1
|
Flores-Espinosa P, Méndez I, Irles C, Olmos-Ortiz A, Helguera-Repetto C, Mancilla-Herrera I, Ortuño-Sahagún D, Goffin V, Zaga-Clavellina V. Immunomodulatory role of decidual prolactin on the human fetal membranes and placenta. Front Immunol 2023; 14:1212736. [PMID: 37359537 PMCID: PMC10288977 DOI: 10.3389/fimmu.2023.1212736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The close interaction between fetal and maternal cells during pregnancy requires multiple immune-endocrine mechanisms to provide the fetus with a tolerogenic environment and protection against any infectious challenge. The fetal membranes and placenta create a hyperprolactinemic milieu in which prolactin (PRL) synthesized by the maternal decidua is transported through the amnion-chorion and accumulated into the amniotic cavity, where the fetus is bedded in high concentrations during pregnancy. PRL is a pleiotropic immune-neuroendocrine hormone with multiple immunomodulatory functions mainly related to reproduction. However, the biological role of PRL at the maternal-fetal interface has yet to be fully elucidated. In this review, we have summarized the current information on the multiple effects of PRL, focusing on its immunological effects and biological significance for the immune privilege of the maternal-fetal interface.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Isabel Méndez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Claudine Irles
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Vincent Goffin
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)-S1151, CNRS Unité Mixte de Recherche (UMR)-S8253, Institut Necker Enfants Malades, Paris, France
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| |
Collapse
|
2
|
Lopez-Tello J, Sferruzzi-Perri AN. Characterization of placental endocrine function and fetal brain development in a mouse model of small for gestational age. Front Endocrinol (Lausanne) 2023; 14:1116770. [PMID: 36843585 PMCID: PMC9950515 DOI: 10.3389/fendo.2023.1116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Conditions such as small for gestational age (SGA), which is defined as birthweight less than 10th percentile for gestational age can predispose to neurodevelopmental abnormalities compared to babies with normal birthweight. Fetal growth and birthweight depend on placental function, as this organ transports substrates to the developing fetus and it acts as a source of endocrine factors, including steroids and prolactins that are required for fetal development and pregnancy maintenance. To advance our knowledge on the aetiology of fetal growth disorders, the vast majority of the research has been focused on studying the transport function of the placenta, leaving practically unexplored the contribution of placental hormones in the regulation of fetal growth. Here, using mice and natural variability in fetal growth within the litter, we compared fetuses that fell on or below the 10th percentile (classified as SGA) with those that had adequate weight for their gestational age (AGA). In particular, we compared placental endocrine metabolism and hormone production, as well as fetal brain weight and expression of developmental, growth and metabolic genes between SGA and AGA fetuses. We found that compared to AGA fetuses, SGA fetuses had lower placental efficiency and reduced capacity for placental production of hormones (e.g. steroidogenic gene Cyp17a1, prolactin Prl3a1, and pregnancy-specific glycoproteins Psg21). Brain weight was reduced in SGA fetuses, although this was proportional to the reduction in overall fetal size. The expression of glucose transporter 3 (Slc2a3) was reduced despite the abundance of AKT, FOXO and ERK proteins were similar. Developmental (Sv2b and Gabrg1) and microglia genes (Ier3), as well as the pregnancy-specific glycoprotein receptor (Cd9) were lower in the brain of SGA versus AGA fetuses. In this mouse model of SGA, our results therefore demonstrate that placental endocrine dysfunction is associated with changes in fetal growth and fetal brain development.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research – Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research – Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Martínez-Alarcón O, García-López G, Guerra-Mora JR, Molina-Hernández A, Diaz-Martínez NE, Portillo W, Díaz NF. Prolactin from Pluripotency to Central Nervous System Development. Neuroendocrinology 2022; 112:201-214. [PMID: 33934093 DOI: 10.1159/000516939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) is a versatile hormone that exerts more than 300 functions in vertebrates, mainly associated with physiological effects in adult animals. Although the process that regulates early development is poorly understood, evidence suggests a role of PRL in the early embryonic development regarding pluripotency and nervous system development. Thus, PRL could be a crucial regulator in oocyte preimplantation and maturation as well as during diapause, a reversible state of blastocyst development arrest that shares metabolic, transcriptomic, and proteomic similarities with pluripotent stem cells in the naïve state. Thus, we analyzed the role of the hormone during those processes, which involve the regulation of its receptor and several signaling cascades (Jak/Mapk, Jak/Stat, and PI3k/Akt), resulting in either a plethora of physiological actions or their dysregulation, a factor in developmental disorders. Finally, we propose models to improve the knowledge on PRL function during early development.
