Inactivation of tsdR derepressed transcription of the tsdBADC and tsdTX operons in the absence of GRA, suggesting that tsd gene transcription is negatively regulated by the tsdR-encoded regulator. Binding of TsdR to the tsdR-tsdB and tsdT-tsdR intergenic regions was inhibited by the addition of GRA, indicating that GRA interacts with TsdR as an effector molecule.
Collapse
|
3
|
Regulation of rat hepatic α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan- NAD pathway, by dietary cholesterol and sterol regulatory element-binding protein-2. Eur J Nutr 2014; 53:469-77. [PMID: 25289390 DOI: 10.1007/s00394-013-0547-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Nicotinic acid is one of the older drugs used to treat hyperlipidemia, the greatest risk factor of coronary heart disease. Nicotinic acid is also a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD). In mammals, α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) plays a key role in NAD biosynthesis from tryptophan. However, the relationship between ACMSD and cholesterol metabolism has not been clarified enough yet. The present study was performed to make clear the relationship between ACMSD and cholesterol metabolism using hypercholesterolemic rats and rat primary hepatocytes. METHODS Male Sprague-Dawley rats were fed a diet containing cholesterol for 10 days to induce hypercholesterolemia. The NAD levels in the plasma and liver and hepatic ACMSD activity were determined. In vitro study, the expression of ACMSD and the transcriptional factors that regulate cholesterol metabolism were determined using rat primary hepatocytes treated with cholesterol and 25-hydroxycholesterol or simvastatin, a statin medication, by quantitative real-time PCR analysis and Western blotting analysis. RESULTS The hepatic NAD level of the hypercholesterolemic group was significantly higher than the control, and the hepatic ACMSD activity of this group was significantly suppressed. There was a significant negative correlation between the hepatic ACMSD activity and liver cholesterol levels. Additionally, in primary rat hepatocytes treated with cholesterol and 25-hydroxycholesterol or simvastatin, ACMSD gene and protein expression was subjected to sterol-dependent regulation. This gene expression changed in parallel to sterol regulatory element-binding protein (SREBP)-2 expression. CONCLUSION These results provide the first evidence that ACMSD is associated with cholesterol metabolism, and ACMSD gene expression may be upregulated by SREBP-2.
Collapse
|
4
|
Abstract
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In this study, we identified and characterized the JJ-1b genes for the 4HB catabolic pathway via the PCA 2,3-cleavage pathway, which consisted of praR and praABEGFDCHI. Based on the enzyme activities of cell extracts of Escherichia coli carrying praI, praA, praH, praB, praC, and praD, these genes were found to code for 4HB 3-hydroxylase, PCA 2,3-dioxygenase, 5-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase, 2-hydroxymuconate-6-semialdehyde dehydrogenase, 4-oxalocrotonate (OCA) tautomerase, and OCA decarboxylase, respectively, which are involved in the conversion of 4HB into 2-hydroxypenta-2,4-dienoate (HPD). The praE, praF, and praG gene products exhibited 45 to 61% amino acid sequence identity to the corresponding enzymes responsible for the catabolism of HPD to pyruvate and acetyl coenzyme A. The deduced amino acid sequence of praR showed similarity with those of IclR-type transcriptional regulators. Reverse transcription-PCR analysis revealed that praABEGFDCHI constitute an operon, and these genes were expressed during the growth of JJ-1b on 4HB and PCA. praR-praABEGFDCHI conferred the ability to grow on 4HB to E. coli, suggesting that praEGF were functional for the conversion of HPD to pyruvate and acetyl coenzyme A. A promoter analysis suggested that praR encodes a repressor of the pra operon.
