1
|
Stabile F, Torromino G, Rajendran S, Del Vecchio G, Presutti C, Mannironi C, De Leonibus E, Mele A, Rinaldi A. Short-Term Memory Deficit Associates with miR-153-3p Upregulation in the Hippocampus of Middle-Aged Mice. Mol Neurobiol 2024; 61:3031-3041. [PMID: 37964090 DOI: 10.1007/s12035-023-03770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
The early stages of ageing are a critical time window in which the ability to detect and identify precocious molecular and cognitive markers can make the difference in determining a healthy vs unhealthy course of ageing. Using the 6-different object task (6-DOT), a highly demanding hippocampal-dependent recognition memory task, we classified a population of middle-aged (12-month-old) CD1 male mice in Impaired and Unimpaired based on their short-term memory. This approach led us to identify a different microRNAs expression profile in the hippocampus of Impaired mice compared to Unimpaired ones. Among the dysregulated microRNAs, miR-153-3p was upregulated in the hippocampus of Impaired mice and appeared of high interest for its putative target genes and their possible implication in memory-related synaptic plasticity. We showed that intra-hippocampal injection of the miR-153-3p mimic in adult (3-month-old) mice is sufficient to induce a short-term memory deficit similar to that observed in middle-aged Impaired mice. Overall, these findings unravel a novel role for hippocampal miR-153-3p in modulating short-term memory that could be exploited to prevent early cognitive deficits in ageing.
Collapse
Affiliation(s)
- Francesca Stabile
- Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy
- Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy
| | - G Torromino
- Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy
| | - S Rajendran
- Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy
- Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy
| | - G Del Vecchio
- Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy
| | - C Presutti
- Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy
| | - C Mannironi
- Institute of Molecular Biology and Pathology, c/o Department of Biology and Biotechnology, National Research Council, Sapienza University of Rome, Rome, Italy
| | - E De Leonibus
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy
| | - A Mele
- Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy.
- Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy.
| | - A Rinaldi
- Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy.
- Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
He RH, Fan JZ, Qian FF, He YH, Du XH, Lu HX. Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins. Neural Regen Res 2023; 18:368-374. [PMID: 35900432 PMCID: PMC9396518 DOI: 10.4103/1673-5374.346548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies have shown that repetitive transcranial magnetic stimulation (rTMS) can enhance synaptic plasticity and improve neurological dysfunction. However, the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood. In this study, we established rat models of moderate traumatic brain injury using Feeney’s weight-dropping method and treated them using rTMS. To help determine the mechanism of action, we measured levels of several important brain activity-related proteins and their mRNA. On the injured side of the brain, we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor, tropomyosin receptor kinase B, N-methyl-D-aspartic acid receptor 1, and phosphorylated cAMP response element binding protein, which are closely associated with the occurrence of long-term potentiation. rTMS also partially reversed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure. These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.
Collapse
|
3
|
Roy B, Ochi S, Dwivedi Y. M6A RNA Methylation-Based Epitranscriptomic Modifications in Plasticity-Related Genes via miR-124-C/EBPα-FTO-Transcriptional Axis in the Hippocampus of Learned Helplessness Rats. Int J Neuropsychopharmacol 2022; 25:1037-1049. [PMID: 36161325 PMCID: PMC9743968 DOI: 10.1093/ijnp/pyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Impaired synaptic plasticity has been linked to dynamic gene regulatory network changes. Recently, gene regulation has been introduced with the emerging concept of unique N6-methyladenosine (m6A)-based reversible transcript methylation. In this study, we tested whether m6A RNA methylation may potentially serve as a link between the stressful insults and altered expression of plasticity-related genes. METHODS Expression of plasticity genes Nr3c1, Creb1, Ntrk2; m6A-modifying enzymes Fto, methyltransferase like (Mettl)-3 and 14; DNA methylation enzymes Dnmt1, Dnmt3a; transcription factor C/ebp-α; and miRNA-124-3p were determined by quantitative polymerase chain reaction (qPCR) in the hippocampus of rats that showed susceptibility to develop stress-induced depression (learned helplessness). M6A methylation of plasticity-related genes was determined following m6A mRNA immunoprecipitation. Chromatin immunoprecipitation was used to examine the endogenous binding of C/EBP-α to the Fto promoter. MiR-124-mediated post-transcriptional inhibition of Fto via C/EBPα was determined using an in vitro model. RESULTS Hippocampus of learned helplessness rats showed downregulation of Nr3c1, Creb1, and Ntrk2 along with enrichment in their m6A methylation. A downregulation in demethylating enzyme Fto and upregulation in methylating enzyme Mettl3 were also noted. The Fto promoter was hypomethylated due to the lower expression of Dnmt1 and Dnmt3a. At the same time, there was a lower occupancy of transcription factor C/EBPα on the Fto promoter. Conversely, C/ebp-α transcript was downregulated via induced miR-124-3p expression. CONCLUSIONS Our study mechanistically linked defective C/EBP-α-FTO-axis, epigenetically influenced by induced expression of miR-124-3p, in modifying m6A enrichment in plasticity-related genes. This could potentially be linked with abnormal neuronal plasticity in depression.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama atBirmingham, Birmingham, Alabama, USA
