1
|
Schaffer R, Kang YS, Marcallini A, Pipkorn B, Bolte JH, Agnew AM. Comparison of Bending Properties in Paired Human Ribs with and without Costal Cartilage. STAPP CAR CRASH JOURNAL 2024; 68:104-154. [PMID: 39704625 DOI: 10.4271/2024-22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Thoracic injuries, most frequently rib fractures, commonly occur in motor vehicle crashes. With an increased reliance on human body models (HBMs) for injury prediction in various crash scenarios, all thoracic tissues and structures require more comprehensive evaluation for improvement of HBMs. The objective of this study was to quantify the contribution of costal cartilage to whole rib bending properties in physical experiments. Fifteen bilateral pairs of 5th human ribs were included in this study. One rib within each pair was tested without costal cartilage while the other rib was tested with costal cartilage. All ribs were subjected to simplified A-P loading at 2 m/s until failure to simulate a frontal thoracic impact. Results indicated a statistically significant difference in force, structural stiffness, and yield strain between ribs with and without costal cartilage. On average, ribs with costal cartilage experienced a lower force but greater displacement with a longer time to fracture compared to isolated ribs. Comparisons were complicated by varying levels of calcification between costal cartilages and varying geometry with the inclusion of the costal cartilage. This study highlights the important effects of costal cartilage on rib properties and suggests an increased focus on costal cartilage in HBMs in future work.
Collapse
Affiliation(s)
- Rose Schaffer
- Injury Biomechanics Research Center, The Ohio State University
| | - Yun-Seok Kang
- Injury Biomechanics Research Center, The Ohio State University
| | | | | | - John H Bolte
- Injury Biomechanics Research Center, The Ohio State University
| | - Amanda M Agnew
- Injury Biomechanics Research Center, The Ohio State University
| |
Collapse
|
2
|
Xu M, Qian Z, Zhang Y, Gao X, Ma Z, Jin X, Wu S. Sirt1 alleviates osteoarthritis via promoting FoxO1 nucleo-cytoplasm shuttling to facilitate autophagy. Int Immunopharmacol 2024; 131:111893. [PMID: 38513577 DOI: 10.1016/j.intimp.2024.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
This study aims to investigate the role and underlying mechanisms of Sirt1 in the pathophysiological process of OA. Safranine O and HE staining were utilized to identify pathological changes in the cartilage tissue. Immunohistochemistry was employed to evaluate the expression levels of proteins. IL-1β treatment and TamCartSirt1flox/flox mice were utilized to induce OA model both in vitro and in vivo. Key autophagy-related transcription factors, autophagy-related genes, and chondrocyte extracellular matrix (ECM) breakdown enzyme markers were examined using multi assays. Immunofluorescence staining revealed subcellular localization and gene expression patterns. ChIP assay and Co-immunoprecipitation assay were conducted to investigate the interactions between FoxO1 and the promoter regions of Atg7 and Sirt1. Our results demonstrate that Sirt1 deficiency exhibited inhibitory effects on ECM synthesis and autophagy, as well as exacerbated angiogenesis. Moreover, Atg7, Foxo1, and Sirt1 could form a protein complex. Sirt1 was observed to facilitate nuclear translocation of FoxO1, enhancing its transcriptional activity. Furthermore, FoxO1 was found to bind to the promoter regions of Atg7 and Sirt1, potentially regulating their expression. This study provides valuable insights into the involvement of Sirt1-Atg7-FoxO1 loop in OA, opening new avenues for targeted therapeutic interventions aiming to mitigate cartilage degradation and restore joint function.