Collapse
|
5
|
Gätjens J, Mullins CS, Kampf JW, Thuéry P, Pecoraro VL. Corroborative cobalt and zinc model compounds of alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD). Dalton Trans 2008:51-62. [PMID: 19081971 DOI: 10.1039/b809453e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have synthesised and characterised a series of new Co(II) complexes (1-4, 6, 7) and one new Zn(II) complex (5) employing N(3)- and N(3)O-donor ligands [biap: N,N-bis(2-ethyl-5-methyl-imidazol-4-ylmethyl)amino-propane, KBPZG: potassium N,N-bis(3,5-dimethylpyrazolylmethyl) glycinate, KBPZA: potassium N,N-bis(3,5-dimethylpyrazolylmethyl) alaninate, KB(i)PrPZG: potassium N,N-bis(3,5-di-iso-propylpyrazolylmethyl) glycinate, and KB((t)BuM)PZG: potassium N,N-bis(3-methyl-5-tert-butyl-pyrazolylmethyl)glycinate] as structural models of the metalloenzyme alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD). These complexes were characterised by several techniques including X-ray crystallographic analysis, X-band EPR, and mass spectrometry (ESI-MS). The crystal structures of 1, 2, 6,7 revealed that they exist as mononuclear Co(II) complexes with trigonal-bipyramidal geometry in the solid state. Compounds 3 and 5 form infinite polymeric chains of Co(II) or Zn(II) complexes, respectively, linked by the pendant carboxylate arms of the BPZG(-) ligand. By comparing the degree of distortion in the penta-coordinate complexes, defined by the Addison-parameter tau, with the value determined for the five-coordinate centres found in the active site of ACMSD, it could be seen that complexes 5 and 7 are very good matches for the geometry of the zinc(II) centre in monomer A of the native enzyme. All complexes could be seen as model compounds for the active site of the enzyme ACMSD, where the Co(II) complexes reflected the structural flexibility found in case of two histidine (His177 and His228) residues found in the active site of the enzyme.
Collapse
Affiliation(s)
- Jessica Gätjens
- University of Michigan, Department of Chemistry, Willard H. Dow Laboratories, 930 North University Ave, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
6
|
Pucci L, Perozzi S, Cimadamore F, Orsomando G, Raffaelli N. Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J 2007; 274:827-40. [PMID: 17288562 DOI: 10.1111/j.1742-4658.2007.05635.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-amino 3-carboxymuconate 6-semialdehyde decarboxylase (ACMSD, EC 4.1.1.45) plays a key role in tryptophan catabolism. By diverting 2-amino 3-carboxymuconate semialdehyde from quinolinate production, the enzyme regulates NAD biosynthesis from the amino acid, directly affecting quinolinate and picolinate formation. ACMSD is therefore an attractive therapeutic target for treating disorders associated with increased levels of tryptophan metabolites. Through an isoform-specific real-time PCR assay, the constitutive expression of two alternatively spliced ACMSD transcripts (ACMSD I and II) has been examined in human brain, liver and kidney. Both transcripts are present in kidney and liver, with highest expression occurring in kidney. In brain, no ACMSD II expression is detected, and ACMSD I is present at very low levels. Cloning of the two cDNAs in yeast expression vectors and production of the recombinant proteins, revealed that only ACMSD I is endowed with enzymatic activity. After purification to homogeneity, this enzyme was found to be a monomer, with a broad pH optimum ranging from 6.5 to 8.0, a K(m) of 6.5 microM, and a k(cat) of 1.0 s(-1). ACMSD I is inhibited by quinolinic acid, picolinic acid and kynurenic acid, and it is activated slightly by Fe(2+) and Co(2+). Site-directed mutagenesis experiments confirmed the catalytic role of residues, conserved in all ACMSDs so far characterized, which in the bacterial enzyme participate directly in the metallocofactor binding. Even so, the properties of the human enzyme differ significantly from those reported for the bacterial counterpart, suggesting that the metallocofactor is buried deep within the protein and not as accessible as it is in bacterial ACMSD.