| | - Shinichiro Ochi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama atBirmingham, Birmingham, Alabama, USA,Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yogesh Dwivedi
- Correspondence: Yogesh Dwivedi, PhD, Elesabeth Ridgely Shook Professor, Director of Translational Research, UAB Mood Disorder Program, Codirector, Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA ()
| |
Collapse
|
4
|
Madrid-Elena N, Serrano-Villar S, Gutiérrez C, Sastre B, Morín M, Luna L, Martín L, Santoyo-López J, López-Huertas MR, Moreno E, García-Bermejo ML, Moreno-Pelayo MÁ, Moreno S. Selective miRNA inhibition in CD8 + cytotoxic T lymphocytes enhances HIV-1 specific cytotoxic responses. Front Immunol 2022; 13:998368. [PMID: 36225912 PMCID: PMC9549323 DOI: 10.3389/fimmu.2022.998368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
miRNAs dictate relevant virus-host interactions, offering new avenues for interventions to achieve an HIV remission. We aimed to enhance HIV-specific cytotoxic responses-a hallmark of natural HIV control- by miRNA modulation in T cells. We recruited 12 participants six elite controllers and six patients with chronic HIV infection on long-term antiretroviral therapy ("progressors"). Elite controllers exhibited stronger HIV-specific cytotoxic responses than the progressors, and their CD8+T cells showed a miRNA (hsa-miR-10a-5p) significantly downregulated. When we transfected ex vivo CD8+ T cells from progressors with a synthetic miR-10a-5p inhibitor, miR-10a-5p levels decreased in 4 out of 6 progressors, correlating with an increase in HIV-specific cytotoxic responses. The effects of miR-10a-5p inhibition on HIV-specific CTL responses were modest, short-lived, and occurred before day seven after modulation. IL-4 and TNF-α levels strongly correlated with HIV-specific cytotoxic capacity. Thus, inhibition of miR-10a-5p enhanced HIV-specific CD8+ T cell capacity in progressors. Our pilot study proves the concept that miRNA modulation is a feasible strategy to combat HIV persistence by enhancing specific cytotoxic immune responses, which will inform new approaches for achieving an antiretroviral therapy-free HIV remission.
Collapse
Affiliation(s)
- Nadia Madrid-Elena
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Carolina Gutiérrez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Beatriz Sastre
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Matías Morín
- Department of Genetics, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Laura Martín
- Biomarkers and Therapeutic Targets Group and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (Instituto de Investigación Sanitaria Ramón y Cajal), Spanish Renal Research Network (REDinREN), Madrid, Spain
| | | | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (Instituto de Investigación Sanitaria Ramón y Cajal), Spanish Renal Research Network (REDinREN), Madrid, Spain
| | - Miguel Ángel Moreno-Pelayo
- Department of Genetics, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
- Department of Medicine, Alcalá University, Alcalá de Henares, Spain
| |
Collapse
|
5
|
Haehner A, Chen B, Espin M, Haussmann R, Matthes C, Desser D, Loessner L, Brandt MD, Donix M, Hummel T. Training with Odors Impacts Hippocampal Thickness in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:743-755. [DOI: 10.3233/jad-220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The olfactory system is affected early in Alzheimer’s disease and olfactory loss can already be observed in patients with mild cognitive impairment (MCI). Olfactory training is effective for improving olfactory and cognitive function by stimulating the olfactory pathway, but its effect on patients with MCI remains unclear. Objective: The aim of this randomized, prospective, controlled, blinded study was to assess whether a 4-month period of olfactory training (frequent short-term sniffing various odors) may have an effect on olfactory function, cognitive function, and morphology of medial temporal lobe (MTL) subregions and olfactory bulb in MCI patients. Methods: A total of thirty-seven MCI patients were randomly assigned to the training group or a placebo group, which were performed twice a day for 4 months. Olfactory assessments, cognitive tests and magnetic resonance imaging were performed at the baseline and follow-up period. Results: After the training, there was an increase in odor discrimination, and increased cortical thickness of bilateral hippocampus (CA23DG and CA1) and mean MTL. Additionally, the change of olfactory score was positively associated with change of volume of olfactory bulb and hippocampus; the change of global cognition was positively associated with change of cortical thickness of hippocampus, entorhinal cortex and mean MTL; the change of cortical thickness of entorhinal cortex was positively associated with change of executive function. Conclusion: Olfactory training was associated with an increase in cortical thickness of the hippocampus but not olfactory bulb volume in patients with MCI. Olfactory training may serve as an early intervention of preventing hippocampal atrophy.