Collapse
Affiliation(s)
- Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - José Raúl Guerra-Mora
- Departamento de Neurociencias, Instituto Nacional de Cancerología, Ciudad de México, Mexico
- Departamento de Cirugia Experimental, Instituto Nacional de Nutrición, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Néstor Emmanuel Diaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Quéretaro, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| |
Collapse
|
4
|
Moon JH, Kim YG, Kim K, Osonoi S, Wang S, Saunders DC, Wang J, Yang K, Kim H, Lee J, Jeong JS, Banerjee RR, Kim SK, Wu Y, Mizukami H, Powers AC, German MS, Kim H. Serotonin Regulates Adult β-Cell Mass by Stimulating Perinatal β-Cell Proliferation. Diabetes 2020; 69:205-214. [PMID: 31806625 PMCID: PMC6971487 DOI: 10.2337/db19-0546] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
A sufficient β-cell mass is crucial for preventing diabetes, and perinatal β-cell proliferation is important in determining the adult β-cell mass. However, it is not yet known how perinatal β-cell proliferation is regulated. Here, we report that serotonin regulates β-cell proliferation through serotonin receptor 2B (HTR2B) in an autocrine/paracrine manner during the perinatal period. In β-cell-specific Tph1 knockout (Tph1 βKO) mice, perinatal β-cell proliferation was reduced along with the loss of serotonin production in β-cells. Adult Tph1 βKO mice exhibited glucose intolerance with decreased β-cell mass. Disruption of Htr2b in β-cells also resulted in decreased perinatal β-cell proliferation and glucose intolerance in adulthood. Growth hormone (GH) was found to induce serotonin production in β-cells through activation of STAT5 during the perinatal period. Thus, our results indicate that GH-GH receptor-STAT5-serotonin-HTR2B signaling plays a critical role in determining the β-cell mass by regulating perinatal β-cell proliferation, and defects in this pathway affect metabolic phenotypes in adults.
Collapse
Affiliation(s)
- Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yeong Gi Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kyuho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuang Wang
- Institute of Genome Engineered Animal Models for Human Disease and National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Diane C Saunders
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Juehu Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center and Hormone Research Institute, University of California, San Francisco, San Francisco, CA
| | - Katherine Yang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center and Hormone Research Institute, University of California, San Francisco, San Francisco, CA
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Ji-Seon Jeong
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Korea
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Palo Alto, CA
| | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Disease and National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, NY
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Michael S German
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center and Hormone Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
5
|
Arumugam R, Fleenor D, Freemark M. Knockdown of prolactin receptors in a pancreatic beta cell line: effects on DNA synthesis, apoptosis, and gene expression. Endocrine 2014; 46:568-76. [PMID: 24114406 PMCID: PMC3984618 DOI: 10.1007/s12020-013-0073-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
Prolactin (PRL) and placental lactogen stimulate beta cell replication and insulin production in vitro and in vivo. The molecular mechanisms by which lactogens promote beta cell expansion are unclear. We treated rat insulinoma cells with a PRL receptor (PRLR) siRNA to determine if PRLR signaling is required for beta cell DNA synthesis and cell survival and to identify beta cell cycle genes whose expression depends upon lactogen action. Effects of PRLR knockdown were compared with those of PRL treatment. PRLR knockdown (-80 %) reduced DNA synthesis, increased apoptosis, and inhibited expression of cyclins D2 and B2, IRS-2, Tph1, and the anti-apoptotic protein PTTG1; p21 and BCL6 mRNAs increased. Conversely, PRL treatment increased DNA synthesis, reduced apoptosis, and enhanced expression of A, B and D2 cyclins, CDK1, IRS-2, FoxM1, BCLxL, and PTTG1; BCL6 declined. PRLR signaling is required for DNA synthesis and survival of rat insulinoma cells. The effects of lactogens are mediated by down-regulation of cell cycle inhibitors (BCL6, p21) and induction of A, B, and D2 cyclins, IRS-2, Tph1, FoxM1, and the anti-apoptotic proteins BCLxL and PTTG1.