Collapse
Affiliation(s)
- Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhengmin Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Chiu C, Zheng K, Xue M, Du D. Comparative Analysis of Hyaline Cartilage Characteristics and Chondrocyte Potential for Articular Cartilage Repair. Ann Biomed Eng 2024; 52:920-933. [PMID: 38190025 DOI: 10.1007/s10439-023-03429-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
This study aimed to compare the histological, biochemical, and mechanical characteristics of hyaline cartilage in different regions and evaluate the potential of chondrocytes extracted from each region as donor sources for articular cartilage repair. The cartilage tissues of the femoral head and knee joint, ribs, nasal septum, thyroid, and xiphoid process of adult Bama pigs were isolated for histological, biochemical, and mechanical evaluation and analysis. The corresponding chondrocytes were isolated and evaluated for proliferation and redifferentiation capacity, using biochemical and histological analysis and RT-PCR experiments. Compared with articular cartilage, non-articular hyaline cartilage matrix stained more intensely in Safranin-O staining. Glycosaminoglycan and total collagen content were similar among all groups, while the highest content was measured in nasal septal cartilage. Regarding biomechanics, non-articular cartilage is similar to articular cartilage, but the elastic modulus and hardness are significantly higher in the middle region of costal cartilage. The chondrocytes extracted from different regions had no significant difference in morphology. Hyaline cartilage-like pellets were formed in each group after redifferentiation. The RT-PCR results revealed similar expressions of cartilage-related genes across the groups, albeit with lower expression of Col2 in the xiphoid chondrocytes. Conversely, higher expression of Col10 was observed in the chondrocytes from the rib, thyroid, and xiphoid cartilage. This study provides valuable preclinical data for evaluating heterotopic hyaline cartilage and chondrocytes for articular cartilage regeneration. The findings contribute to the selection of chondrocyte origins and advance the clinical translation of technology for cartilage regeneration.
Collapse
Affiliation(s)
- Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Mengxin Xue
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
4
|
Zheng K, Ma Y, Chiu C, Xue M, Zhang C, Du D. Enhanced articular cartilage regeneration using costal chondrocyte-derived scaffold-free tissue engineered constructs with ascorbic acid treatment. J Orthop Translat 2024; 45:140-154. [PMID: 38559899 PMCID: PMC10979122 DOI: 10.1016/j.jot.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background Cartilage tissue engineering faces challenges related to the use of scaffolds and limited seed cells. This study aims to propose a cost-effective and straightforward approach using costal chondrocytes (CCs) as an alternative cell source to overcome these challenges, eliminating the need for special culture equipment or scaffolds. Methods CCs were cultured at a high cell density with and without ascorbic acid treatment, serving as the experimental and control groups, respectively. Viability and tissue-engineered constructs (TEC) formation were evaluated until day 14. Slices of TEC samples were used for histological staining to evaluate the secretion of glycosaminoglycans and different types of collagen proteins within the extracellular matrix. mRNA sequencing and qPCR were performed to examine gene expression related to cartilage matrix secretion in the chondrocytes. In vivo experiments were conducted by implanting TECs from different groups into the defect site, followed by sample collection after 12 weeks for histological staining and scoring to evaluate the extent of cartilage regeneration. Hematoxylin-eosin (HE), Safranin-O-Fast Green, and Masson's trichrome stainings were used to examine the content of cartilage-related matrix components in the in vivo repair tissue. Immunohistochemical staining for type I and type II collagen, as well as aggrecan, was performed to assess the presence and distribution of these specific markers. Additionally, immunohistochemical staining for type X collagen was used to observe any hypertrophic changes in the repaired tissue. Results Viability of the chondrocytes remained high throughout the culture period, and the TECs displayed an enriched extracellular matrix suitable for surgical procedures. In vitro study revealed glycosaminoglycan and type II collagen production in both groups of TEC, while the TEC matrix treated with ascorbic acid displayed greater abundance. The results of mRNA sequencing and qPCR showed that genes related to cartilage matrix secretion such as Sox9, Col2, and Acan were upregulated by ascorbic acid in costal chondrocytes. Although the addition of Asc-2P led to an increase in COL10 expression according to qPCR and RNA-seq results, the immunofluorescence staining results of the two groups of TECs exhibited similar distribution and fluorescence intensity. In vivo experiments showed that both groups of TEC could adhere to the defect sites and kept hyaline cartilage morphology until 12 weeks. TEC treated with ascorbic acid showed superior cartilage regeneration as evidenced by significantly higher ICRS and O'Driscoll scores and stronger Safranin-O and collagen staining mimicking native cartilage when compared to other groups. In addition, the immunohistochemical staining results of Collgan X indicated that, after 12 weeks, the ascorbic acid-treated TEC did not exhibit further hypertrophy upon transplantation into the defect site, but maintained an expression profile similar to untreated TECs, while slightly higher than the sham-operated group. Conclusion These results suggest that CC-derived scaffold-free