Collapse
Affiliation(s)
| | - Ben Chen
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Melanie Espin
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | | | - Dmitriy Desser
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Moritz D. Brandt
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Markus Donix
- Department of Psychiatry, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Tatarakis A, Moazed D. Real-Time Quantitative PCR and Fluorescence In Situ Hybridization for Subcellular Localization of miRNAs in Neurons. Methods Mol Biol 2022; 2417:1-17. [PMID: 35099787 DOI: 10.1007/978-1-0716-1916-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neuronal miRNAs play major roles in regulation of synaptic development and plasticity. The small size of miRNAs and, in some cases, their low level of expression make their quantification and detection challenging. Here, we outline methods to quantify steady state levels of miRNAs in neurons and the brain by using real-time quantitative PCR (RT-qPCR) and to determine miRNA subcellular localization in primary neurons by a sensitive fluorescence in situ hybridization (FISH) method.
Collapse
Affiliation(s)
- Antonis Tatarakis
- Department of Cell Biology, and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Danesh Moazed
- Department of Cell Biology, and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Characterization and target gene analysis of microRNAs in the antennae of the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2021; 28:1033-1048. [PMID: 32496619 DOI: 10.1111/1744-7917.12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding single-strand RNA molecules encoded by endogenous genes, are about 21-24 nucleotides long and are involved in the post-transcriptional regulation of gene expression in plants and animals. Generally, the types and quantities of miRNAs in the different tissues of an organism are diverse, and these divergences may be related to their specific functions. Here we have identified 296 known miRNAs and 46 novel miRNAs in the antennae of the parasitoid wasp Microplitis mediator by high-throughput sequencing. Thirty-three miRNAs were predicted to target olfactory-associated genes, including odorant binding proteins (OBPs), chemosensory proteins, odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors. Among these, 17 miRNAs were significantly highly expressed in the antennae, four miRNAs were highly expressed both in the antennae and head or wings, while the remaining 12 miRNAs were mainly expressed in the head, thorax, abdomen, legs and wings. Notably, miR-9a-5p and miR-2525-3p were highly expressed in male antennae, whereas miR-1000-5p and novel-miR-13 were enriched in female antennae. The 17 miRNAs highly expressed in antennae are likely to be associated with olfaction, and were predicted to target one OBP (targeted by miR-3751-3p), one IR (targeted by miR-7-5p) and 14 ORs (targeted by 15 miRNAs including miR-6-3p, miR-9a-5p, miR-9b-5p, miR-29-5p, miR-71-5p, miR-275-3p, miR-1000-5p, miR-1000-3p, miR-2525-3p, miR-6012-3p, miR-9719-3p, novel-miR-10, novel-miR-13, novel-miR-14 and novel-miR-28). These candidate olfactory-associated miRNAs are all likely to be involved in chemoreception through the regulation of chemosensory gene expression in the antennae of M. mediator.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Eivani M, Alijanpour S, Arefian E, Rezayof A. Corticolimbic analysis of microRNAs and protein expressions in scopolamine-induced memory loss under stress. Neurobiol Learn Mem 2019; 164:107065. [PMID: 31400468 DOI: 10.1016/j.nlm.2019.107065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to assess thealterations of corticolimbic microRNAs and protein expressions in the effect of scopolamine with or without stress on passive-avoidance memory in male Wistar rats. The expressions of miR-1, miR-10 and miR-26 and also the levels of p-CREB, CREB, C-FOS and BDNF in the prefrontal cortex (PFC), the hippocampus and the amygdala were evaluated using RT-qPCR and Western blotting techniques. The data showed that the administration of a muscarinic receptor antagonist, scopolamine or the exposure to 30 min stress significantly induced memory loss. Interestingly, the injection of an ineffective dose of scopolamine (0.5 mg/kg) alongside with exposure to an ineffective time of stress (10 min) impaired memory formation, suggesting a potentiative effect of stress on scopolamine response. Our results showed that memory formation was associated with the down-regulated expression of miR-1, miR-10 and miR-26 in the PFC and the hippocampus, but not the amygdala. The relative expression increase of miR-1 and miR-10 in the PFC and the hippocampus was shown in memory loss induced by scopolamine administration or 30-min stress. The PFC level of miR-10 and also hippocampal level of miR-1 and miR-10 were significantly up-regulated, while amygdala miR-1 and miR-26 were down-regulated in scopolamine-induced memory loss under stress. Memory formation increased BDNF, C-FOS and p-CREB/CREB in the PFC, the hippocampus and the amygdala. In contrast, the PFC, hippocampal and amygdala protein expressions were significantly decreased in memory loss induced by scopolamine administration (2 mg/kg), stress exposure (for 30 min) or scopolamine (0.5 mg/kg) plus stress (10 min). One of the most significant findings to emerge from this study is that the stress exposure potentiated the amnesic effect of scopolamine may via affecting the expressions of miRs and proteins in the PFC, the hippocampus and the amygdala. It is possible to hypothesis that corticolimbic signaling pathways play a critical role in relationship between stress and Alzheimer's disease.