Collapse
Affiliation(s)
- Lisa Pucci
- Istituto di Biotecnologie Biochimiche, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
7
|
Colabroy KL, Begley TP. Tryptophan catabolism: identification and characterization of a new degradative pathway. J Bacteriol 2005; 187:7866-9. [PMID: 16267312 PMCID: PMC1280306 DOI: 10.1128/jb.187.22.7866-7869.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 08/24/2005] [Indexed: 11/20/2022] Open
Abstract
A new tryptophan catabolic pathway is characterized from Burkholderia cepacia J2315. In this pathway, tryptophan is converted to 2-amino-3-carboxymuconate semialdehyde, which is enzymatically degraded to pyruvate and acetate via the intermediates 2-aminomuconate and 4-oxalocrotonate. This pathway differs from the proposed mammalian pathway which converts 2-aminomuconate to 2-ketoadipate and, ultimately, glutaryl-coenzyme A.
Collapse
Affiliation(s)
- Keri L Colabroy
- Department of Chemistry, Muhlenberg College, Allentown, PA 18104, USA.
| | | |
Collapse
|
8
|
Smiley JA, Kundracik M, Landfried DA, Barnes VR, Axhemi AA. Genes of the thymidine salvage pathway: thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa. Biochim Biophys Acta Gen Subj 2005; 1723:256-64. [PMID: 15794921 DOI: 10.1016/j.bbagen.2005.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/24/2022]
Abstract
Genes for two enzymes in the thymidine salvage pathway, thymine-7-hydroxylase (THase; official name thymine dioxygenase) and iso-orotate decarboxylase (IDCase) have been isolated from fungal sources. THase was isolated from a Rhodotorula glutinis cDNA library using a degenerate oligonucleotide based on the published amino acid sequence. The coding sequence was transferred to an Escherichia coli expression system, from which recombinant THase activity was measured using 14C-labeled thymine. The THase sequence shows an almost complete avoidance of codons ending in A or T: 95.8% GC content is present in the third position of codons. A connection between this codon bias and the role of the thymidine salvage pathway in pyrimidine metabolism is proposed. The THase sequence is similar to Group I Fe+2-dependent, alphaKG-dependent dioxygenases. The R. glutinis THase gene was used to locate the probable THase genes in the sequenced genomes of Neurospora crassa and Aspergillus nidulans. The genes neighboring THase in these two genomes are similar to each other, and are similar to the mammalian 2-amino-3-carboxymuconate-6-semialdhyde decarboxylase (ACMSD), leading to their identification as IDCase genes. The N. crassa version was isolated by PCR of genomic DNA, and IDCase activity was measured in recombinant E. coli carrying this gene. A new family of decarboxylases, using similar substrates, is identified by virtue of the protein sequence similarity.
Collapse
Affiliation(s)
- Jeffrey A Smiley
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555, United States.
| | | | | | | | | |
Collapse
|
9
|
Yoshida M, Fukuhara N, Oikawa T. Thermophilic, reversible gamma-resorcylate decarboxylase from Rhizobium sp. strain MTP-10005: purification, molecular characterization, and expression. J Bacteriol 2004; 186:6855-63. [PMID: 15466039 PMCID: PMC522189 DOI: 10.1128/jb.186.20.6855-6863.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found the occurrence of thermophilic reversible gamma-resorcylate decarboxylase (gamma-RDC) in the cell extract of a bacterium isolated from natural water, Rhizobium sp. strain MTP-10005, and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be about 151 kDa by gel filtration, and that of the subunit was 37.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; in other words, the enzyme was a homotetramer. The enzyme was induced specifically by the addition of gamma-resorcylate to the medium. The enzyme required no coenzyme and did not act on 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 3,4-dihydroxybenzoate, 3,5-dihydroxybenzoate, 2-hydroxybenzoate, or 3-hydroxybenzoate. It was relatively thermostable to heat treatment, and its half-life at 50 degrees C was estimated to be 122 min; furthermore, it catalyzed the reverse carboxylation of resorcinol. The values of k(cat)/K(m) (mMu(-1) . s(-1)) for gamma-resorcylate and resorcinol at 30 degrees C and pH 7 were 13.4 and 0.098, respectively. The enzyme contains 327 amino acid residues, and sequence identities were found with those of hypothetical protein AGR C 4595p from Agrobacterium tumefaciens strain C58 (96% identity), 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis (32%), and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylases from Bacillus cereus ATCC 10987 (26%), Rattus norvegicus (26%), and Homo sapiens (25%). The genes (graA [1,230 bp], graB [888 bp], and graC [1,056 bp]) that are homologous to those in the resorcinol pathway also exist upstream and downstream of the gamma-RDC gene. Judging from these results, the resorcinol pathway also exists in Rhizobium sp. strain MTP-10005, and gamma-RDC probably catalyzes a reaction just before the hydroxylase in it does.