TEC presents a promising method for articular cartilage regeneration. Ascorbic acid treatment enhances outcomes by promoting cartilage matrix production. This study provides valuable insights and potential advancements in the field of cartilage tissue engineering. The translational potential of this article Cartilage tissue engineering is an area of research with immense clinical potential. The approach presented in this article offers a cost-effective and straightforward solution, which can minimize the complexity of cell culture and scaffold fabrication. This simplification could offer several translational advantages, such as ease of use, rapid scalability, lower costs, and the potential for patient-specific clinical translation. The use of costal chondrocytes, which are easily obtainable, and the scaffold-free approach, which does not require specialized equipment or membranes, could be particularly advantageous in clinical settings, allowing for in situ regeneration of cartilage.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxin Xue
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wei Y, Guo H, Chen Z, Sun N, Zeng C. Autologous Costal Chondral/Osteochondral Transplantation and Costa-Derived Chondrocyte Implantation for Articular Cartilage Repair: Basic Science and Clinical Applications. Orthop Surg 2024; 16:523-531. [PMID: 38272834 PMCID: PMC10925498 DOI: 10.1111/os.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
There has been increasing application of autologous costal chondral/osteochondral transplantation (ACCT/ACOT) and costa-derived chondrocyte implantation (ACCI) for articular cartilage repair over the past three decades. This review presents the major evidence on the properties of costal cartilage and bone and their qualifications as grafts for articular cartilage repair, the major clinical applications, and the risks and strategies for costal chondral/osteochondral graft(s) harvest. First, costal cartilage has many specific properties that help restore the articular surface. Costa, which can provide abundant cartilage and cylindrical corticocancellous bone, preserves permanent chondrocyte and is the largest source of hyaline cartilage. Second, in the past three decades, autologous costal cartilage-derived grafts, including cartilage, osteochondral graft(s), and chondrocyte, have expanded their indications in trauma and orthopaedic therapy from small to large joints, from the upper to lower limbs, and from non-weight-bearing to weight-bearing joints. Third, the rate of donor-site complications of ACCT or ACOT is low, acceptable, and controllable, and some skills and accumulated experience can help reduce the risks of ACCT and ACOT. Costal cartilage-derived autografting is a promising technique and could be an ideal option for articular chondral lesions with or without subchondral cysts. More high-quality clinical studies are urgently needed to help us further understand the clinical value of such technologies.
Collapse
Affiliation(s)
- Yuxuan Wei
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Hao Guo
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Zhuhong Chen
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Nian Sun
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Lee KW, Chung K, Nam DH, Jung M, Kim SH, Kim HG. Decellularized allogeneic cartilage paste with human costal cartilage and crosslinked hyaluronic acid-carboxymethyl cellulose carrier augments microfracture for improved articular cartilage repair. Acta Biomater 2023; 172:297-308. [PMID: 37813156 DOI: 10.1016/j.actbio.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Articular cartilage lacks natural healing abilities and necessitates surgical treatments for injuries. While microfracture (MF) is a primary surgical approach, it often results in the formation of unstable fibrocartilage. Delivering hyaline cartilage directly to defects poses challenges due to the limited availability of autologous cartilage and difficulties associated with allogeneic cartilage delivery. We developed a decellularized allogeneic cartilage paste (DACP) using human costal cartilage mixed with a crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC) carrier. The decellularized allogeneic cartilage preserved the extracellular matrix and the nanostructure of native hyaline cartilage. The crosslinked HA-CMC carrier provided shape retention and moldability. In vitro studies confirmed that DACP did not cause cytotoxicity and promoted migration, proliferation, and chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. After 6 months of implantation in rabbit knee osteochondral defects, DACP combined with MF outperformed MF alone, demonstrating improved gait performance, defect filling, morphology, extracellular matrix deposition, and biomechanical properties similar to native cartilage. Thus, DACP offers a safe and effective method for articular cartilage repair, representing a promising augmentation to MF. STATEMENT OF SIGNIFICANCE: Directly delivering hyaline cartilage to repair articular cartilage defects is an ideal treatment. However, current allogeneic cartilage products face delivery challenges. In this study, we developed a decellularized allogeneic cartilage paste (DACP) by mixing human costal cartilage with crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC). DACP preserves extracellular matrix components and nanostructures similar to native cartilage, with HA-CMC ensuring shape retention and moldability. Our study demonstrates improved cartilage repair by combining DACP with microfracture, compared to microfracture alone, in rabbit knee defects over 6 months. This is the first report showing better articular cartilage repair using decellularized allogeneic cartilage with microfracture, without the need for exogenous cells or bioactive substances.