Collapse
Affiliation(s)
- Mehdi Eivani
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Lee LC, Su MT, Cho YC, Lee-Chen GJ, Yeh TK, Chang CY. Multiple epigenetic biomarkers for evaluation of students' academic performance. GENES BRAIN AND BEHAVIOR 2019; 18:e12559. [PMID: 30806012 DOI: 10.1111/gbb.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 11/28/2022]
Abstract
Several reports have shown that methyl CpG-binding protein 2 (MeCP2), brain-derived neurotrophic factor (BDNF), phospho-cAMP response element-binding protein (p-CREB) and microRNAs may be important in regulating academic performance because of their roles in neuropsychiatry and cognitive diseases. The first goal of this study was to explore the associations among MeCP2, BDNF, CREB and academic performance. This study also examined the pathway responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. Scores from the basic competency test, an annual national competitive entrance examination, were used to evaluate academic performance. Subjects' plasma RNA was extracted and analyzed. This study determined that participants in the higher academic performance group had a significant difference in MECP2 mRNA expression compared with the lower academic performance group. We then used neuronal human derived neuroblastoma cell line (SH-SY5Y) cells with inducible MeCP2 expression from a second copy of the gene as a gain-of-function model and found that MeCP2 overexpression positively affected p-CREB and BDNF expression initially. After negative feedback, the p-CREB and BDNF levels subsequently decreased. In the neuronal phenotype examination, we found a significant reduction in total outgrowth and branches in MeCP2-induced cells compared with noninduced cells. This work describes pathways that may be responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. These results may shed light on the development of promising clinical treatment strategies in the area of neuropsychological adjustment.
Collapse
Affiliation(s)
- Li-Ching Lee
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chun Cho
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ting-Kuang Yeh
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan.,Institute of Marine Environment Science and Technology, National Taiwan Normal University, Taipei, Taiwan.,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Yen Chang
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan.,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
10
|
Mukilan M, Rajathei DM, Jeyaraj E, Kayalvizhi N, Rajan KE. MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx. Gene 2018; 671:10-20. [PMID: 29859284 DOI: 10.1016/j.gene.2018.05.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction.
Collapse
Affiliation(s)
- Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - David Mary Rajathei
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Edwin Jeyaraj
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
11
|
Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol Neurobiol 2018; 38:579-593. [PMID: 28623429 PMCID: PMC5835061 DOI: 10.1007/s10571-017-0510-4] [Citation(s) in RCA: 779] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most widely distributed and extensively studied neurotrophins in the mammalian brain. Among its prominent functions, one can mention control of neuronal and glial development, neuroprotection, and modulation of both short- and long-lasting synaptic interactions, which are critical for cognition and memory. A wide spectrum of processes are controlled by BDNF, and the sometimes contradictory effects of its action can be explained based on its specific pattern of synthesis, comprising several intermediate biologically active isoforms that bind to different types of receptor, triggering several signaling pathways. The functions of BDNF must be discussed in close relation to the stage of brain development, the different cellular components of nervous tissue, as well as the molecular mechanisms of signal transduction activated under physiological and pathological conditions. In this review, we briefly summarize the current state of knowledge regarding the impact of BDNF on regulation of neurophysiological processes. The importance of BDNF for future studies aimed at disclosing mechanisms of activation of signaling pathways, neuro- and gliogenesis, as well as synaptic plasticity is highlighted.
Collapse
Affiliation(s)
- Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211, Gdańsk, Poland.
- Department of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte Str., 76-200, Słupsk, Poland.
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211, Gdańsk, Poland
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211, Gdańsk, Poland
| | - Monika Waśkow
- Department of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte Str., 76-200, Słupsk, Poland
| | - Aleksandra Steliga
- Department of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte Str., 76-200, Słupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211, Gdańsk, Poland
| |
Collapse
|
12
|
Korneev SA, Vavoulis DV, Naskar S, Dyakonova VE, Kemenes I, Kemenes G. A CREB2-targeting microRNA is required for long-term memory after single-trial learning. Sci Rep 2018; 8:3950. [PMID: 29500383 PMCID: PMC5834643 DOI: 10.1038/s41598-018-22278-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/12/2018] [Indexed: 02/01/2023] Open
Abstract
Although single-trial induced long-term memories (LTM) have been of major interest in neuroscience, how LTM can form after a single episode of learning remains largely unknown. We hypothesized that the removal of molecular inhibitory constraints by microRNAs (miRNAs) plays an important role in this process. To test this hypothesis, first we constructed small non-coding RNA (sncRNA) cDNA libraries from the CNS of Lymnaea stagnalis subjected to a single conditioning trial. Then, by next generation sequencing of these libraries, we identified a specific pool of miRNAs regulated by training. Of these miRNAs, we focussed on Lym-miR-137 whose seed region shows perfect complementarity to a target sequence in the 3' UTR of the mRNA for CREB2, a well-known memory repressor. We found that Lym-miR-137 was transiently up-regulated 1 h after single-trial conditioning, preceding a down-regulation of Lym-CREB2 mRNA. Furthermore, we discovered that Lym-miR-137 is co-expressed with Lym-CREB2 mRNA in an identified neuron with an established role in LTM. Finally, using an in vivo loss-of-function approach we demonstrated that Lym-miR-137 is required for single-trial induced LTM.