Collapse
Affiliation(s)
- Ramamani Arumugam
- Departments of Pediatrics, Duke University Medical Center, Durham NC 27710 USA
| | - Don Fleenor
- Departments of Pediatrics, Duke University Medical Center, Durham NC 27710 USA
| | - Michael Freemark
- Departments of Pediatrics, Duke University Medical Center, Durham NC 27710 USA
- Cell Biology, Duke University Medical Center, Durham NC 27710 USA
| |
Collapse
|
6
|
Wood CE, Keller-Wood M. Influence of estradiol and fetal stress on luteinizing hormone, follicle-stimulating hormone, and prolactin in late-gestation fetal sheep. Neonatology 2011; 100:155-61. [PMID: 21430392 PMCID: PMC3078270 DOI: 10.1159/000324431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypotension and reduced cerebral blood flow secondary to brachiocephalic occlusion (BCO) stimulate various homeostatic physiological and endocrine responses. Our previous studies have also suggested a role of estradiol in augmenting the fetal stress response to BCO. OBJECTIVES We tested the hypothesis that gonadotropins and/or prolactin (PRL) are upregulated in fetal pituitary in response to fetal stress and play a role in the response to BCO-induced stress. METHODS We performed 3 studies: one in which we measured ovine fetal pituitary PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) mRNA throughout the latter half of gestation in order to better understand the ontogenetic changes upon which dynamic responses are superimposed; one in which we measured these mRNA abundances in response to BCO and/or estrogen treatment, and one in which we measured plasma LH responses to BCO in chronically catheterized late-gestation fetal sheep. RESULTS PRL gene expression is increased dramatically in the last 20% of gestation. LH and FSH mRNAs were unchanged except for a transient dip in the expression of LH in the last few days before the normal time of spontaneous parturition. Chronic treatment with estradiol decreased LH and FSH mRNA, but increased PRL mRNA abundance after BCO. In contrast, BCO alone increases the abundance of LH, but not FSH or PRL mRNA in fetal pituitary. Plasma LH concentrations were not increased in response to BCO. CONCLUSIONS We conclude that the late-gestation fetal sheep responds to hypotensive stress with increases in LH mRNA but not LH secretion. LH, FSH and PRL changes are therefore unlikely to contribute to the fetal response to cerebral hypoperfusion.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology, University of Florida College of Medicine, Gainesville, Fla. 32610-0274, USA.
| | | |
Collapse
|
7
|
Nadal A, Alonso-Magdalena P, Soriano S, Ropero AB, Quesada I. The role of oestrogens in the adaptation of islets to insulin resistance. J Physiol 2009; 587:5031-7. [PMID: 19687125 DOI: 10.1113/jphysiol.2009.177188] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pregnancy is characterized by peripheral insulin resistance, which is developed in parallel with a plasma increase of maternal hormones; these include prolactin, placental lactogens, progesterone and oestradiol among others. Maternal insulin resistance is counteracted by the adaptation of the islets of Langerhans to the higher insulin demand. If this adjustment is not produced, gestational diabetes may be developed. The adaptation process of islets is characterized by an increase of insulin biosynthesis, an enhanced glucose-stimulated insulin secretion (GSIS) and an increase of beta-cell mass. It is not completely understood why, in some individuals, beta-cell mass and function fail to adapt to the metabolic demands of pregnancy, yet a disruption of the beta-cell response to maternal hormones may play a key part. The role of the maternal hormone 17beta-oestradiol (E2) in this adaptation process has been largely unknown. However, in recent years, it has been demonstrated that E2 acts directly on beta-cells to increase insulin biosynthesis and to enhance GSIS through different molecular mechanisms. E2 does not increase beta-cell proliferation but it is involved in beta-cell survival. Classical oestrogen receptors ERalpha and ERbeta, as well as the G protein-coupled oestrogen receptor (GPER) seem to be involved in these adaptation changes. In addition, as the main production of E2 in post-menopausal women comes from the adipose tissue, E2 may act as a messenger between adipocytes and islets in obesity.