Collapse
Affiliation(s)
- Kee-Won Lee
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Dong-Hyun Nam
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyung-Gu Kim
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Pang Y, Ma Y, Zheng K, Zhu S, Sui H, Ren H, Liu K, Li W, Huang Y, Du D, Gao J, Zhang C. Costal Cartilage Graft Repair Osteochondral Defect in a Mouse Model. Cartilage 2023:19476035231209404. [PMID: 37881954 DOI: 10.1177/19476035231209404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE Osteochondral defects develop into osteoarthritis without intervention. Costal cartilage can be utilized as an alternative source for repairing osteochondral defect. Our previous clinical study has shown the successful osteochondral repair by costal cartilage graft with integration into host bone bed. In this study, we investigate how cartilaginous graft adapt to osteochondral environment and the mechanism of bone-cartilage interface formation. DESIGN Costal cartilage grafting was performed in C57BL/6J mice and full-thickness osteochondral defect was made as control. 3D optical profiles and micro-CT were applied to evaluate the reconstruction of articular cartilage surface and subchondral bone as well as gait analysis to evaluate articular function. Histological staining was performed at 2, 4, and 8 weeks after surgery. Moreover, costal cartilage from transgenic mice with fluorescent markers were transplanted into wild-type mice to observe the in vivo changes of costal chondrocytes. RESULTS At 8 weeks after surgery, 3D optical profiles and micro-CT showed that in the graft group, the articular surface and subchondral bone were well preserved. Gait analysis and International Cartilage Repair Society (ICRS) score evaluation showed a good recovery of joint function and histological repair in the graft group. Safranin O staining showed the gradual integration of graft and host tissue. Costal cartilage from transgenic mice with fluorescent markers showed that donor-derived costal chondrocytes turned into osteocytes in the subchondral area of host femur. CONCLUSION Costal cartilage grafting shows both functional and histological repair of osteochondral defect in mice. Graft-derived costal chondrocytes differentiate into osteocytes and contribute to endochondral ossification.
Collapse
Affiliation(s)
- Yidan Pang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiwen Zheng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Sui
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kang Liu
- Beixcell (Beijing) Biotechnology Ltd, Beijing, China
| | - Wei Li
- Beixcell (Beijing) Biotechnology Ltd, Beijing, China
| | - Yigang Huang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dajiang Du
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian), Jinjiang City, Quanzhou, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Donnelly H, Kurjan A, Yong LY, Xiao Y, Lemgruber L, West C, Salmeron-Sanchez M, Dalby MJ. Fibronectin matrix assembly and TGFβ1 presentation for chondrogenesis of patient derived pericytes for microtia repair. BIOMATERIALS ADVANCES 2023; 148:213370. [PMID: 36931082 DOI: 10.1016/j.bioadv.2023.213370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Tissue engineered cartilage for external ear reconstruction of congenital deformities, such as microtia or resulting from trauma, remains a significant challenge for plastic and reconstructive surgeons. Current strategies involve harvesting autologous costal cartilage or expanding autologous chondrocytes ex vivo. However, these procedures often lead to donor site morbidity and a cell source with limited expansion capacity. Stromal stem cells such as perivascular stem cells (pericytes) offer an attractive alternative cell source, as they can be isolated from many human tissues, readily expanded in vitro and possess chondrogenic differentiation potential. Here, we successfully isolate CD146+ pericytes from the microtia remnant from patients undergoing reconstructive surgery (Microtia pericytes; MPs). Then we investigate their chondrogenic potential using the polymer poly(ethyl acrylate) (PEA) to unfold the extracellular matrix protein fibronectin (FN). FN unfolding exposes key growth factor (GF) and integrin binding sites on the molecule, allowing tethering of the chondrogenic GF transforming growth factor beta 1 (TGFβ1). This system leads to solid-phase, matrix-bound, GF presentation in a more physiological-like manner than that of typical chondrogenic induction media (CM) formulations that tend to lead to off-target effects. This simple and controlled material-based approach demonstrates similar chondrogenic potential to CM, while minimising proclivity toward hypertrophy, without the need for complex induction media formulations.