Collapse
Affiliation(s)
- Sergei A Korneev
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Dimitris V Vavoulis
- RDM Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Clifton, BS8 1UB, UK
| | - Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
13
|
Capitano F, Camon J, Licursi V, Ferretti V, Maggi L, Scianni M, Del Vecchio G, Rinaldi A, Mannironi C, Limatola C, Presutti C, Mele A. MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity. Neurobiol Learn Mem 2017; 139:63-68. [DOI: 10.1016/j.nlm.2016.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 01/29/2023]
|
14
|
Mathew RS, Tatarakis A, Rudenko A, Johnson-Venkatesh EM, Yang YJ, Murphy EA, Todd TP, Schepers ST, Siuti N, Martorell AJ, Falls WA, Hammack SE, Walsh CA, Tsai LH, Umemori H, Bouton ME, Moazed D. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. eLife 2016; 5. [PMID: 28001126 PMCID: PMC5293492 DOI: 10.7554/elife.22467] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway. DOI:http://dx.doi.org/10.7554/eLife.22467.001
Collapse
Affiliation(s)
- Rebecca S Mathew
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Antonis Tatarakis
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Andrii Rudenko
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - Erin M Johnson-Venkatesh
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Yawei J Yang
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, United States
| | - Elisabeth A Murphy
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States
| | - Travis P Todd
- Department of Psychology, University of Vermont, Burlington, United States
| | - Scott T Schepers
- Department of Psychology, University of Vermont, Burlington, United States
| | - Nertila Siuti
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Anthony J Martorell
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - William A Falls
- Department of Psychology, University of Vermont, Burlington, United States
| | | | - Christopher A Walsh
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Hisashi Umemori
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mark E Bouton
- Department of Psychology, University of Vermont, Burlington, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
15
|
Codocedo JF, Inestrosa NC. Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior. Neurosci Biobehav Rev 2015; 60:121-38. [PMID: 26593111 DOI: 10.1016/j.neubiorev.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) a little over 20 years ago was revolutionary given that miRNAs are essential to numerous physiological and physiopathological processes. Currently, several aspects of the biogenic process of miRNAs and of the translational repression mechanism exerted on their targets mRNAs are known in detail. In fact, the development of bioinformatics tools for predicting miRNA targets has established that miRNAs have the potential to regulate almost all known biological processes. Therefore, the identification of the signals and molecular mechanisms that regulate miRNA function is relevant to understanding the role of miRNAs in both pathological and adaptive processes. Recently, a series of studies has focused on miRNA expression in the brain, establishing that their levels are altered in response to various environmental factors (EFs), such as light, sound, odorants, nutrients, drugs and stress. In this review, we discuss how exposure to various EFs modulates the expression and function of several miRNAs in the nervous system and how this control determines adaptation to their environment, behavior and disease state.
Collapse
Affiliation(s)
- Juan F Codocedo
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
16
|
microRNAs Modulate Spatial Memory in the Hippocampus and in the Ventral Striatum in a Region-Specific Manner. Mol Neurobiol 2015; 53:4618-30. [PMID: 26307611 DOI: 10.1007/s12035-015-9398-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/14/2015] [Indexed: 02/05/2023]
Abstract
MicroRNAs are endogenous, noncoding RNAs crucial for the post-transcriptional regulation of gene expression. Their role in spatial memory formation, however, is poorly explored. In this study, we analyzed learning-induced microRNA expression in the hippocampus and in the ventral striatum. Among miRNAs specifically downregulated by spatial training, we focused on the hippocampus-specific miR-324-5p and the ventral striatum-specific miR-24. In vivo overexpression of the two miRNAs demonstrated that miR-324-5p is able to impair memory if administered in the hippocampus but not in the ventral striatum, while the opposite is true for miR-24. Overall, these findings demonstrate a causal relationship between miRNA expression changes and spatial memory formation. Furthermore, they provide support for a regional dissociation in the post-transcriptional processes underlying spatial memory in the two brain structures analyzed.