Collapse
Affiliation(s)
- Angel Nadal
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain.
| | | | | | | | | |
Collapse
|
8
|
Pepe GJ, Lynch TJ, Davies WA, Albrecht ED. Regulation of baboon fetal pituitary prolactin expression by estrogen. Biol Reprod 2009; 80:1189-95. [PMID: 19176882 PMCID: PMC2804803 DOI: 10.1095/biolreprod.108.072785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/05/2008] [Accepted: 01/26/2009] [Indexed: 11/01/2022] Open
Abstract
We previously showed that fetal adrenal fetal zone growth was increased and the number of follicles in the fetal ovary reduced in baboons in which estradiol was suppressed by treatment with the aromatase inhibitor letrozole between mid and late gestation periods. Because adrenal/ovarian development was restored in animals treated with letrozole and estradiol, and both tissues express estrogen receptor, we proposed that estrogen regulates fetal adrenal/ovary development via a direct action. However, because prolactin can modulate fetal adrenal and adult pituitary/ovarian function, the current study determined whether estrogen action involved estradiol-regulated changes in fetal prolactin/luteinizing hormone (LH) expression. Fetal prolactin levels and the number of prolactin-positive fetal pituitary cells (per 0.37 mm(2)) were increased (P < 0.01) between mid (6 +/- 1 ng/ml; 15.8 +/- 2.4) and late (257 +/- 28 ng/ml; 57.3 +/- 5.1) gestation, reduced (P < 0.01) in late-gestation fetuses in which estradiol was suppressed (>95%) by letrozole (61 +/- 11 ng/ml; 19.3 +/- 2.0), and minimally but not significantly increased by letrozole and estradiol (99 +/- 11 ng/ml; 32.7 +/- 5.2). In contrast, the number of LH-positive fetal pituitary cells decreased (P < 0.01) between mid (48.8 +/- 9.5) and late (17.4 +/- 3.2) gestation, remained elevated (P < 0.01) in estrogen-suppressed animals (56.6 +/- 5.1), and was partially but not significantly decreased by letrozole-estradiol (28.8 +/- 5.2). We conclude that estrogen regulates fetal pituitary prolactin and LH expression and fetal prolactin levels. However, because prolactin and LH expressions in estrogen-suppressed fetuses were inversely related to previously demonstrated changes in adrenal/ovarian development, we propose that estrogen regulates the fetal ovary and adrenal gland directly and not via action on the fetal pituitary gland.
Collapse
Affiliation(s)
- Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501-1980, USA.