Collapse
Affiliation(s)
- Masahiro Yoshida
- Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka-Fu 564-8680, Japan
| | | | | |
Collapse
|
10
|
Bono H, Nikaido I, Kasukawa T, Hayashizaki Y, Okazaki Y. Comprehensive analysis of the mouse metabolome based on the transcriptome. Genome Res 2003; 13:1345-9. [PMID: 12819132 PMCID: PMC403659 DOI: 10.1101/gr.974603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The complete set of cDNAs encoding the enzymes of known metabolic pathways has not previously been available for any mammal. Here, transcripts encoding the metabolic pathways of the mouse (mouse metabolome) were reconstructed by making use of the KEGG metabolic pathway database and gene ontology (GO) assignment to the mouse representative transcript and protein set (RTPS), which contains all available mouse transcript sequences including the FANTOM set of RIKEN mouse cDNA clones. By assigning EC numbers extracted from the molecular function ontology in GO, the known mouse transcriptome was predicted to encode enzymes with 726 unique EC numbers. Of these, 648 EC numbers were newly assigned based on the FANTOM set. The mouse metabolome confirmed by cDNA analysis includes almost all of the enzymes of well known pathways such as the tricarboxylic acid cycle and urea cycle. On the other hand, analysis of enzymes required for the tryptophan metabolism pathway revealed a lack of connectivity, indicating that cDNAs/genes encoding several key enzymes remain to be identified. The information derived from coexpression from the cDNA microarray analysis of enzymes of known function may lead to identification of the missing components of the metabolome, and will add new insights into the connectivity of the mammalian metabolic pathways.
Collapse
Affiliation(s)
- Hidemasa Bono
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
11
|
Muraki T, Taki M, Hasegawa Y, Iwaki H, Lau PCK. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl Environ Microbiol 2003; 69:1564-72. [PMID: 12620844 PMCID: PMC150085 DOI: 10.1128/aem.69.3.1564-1572.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022] Open
Abstract
The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, respectively. The NbaC enzyme carries out the oxidation of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate-6-semialdehyde, while the NbaD enzyme catalyzes the decarboxylation of the latter compound to 2-aminomuconate-6-semialdehyde. The NbaC and NbaD proteins were overexpressed in Escherichia coli and characterized. The substrate specificity of the 23.8-kDa NbaC protein was found to be restricted to 3-hydroxyanthranilate. In E. coli, this enzyme oxidizes 3-hydroxyanthranilate with a specific activity of 8 U/mg of protein. Site-directed mutagenesis experiments revealed the essential role of two conserved histidine residues (His52 and His96) in the NbaC sequence. The NbaC activity is also dependent on the presence of Fe(2+) but is inhibited by other metal ions, such as Zn(2+), Cu(2+), and Cd(2+). The NbaD protein was overproduced as a 38.7-kDa protein, and its specific activity towards 2-amino-3-carboxymuconate-6-semialdehyde was 195 U/mg of protein. Further processing of 2-aminomuconate-6-semialdehyde to pyruvic acid and acetyl coenzyme A was predicted to proceed via the activities of NbaE, NbaF, NbaG, NbaH, NbaI, and NbaJ. The predicted amino acid sequences of these proteins are highly homologous to those of the corresponding proteins involved in the metabolism of 2-aminophenol (e.g., AmnCDEFGH in Pseudomonas sp. strain AP-3). The NbaR-encoding gene is predicted to have a regulatory function of the LysR family type. The function of the product of the small open reading frame, NbaX, like the homologous sequences in the nitrobenzene or 2-aminophenol metabolic pathway, remains elusive.