Collapse
|
17
|
Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, LaFerla FM, Kitazawa M. Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis 2015; 42:1229-38. [PMID: 25024332 DOI: 10.3233/jad-140204] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MicroRNAs are a group of small RNAs that regulate diverse cellular processes including neuronal function. Recent studies have shown that dysregulation of specific microRNAs is critically involved in the development of Alzheimer's disease (AD). Most of these reports have focused on microRNAs implicated in alterations of amyloid-β and tau. However, studies exploring the relation between microRNAs dysregulation in AD and synaptic plasticity are scarce despite the well-known involvement of microRNAs in synaptic plasticity. Since impairments in synaptic plasticity and neuronal loss are two important features displayed in AD patients, it is feasible to hypothesize that alterations in plasticity-related microRNAs underlie AD progression. Here, levels of a small number of microRNAs implicated in normal neuronal function and/or plasticity were examined in an AD model. Twelve-month old 3xTg-AD mice with plaques and tangles presented a significant upregulation of miR-181 in the hippocampus compared to age-matched wild type mice. Increased miR-181 was not detected in pre-pathological 3xTg-AD mice. Analysis of predicted targets of miR-181 identified c-Fos and SIRT-1, proteins critically involved in memory formation. Both c-Fos and SIRT-1 levels were significantly decreased in the ventral hippocampus of twelve-month old 3xTg-AD mice. Overexpression of miR-181 in SH-SY5Y cells significantly decreased c-Fos and SIRT-1, strongly suggesting that miR-181 directly regulates the expression of these two proteins. These findings indicate a connection between miR-181 and proteins involve in synaptic plasticity and memory processing in a transgenic mouse model of AD. Our results suggest that microRNAs involved in synaptic plasticity might be an important factor that contributes to AD neuropathology.
Collapse
Affiliation(s)
| | - David Baglietto-Vargas
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA Institute for Memory Impairments and Neurological Diseases, University of California, Irvine, CA, USA
| | - Hilda Martinez-Coria
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA Institute for Memory Impairments and Neurological Diseases, University of California, Irvine, CA, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA Institute for Memory Impairments and Neurological Diseases, University of California, Irvine, CA, USA
| | - Masashi Kitazawa
- School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
18
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Activity-dependent expression of miR-132 regulates immediate-early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx. Neurobiol Learn Mem 2015; 120:41-51. [DOI: 10.1016/j.nlm.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/24/2015] [Accepted: 02/17/2015] [Indexed: 01/13/2023]
|
20
|
Li X, Feng R, Huang C, Wang H, Wang J, Zhang Z, Yan H, Wen T. MicroRNA-351 regulates TMEM 59 (DCF1) expression and mediates neural stem cell morphogenesis. RNA Biol 2014; 9:292-301. [DOI: 10.4161/rna.19100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Qin QH, Wang ZL, Tian LQ, Gan HY, Zhang SW, Zeng ZJ. The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning. INSECT SCIENCE 2014; 21:619-636. [PMID: 24136738 DOI: 10.1111/1744-7917.12065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
The honeybee (Apis mellifera) is a social insect with strong sensory capacity and diverse behavioral repertoire and is recognized as a good model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the changes in microRNA (miRNA) and messenger RNA (mRNA) following maze-based visual learning using next-generation small RNA sequencing and Solexa/lllumina Digital Gene Expression tag profiling (DGE). For small RNA sequencing, we obtained 13 367 770 and 13 132 655 clean tags from the maze and control groups, respectively. A total of 40 differentially expressed known miRNAs were detected between these two samples, and all of them were up-regulated in the maze group compared to the control group. For DGE, 5 681 320 and 5 939 855 clean tags were detected from the maze and control groups, respectively. There were a total of 388 differentially expressed genes between these two samples, with 45 genes up-regulated and 343 genes down-regulated in the maze group, compared to the control group. Additionally, the expression levels of 10 differentially expressed genes were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the expression trends of eight of them were consistent with the DGE result, although the degree of change was lower in amplitude. The integrative analysis of miRNA and mRNA expression showed that, among the 40 differentially expressed known miRNAs and 388 differentially expressed genes, 60 pairs of miRNA/mRNA were identified as co-expressed in our present study. These results suggest that both miRNA and mRNA may play a pivotal role in the process of learning and memory in honeybees. Our sequencing data provide comprehensive miRNA and gene expression information for maze-based visual learning, which will facilitate understanding of the molecular mechanisms of honeybee learning and memory.
Collapse
Affiliation(s)
- Qiu-Hong Qin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | | | | | | | | | | |
Collapse
|
22
|
Huang Y, Zhang JL, Yu XL, Xu TS, Wang ZB, Cheng XC. Molecular functions of small regulatory noncoding RNA. BIOCHEMISTRY (MOSCOW) 2013; 78:221-30. [PMID: 23586714 DOI: 10.1134/s0006297913030024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, using large-scale genomic sequencing, a great number of small noncoding RNAs (ncRNA) has been discovered. Short ncRNAs can be classified into three major classes--small interfering RNA (siRNA), microRNA (miRNA), and piwi-interacting RNA (piRNA). These short ncRNAs ranging from 20 to 300 nt in size are now recognized as a new paradigm of gene regulation for controlling many biological processes. In this paper, we review the biogenesis and recent research on the functions of small regulatory non-coding RNAs and aim at understanding their important functions in living organisms.