| | | | | | | |
Collapse
|
9
|
Arumugam R, Horowitz E, Lu D, Collier JJ, Ronnebaum S, Fleenor D, Freemark M. The interplay of prolactin and the glucocorticoids in the regulation of beta-cell gene expression, fatty acid oxidation, and glucose-stimulated insulin secretion: implications for carbohydrate metabolism in pregnancy. Endocrinology 2008; 149:5401-14. [PMID: 18599550 PMCID: PMC2584602 DOI: 10.1210/en.2008-0051] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrate metabolism in pregnancy reflects the balance between counterregulatory hormones, which induce insulin resistance, and lactogenic hormones, which stimulate beta-cell proliferation and insulin production. Here we explored the interactions of prolactin (PRL) and glucocorticoids in the regulation of beta-cell gene expression, fatty acid oxidation, and glucose-stimulated insulin secretion (GSIS). In rat insulinoma cells, rat PRL caused 30-50% (P < 0.001) reductions in Forkhead box O (FoxO)-1, peroxisome proliferator activator receptor (PPAR)-gamma coactivator-1alpha (PGC-1alpha), PPARalpha, and carnitine palmitoyltransferase 1 (CPT-1) mRNAs and increased Glut-2 mRNA and GSIS; conversely, dexamethasone (DEX) up-regulated FoxO1, PGC1alpha, PPARalpha, CPT-1, and uncoupling protein 2 (UCP-2) mRNAs in insulinoma cells and inhibited GSIS. Hydrocortisone had similar effects. The effects of DEX were attenuated by coincubation of cells with PRL. In primary rat islets, PRL reduced FoxO1, PPARalpha, and CPT-1 mRNAs, whereas DEX increased FoxO1, PGC1alpha, and UCP-2 mRNAs. The effects of PRL on gene expression were mimicked by constitutive overexpression of signal transducer and activator of transcription-5b. PRL induced signal transducer and activator of transcription-5 binding to a consensus sequence in the rat FoxO1 promoter, reduced nuclear FoxO1 protein levels, and induced its phosphorylation and cytoplasmic redistribution. DEX increased beta-cell fatty acid oxidation and reduced fatty acid esterification; these effects were attenuated by PRL. Thus, lactogens and glucocorticoids have opposing effects on a number of beta-cell genes including FoxO1, PGC1alpha, PPARalpha, CPT-1, and UCP-2 and differentially regulate beta-cell Glut-2 expression, fatty acid oxidation, and GSIS. These observations suggest new mechanisms by which lactogens may preserve beta-cell mass and function and maternal glucose tolerance despite the doubling of maternal cortisol concentrations in late gestation.
Collapse
Affiliation(s)
- Ramamani Arumugam
- Departments of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hugo ER, Borcherding DC, Gersin KS, Loftus J, Ben-Jonathan N. Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J Clin Endocrinol Metab 2008; 93:4006-12. [PMID: 18647802 PMCID: PMC2579649 DOI: 10.1210/jc.2008-1172] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prolactin (PRL) is a multifunctional hormone produced in humans by both pituitary and extrapituitary sites, including adipose tissue. OBJECTIVES Our objectives were to: 1) compare PRL secretion by sc and visceral adipose explants and mature adipocytes from obese and nonobese patients; and 2) examine the effects of insulin and selected cytokines on PRL gene expression and release from primary adipocytes and LS14 adipocytes. DESIGN AND SUBJECTS Adipose tissue was obtained from morbidly obese [body mass index (BMI) > 40 kg/m(2)] and nonobese (BMI <30 kg/m(2)) patients. Explants and isolated mature adipocytes were incubated for 10 d. Primary adipocytes or LS14 cells were used before or after differentiation and incubated with the test compounds for 24 h. PRL release was analyzed by a bioassay, and PRL expression was determined by real-time PCR. RESULTS PRL release from explants and mature adipocytes increased in a time-dependent manner indicating removal from inhibition. Visceral explants from obese patients showed higher PRL release than that from sc explants; both types of explants from nonobese patients released similar amounts of PRL. Analysis of data from 50 patients revealed an inverse relationship between PRL release from sc depots and BMI. Insulin suppressed PRL expression and release from differentiated adipocytes but moderately stimulated PRL release from nondifferentiated cells. The cAMP elevating compound forskolin increased PRL release in both cell types. CONCLUSIONS PRL should be recognized as an important adipokine whose release is regulated by insulin and is affected by obesity in a depot-specific manner.
Collapse
Affiliation(s)
- Eric R Hugo
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.
Collapse
Affiliation(s)
- Nira Ben-Jonathan
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45255, USA.
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Joy Osafo
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Paul A Fowler
- Department of Obstetrics and Gynaecology, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | | |
Collapse
|