Collapse
Affiliation(s)
- Takamichi Muraki
- Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
| | | | | | | | | |
Collapse
|
12
|
Egashira Y, Sato M, Tanabe A, Saito K, Fujigaki S, Sanada H. Dietary Linoleic Acid Suppresses Gene Expression of Rat Liver α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase (ACMSD) and Increases Quinolinic Acid in Serum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 527:671-4. [PMID: 15206789 DOI: 10.1007/978-1-4615-0135-0_79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatic ACMSD [EC4.1.1.45] plays a key role in regulating NAD biosynthesis from tryptophan. We previously reported that ingestion of polyunsaturated fatty acids by rats leads to a decrease in their hepatic ACMSD activity. We purified ACMSD and cloned cDNA encoding rat ACMSD. Therefore, in this study, we examined whether dietary linoleic acid altered ACMSD gene expression and its protein level. Moreover we measured the tryptophan catabolite quinolinic acid level in rats. In the rats fed with linoleic acid, ACMSD mRNA and its protein levels in the liver were strongly suppressed and serum quinolinic acid was significantly increased as compared with the rats fed on a fat-free diet. These results suggest that the transcription level of ACMSD is modulated by linoleic acids or their metabolites and probably there is an inverse relationship between ACMSD activity and the production of quinolinic acid converted from tryptophan.
Collapse
Affiliation(s)
- Yukari Egashira
- Laboratory of Food and Nutrition, Department of Bioproduction Science, Chiba University, Matsudo, Chiba 271-8510, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Peng X, Masai E, Kitayama H, Harada K, Katayama Y, Fukuda M. Characterization of the 5-carboxyvanillate decarboxylase gene and its role in lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol 2002; 68:4407-15. [PMID: 12200294 PMCID: PMC124100 DOI: 10.1128/aem.68.9.4407-4415.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas paucimobilis SYK-6 degrades a lignin-related biphenyl compound, 5,5'-dehydrodivanillate (DDVA), to 5-carboxyvanillate (5CVA) by the enzyme reactions catalyzed by the DDVA O-demethylase (LigX), the ring cleavage oxygenase (LigZ), and the meta-cleavage compound hydrolase (LigY). In this study we examined the degradation step of 5CVA. 5CVA was transformed to vanillate, O-demethylated, and further degraded via the protocatechuate 4,5-cleavage pathway by this strain. A cosmid clone which conferred the 5CVA degradation activity to a host strain was isolated. In the 7.0-kb EcoRI fragment of the cosmid we found a 1,002-bp open reading frame responsible for the conversion of 5CVA to vanillate, and we designated it ligW. The gene product of ligW (LigW) catalyzed the decarboxylation of 5CVA to produce vanillate along with the specific incorporation of deuterium from deuterium oxide, indicating that LigW is a nonoxidative decarboxylase of 5CVA. LigW did not require any metal ions or cofactors for its activity. The decarboxylase activity was specific to 5CVA. Inhibition experiments with 5CVA analogs suggested that two carboxyl groups oriented meta to each other in 5CVA are important to the substrate recognition by LigW. Gene walking analysis indicated that the ligW gene was located on the 18-kb DNA region with other DDVA catabolic genes, including ligZ, ligY, and ligX.
Collapse
Affiliation(s)
- Xue Peng
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | | | |
Collapse
|