Collapse
Affiliation(s)
- Hannah Donnelly
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Alina Kurjan
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Li Yenn Yong
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Christopher West
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
9
|
Kurenkova AD, Romanova IA, Kibirskiy PD, Timashev P, Medvedeva EV. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int J Mol Sci 2022; 23:11169. [PMID: 36232468 PMCID: PMC9570095 DOI: 10.3390/ijms231911169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Irina A. Romanova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| |
Collapse
|
10
|
Otto IA, Bernal PN, Rikkers M, van Rijen MH, Mensinga A, Kon M, Breugem CC, Levato R, Malda J. Human Adult, Pediatric and Microtia Auricular Cartilage harbor Fibronectin-adhering Progenitor Cells with Regenerative Ear Reconstruction Potential. iScience 2022; 25:104979. [PMID: 36105583 PMCID: PMC9464889 DOI: 10.1016/j.isci.2022.104979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Iris A. Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Margot Rikkers
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Mattie H.P. van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Moshe Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Corstiaan C. Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, 1105 ZA, the Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| |
Collapse
|
11
|
Zheng K, Ma Y, Chiu C, Pang Y, Gao J, Zhang C, Du D. Co-culture pellet of human Wharton's jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res Ther 2022; 13:386. [PMID: 35907866 PMCID: PMC9338579 DOI: 10.1186/s13287-022-03094-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seeding cells are key factors in cell-based cartilage tissue regeneration. Monoculture of either chondrocyte or mesenchymal stem cells has several limitations. In recent years, co-culture strategies have provided potential solutions. In this study, directly co-cultured rat costal chondrocytes (CCs) and human Wharton's jelly mesenchymal stem (hWJMSCs) cells were evaluated as a candidate to regenerate articular cartilage. METHODS Rat CCs are directly co-cultured with hWJMSCs in a pellet model at different ratios (3:1, 1:1, 1:3) for 21 days. The monoculture pellets were used as controls. RT-qPCR, biochemical assays, histological staining and evaluations were performed to analyze the chondrogenic differentiation of each group. The 1:1 ratio co-culture pellet group together with monoculture controls were implanted into the osteochondral defects made on the femoral grooves of the rats for 4, 8, 12 weeks. Then, macroscopic and histological evaluations were performed. RESULTS Compared to rat CCs pellet group, 3:1 and 1:1 ratio group demonstrated similar extracellular matrix production but less hypertrophy intendency. Immunochemistry staining found the consistent results. RT-PCR analysis indicated that chondrogenesis was promoted in co-cultured rat CCs, while expressions of hypertrophic genes were inhibited. However, hWJMSCs showed only slightly improved in chondrogenesis but not significantly different in hypertrophic expressions. In vivo experiments showed that all the pellets filled the defects but co-culture pellets demonstrated reduced hypertrophy, better surrounding cartilage integration and appropriate subchondral bone remodeling. CONCLUSION Co-culture of rat CCs and hWJMSCs demonstrated stable chondrogenic phenotype and decreased hypertrophic intendency in both vitro and vivo. These results suggest this co-culture combination as a promising candidate in articular cartilage regeneration.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
12
|
Anti-hypertrophic effect of synovium-derived stromal cells on costal chondrocytes promotes cartilage repairs. J Orthop Translat 2021; 32:59-68. [PMID: 34934627 PMCID: PMC8645424 DOI: 10.1016/j.jot.2021.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background Costal chondrocytes (CCs), as a promising donor cell source for cell-based therapy for cartilage repair, have strong tendency of hypertrophy and calcification, which limited CCs from further application in cartilage regenerative medicine. Synovium-derived stromal cells (SDSCs), have shown their beneficial effect for chondrocytes to maintain phenotype. This study aims to investigate whether SDSCs could help CCs to maintain chondrogenic phenotype and suppress hypertrophic differentiation in cartilage repairs. Methods CCs were directly cocultured with SDSCs in pellet or indirectly cocultured using a conditioned medium in vitro for 3 weeks. Cartilage matrix formation and hypertrophic differentiation of CCs were analyzed by RT-PCR, biochemical assays, and histological staining. Cocultured pellets were implanted into the osteochondral defects made on the femoral groove of the rats. Then, macroscopic and histological evaluations were performed. Results Pellets formed by CCs alone and CCs cocultured with SDSCs reveal equal cartilage matrix deposition. However, the gene expression of type X collagen was significantly downregulated in cocultured pellets. Immunohistochemistry analysis revealed suppressed expression of type X collagen in cocultured pellets, indicating SDSCs may suppress hypertrophic differentiation of chondrocytes. Further in indirect coculture experiment, SDSCs suppressed type X collagen expression as well and promoted the proliferation of CCs, indicating SDSCs may influence CCs by paracrine mechanism. The pellets implanted in the osteochondral defects showed good restoration effects, whereas the grafts constructed with CCs and SDSCs showed lower type X expression levels. Conclusion These results suggest that SDSCs may maintain the phenotype of CCs and prevent the hypertrophic differentiation of CCs in cartilage repair. The Translational Potential of this Article: CCs is a promising donor cell source for cell-based therapy for cartilage repair. Based on our study, cocultured with SDSCs weakened the tendency of hypertrophy and calcification of CCs, which provide a potential usage of SDSCs in CCs-based cartilage repair therapy to suppress newly formed cartilage calcification and improve clinical outcomes.