Collapse
Affiliation(s)
- Yong Huang
- Animal Science and Technology College, He Nan University of Science and Technology, Luoyang City, Henan Province, PR China.
| | | | | | | | | | | |
Collapse
|
23
|
Mörlein D, Meier-Dinkel L, Moritz J, Sharifi AR, Knorr C. Learning to smell: Repeated exposure increases sensitivity to androstenone, a major component of boar taint. Meat Sci 2013; 94:425-31. [DOI: 10.1016/j.meatsci.2013.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/24/2013] [Accepted: 03/18/2013] [Indexed: 11/25/2022]
|
24
|
Abstract
The nervous system equips us with capability to adapt to many conditions and circumstances. We rely on an armamentarium of intricately formed neural circuits for many of our adaptive strategies. However, this capability also depends on a well-conserved toolkit of different molecular mechanisms that offer not only compensatory responses to a changing world, but also provide plasticity to achieve changes in cellular state that underlie a broad range of processes from early developmental transitions to life-long memory. Among the molecular tools that mediate changes in cellular state, our understanding of posttranscriptional regulation of gene expression is expanding rapidly. Part of the "epigenetic landscape" that shapes the deployment and robust regulation of gene networks during the construction and the remodeling of the brain is the microRNA system controlling both levels and translation of messenger RNA. Here we consider recent advances in the study of microRNA-mediated regulation of synaptic form and function.
Collapse
Affiliation(s)
- Elizabeth McNeill
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Spadaro PA, Bredy TW. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet 2012; 3:132. [PMID: 22811697 PMCID: PMC3395882 DOI: 10.3389/fgene.2012.00132] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/28/2012] [Indexed: 11/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as critical regulators of transcription, epigenetic processes, and gene silencing, which make them ideal candidates for insight into molecular evolution and a better understanding of the molecular pathways of neuropsychiatric disease. Here, we provide an overview of the current state of knowledge regarding various classes of ncRNAs and their role in neural plasticity and cognitive function, and highlight the potential contribution they may make to the development of a variety of neuropsychiatric disorders, including schizophrenia, addiction, and fear-related anxiety disorders.
Collapse
Affiliation(s)
- Paola A Spadaro
- Psychiatric Epigenomics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
26
|
Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One 2012; 7:e33201. [PMID: 22427989 PMCID: PMC3302855 DOI: 10.1371/journal.pone.0033201] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 02/13/2012] [Indexed: 01/08/2023] Open
Abstract
Background Recent studies suggest that alterations in expression of genes, including those which regulate neural and structural plasticity, may be crucial in the pathogenesis of depression. MicroRNAs (miRNAs) are newly discovered regulators of gene expression that have recently been implicated in a variety of human diseases, including neuropsychiatric diseases. Methodology/Principal Findings The present study was undertaken to examine whether the miRNA network is altered in the brain of depressed suicide subjects. Expression of miRNAs was measured in prefrontal cortex (Brodmann Area 9) of antidepressant-free depressed suicide (n = 18) and well-matched non-psychiatric control subjects (n = 17) using multiplex RT-PCR plates. We found that overall miRNA expression was significantly and globally down-regulated in prefrontal cortex of depressed suicide subjects. Using individual tests of statistical significance, 21 miRNAs were significantly decreased at p = 0.05 or better. Many of the down-regulated miRNAs were encoded at nearby chromosomal loci, shared motifs within the 5′-seeds, and shared putative mRNA targets, several of which have been implicated in depression. In addition, a set of 29 miRNAs, whose expression was not pairwise correlated in the normal controls, showed a high degree of co-regulation across individuals in the depressed suicide group. Conclusions/Significance The findings show widespread changes in miRNA expression that are likely to participate in pathogenesis of major depression and/or suicide. Further studies are needed to identify whether the miRNA changes lead to altered expression of prefrontal cortex mRNAs, either directly (by acting as miRNA targets) or indirectly (e.g., by affecting transcription factors).