Collapse
|
13
|
Sawada I, Sato I, Kawata S, Nagahori K, Omotehara T, Yakura T, Li ZL, Itoh M. Characteristic expression of CGRP and osteogenic and vasculogenic markers in the proximal and distal regions of the rib during male mouse development. Ann Anat 2021; 240:151883. [PMID: 34915119 DOI: 10.1016/j.aanat.2021.151883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuropeptide calcitonin gene-related peptide (CGRP) is a neurotransmitter related to vasculogenesis and osteogenesis during bone formation and organ development. From the foetal period to the postnatal period, the thorax, which is necessary for lung respiration, forms. The thorax exhibits the same cartilage ossification as the bones of the extremities, but a specific system within the thorax exists as costal cartilage after birth. The relationship among CGRP, osteogenesis and vasculogenic markers in the two rib locations during thorax formation is not fully understood. MATERIALS AND METHODS In our study, male mice were used to provide ribs under different development conditions on various embryonic days (E12. 5, E14.5, and E17.5) and postnatal days (P1 and P5). The mRNA expression levels of CGRP, vascular endothelial growth factor (VEGF-A), type 1 collagen (Col1a-1), type 2 collagen (Col2a1), neuropeptide Y (NPY), osteocalcin (OCN) and osteopontin (OPN) were analysed by qRT-PCR. We also analysed the mRNA expression of CGRP, VEGF-A and OPN by in situ hybridization. Multivariate modelling with principal component analysis (PCA) was performed to estimate the interactions among the quantitative real-time RT-PCR data. RESULTS The mRNA expression levels of CGRP, VEGF-A, Col2a, Col1a-1, OCN, and NPY in the male mouse rib gradually increased during development. An antisense probe for CGRP mRNA was strongly detected in the central region of the mouse rib at E12.5 and the hypertrophic and ossification zones at E17.5 by in situ hybridization. VEGF-A was also located in the same region as CGRP at E12.5 and E17.5. OPN was strongly detected at the rib formation stage from E14.5 to E17.5. The expression of CGRP also differed between the proximal and distal regions of the rib at E17.5. As demonstrated by in situ hybridization, CGRP continuously participates in cartilage formation in the distal regions of the rib after birth. The PCA revealed that the mRNA expression of CGRP was related to that of Col1a-1 and VEGF-A during rib formation. CONCLUSION This study shows that CGRP is involved in vascular and bone formation during rib development and may also be involved in cartilage formation after birth. The findings suggest that CGRP may temporarily participate in bone formation and continuously participate in cartilage formation in the rib, which may also be related to the formation of the anterior thoracic wall after birth.