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Giovanni Lugli
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hooriyah S. Rizavi
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Vetle I. Torvik
- Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Gustavo Turecki
- McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Yogesh Dwivedi
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Knaapila A, Zhu G, Medland SE, Wysocki CJ, Montgomery GW, Martin NG, Wright MJ, Reed DR. A genome-wide study on the perception of the odorants androstenone and galaxolide. Chem Senses 2012; 37:541-52. [PMID: 22362865 DOI: 10.1093/chemse/bjs008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Twin pairs and their siblings rated the intensity of the odorants amyl acetate, androstenone, eugenol, Galaxolide, mercaptans, and rose (N = 1573). Heritability was established for ratings of androstenone (h (2) = 0.30) and Galaxolide (h(2) = 0.34) but not for the other odorants. Genome-wide association analysis using 2.3 million single nucleotide polymorphisms indicated that the most significant association was between androstenone and a region without known olfactory receptor genes (rs10966900, P = 1.2 × 10(-7)). A previously reported association between the olfactory receptor OR7D4 and the androstenone was not detected until we specifically typed this gene (P = 1.1 × 10(-4)). We also tested these 2 associations in a second independent sample of subjects and replicated the results either fully (OR7D4, P = 0.00002) or partially (rs10966900, P = 0.010; N = 266). These findings suggest that 1) the perceived intensity of some but not all odorants is a heritable trait, 2) use of a current genome-wide marker panel did not detect a known olfactory genotype-phenotype association, and 3) person-to-person differences in androstenone perception are influenced by OR7D4 genotype and perhaps by variants of other genes.
Collapse
Affiliation(s)
- Antti Knaapila
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Smalheiser NR. The search for endogenous siRNAs in the mammalian brain. Exp Neurol 2011; 235:455-63. [PMID: 22062046 DOI: 10.1016/j.expneurol.2011.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
A decade ago, RNA interference was proposed to serve as a physiologic means of regulating long-term gene expression in the mammalian brain. However, during the intervening years, this hypothesis appeared to be contradicted by both experimental data and theoretical considerations. More recently, the advent of deep sequencing technology has permitted a re-assessment of this issue. As reviewed here, a large population of small RNAs having features characteristic of endogenous siRNAs are detected within adult mouse hippocampus, which derive from genes involved in synaptic structure and signaling, and which show a significant, though modest (16-22%) up-regulation during olfactory discrimination training. Small RNAs derived from abundant cellular noncoding RNAs are also detected; in particular, a subpopulation of RNAs 25-30 nt. in length shows very large (>100 fold) up-regulation during olfactory discrimination training. Preliminary data suggest that the 25-30 nt. RNAs may associate with MIWI rather than Argonaute 1-4 homologues. I conclude that, despite their apparent low abundance, endogenous siRNAs and noncoding RNA-derived small RNAs are likely to play an important role in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Neil R Smalheiser
- University of Illinois at Chicago, Psychiatric Institute MC912, Chicago, IL 60612, USA.
| |
Collapse
|
29
|
Mitochondrial small RNAs that are up-regulated in hippocampus during olfactory discrimination training in mice. Mitochondrion 2011; 11:994-5. [PMID: 21925291 DOI: 10.1016/j.mito.2011.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/17/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022]
Abstract
Adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Hippocampus RNA of trained mice vs. controls was subjected to Illumina deep sequencing. Two mitochondrial RNAs (a tRNA and Mt-1) gave rise to 25-30-nt. small RNAs that showed a dramatic and specific increase with training (>50-fold relative to controls). Mt-1 is encoded within the termination association sequence (TAS) of the mitochondrial DNA control region. Small RNAs may link behavioral plasticity to protein synthesis and replication of mitochondria to support dendritic growth, spine stabilization, and synapse formation.
Collapse
|
30
|
Olde Loohuis NFM, Kos A, Martens GJM, Van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 2011; 69:89-102. [PMID: 21833581 PMCID: PMC3249201 DOI: 10.1007/s00018-011-0788-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/24/2011] [Accepted: 07/21/2011] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation.
Collapse
Affiliation(s)
- N F M Olde Loohuis
- Department of Cognitive Neuroscience, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Bredy TW, Lin Q, Wei W, Baker-Andresen D, Mattick JS. MicroRNA regulation of neural plasticity and memory. Neurobiol Learn Mem 2011; 96:89-94. [DOI: 10.1016/j.nlm.2011.04.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/29/2011] [Accepted: 04/08/2011] [Indexed: 01/05/2023]
|
32
|
Smalheiser NR, Lugli G, Thimmapuram J, Cook EH, Larson J. Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training. RNA (NEW YORK, N.Y.) 2011; 17:166-181. [PMID: 21045079 PMCID: PMC3004058 DOI: 10.1261/rna.2123811] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 09/30/2010] [Indexed: 05/29/2023]
Abstract
We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo. Unexpectedly, a dramatic increase with training (more than 100-fold) was observed for a class of 25- to 30-nt small RNAs derived from specific sites within snoRNAs and abundant noncoding RNAs (Y1 RNA, RNA component of mitochondrial RNAse P, 28S rRNA, and 18S rRNA). Further studies are warranted to characterize the role(s) played by endogenous siRNAs and noncoding RNA-derived small RNAs in learning and memory.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|