Collapse
Affiliation(s)
- Iori Sawada
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Iwao Sato
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Shinichi Kawata
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takuya Omotehara
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tomiko Yakura
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Zhong-Lian Li
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
14
|
Yoon KH, Yoo JD, Choi CH, Lee J, Lee JY, Kim SG, Park JY. Costal Chondrocyte-Derived Pellet-Type Autologous Chondrocyte Implantation versus Microfracture for Repair of Articular Cartilage Defects: A Prospective Randomized Trial. Cartilage 2021; 13:1092S-1104S. [PMID: 32476445 PMCID: PMC8808917 DOI: 10.1177/1947603520921448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To compare the efficacy and safety of costal chondrocyte-derived pellet-type autologous chondrocyte implantation (CCP-ACI) with microfracture (MFx) for repair of articular cartilage defects of the knee. DESIGN Thirty subjects with an International Cartilage Repair Society (ICRS) grade 3 to 4 chondral defect (2-10 cm2 in area; ≤4 cm3 in volume) were randomized at a ratio of 2:1 (CCP-ACI:MFx). Twenty patients were allocated in the CCP-ACI group and 10 patients in the MFx group. CCP-ACI was performed by harvesting costal cartilage at least 4 weeks before surgery. Implantation was performed without any marrow stimulation. Efficacy and safety were assessed at weeks 8, 24, and 48 after surgery according to the magnetic resonance observation of cartilage repair tissue (MOCART) score and clinical outcomes. RESULTS MOCART scores improved from baseline to 24 and 48 weeks postoperatively in both treatment groups. The improvement in MOCART scores in the CCP-ACI group was significantly greater than that in the MFx group at 24 and 48 weeks (39.1 vs 21.8 and 43.0 vs 24.8, respectively). The proportions of complete defect repair and complete integration were significantly higher in the CCP-ACI group than the MFx group at 48 weeks. Improvement in Lysholm score and KOOS subscores, including Function (Sports and Recreational Activity) and knee-related quality of life was significantly greater in the CCP-ACI group than the MFx group at 48 weeks (35.4 vs 31.5, 35.7 vs 28.5, and 27.9 vs 11.6, respectively). CONCLUSION Treatment of cartilage defects with CCP-ACI yielded satisfactory cartilage tissue repair outcomes, with good structural integration with native cartilage tissue shown by magnetic resonance imaging at 24 and 48 weeks after surgery. LEVEL OF EVIDENCE Level 1: Randomized controlled study.
Collapse
Affiliation(s)
- Kyoung-Ho Yoon
- Department of Orthopaedic Surgery,
Kyung-Hee University Hospital, Seoul, Republic of Korea
| | - Jae Doo Yoo
- Department of Orthopaedic Surgery,
School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Chong-Hyuk Choi
- Department of Orthopaedic Surgery,
Yonsei University, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Jungsun Lee
- R&D Institute, Biosolution Co.,
Ltd., Seoul, Republic of Korea
| | - Jin-Yeon Lee
- R&D Institute, Biosolution Co.,
Ltd., Seoul, Republic of Korea
| | - Sang-Gyun Kim
- Department of Orthopaedic Surgery, Korea
University College of Medicine, Ansan Hospital, Ansan, Republic of Korea
| | - Jae-Young Park
- Department of Orthopaedic Surgery,
Kyung-Hee University Hospital, Seoul, Republic of Korea,Jae-Young Park, Department of Orthopaedics,
Kyung-Hee University Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447,
Republic of Korea.
| |
Collapse
|
15
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
16
|
Donahue RP, Nordberg RC, Bielajew BJ, Hu JC, Athanasiou KA. The effect of neonatal, juvenile, and adult donors on rejuvenated neocartilage functional properties. Tissue Eng Part A 2021; 28:383-393. [PMID: 34605665 PMCID: PMC9131355 DOI: 10.1089/ten.tea.2021.0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cartilage does not naturally heal, and cartilage lesions from trauma and wear-and-tear can lead to eventual osteoarthritis. To address long-term repair, tissue engineering of functional biologic implants to treat cartilage lesions is desirable, but the development of such implants is hindered by several limitations including 1) donor tissue scarcity due to the presence of diseased tissues in joints, 2) dedifferentiation of chondrocytes during expansion, and 3) differences in functional output of cells dependent on donor age. Toward overcoming these challenges, 1) costal cartilage has been explored as a donor tissue, and 2) methods have been developed to rejuvenate the chondrogenic phenotype of passaged chondrocytes for generating self-assembled neocartilage. However, it remains unclear how the rejuvenation processes are influenced by donor age, and, thus, how to develop strategies that specifically target age-related differences. Using histological, biochemical, proteomic, and mechanical assays, this study sought to determine the differences among neocartilage generated from neonatal, juvenile, and adult donors using the Yucatan minipig, a clinically relevant large animal model. Based on the literature, a relatively young adult population of animals was chosen due to a reduction in functional output of human articular chondrocytes after 40 years of age. After isolation, costal chondrocytes were expanded, rejuvenated, and self-assembled, and the neocartilages were assessed. The aggregate modulus values of neonatal constructs were at least 1.65-fold of those from the juvenile or adult constructs. Poisson's ratio also significantly differed among all groups, with neonatal constructs exhibiting values 49% higher than adult constructs. Surprisingly, other functional properties such as tensile modulus and GAG content did not significantly differ among groups. Total collagen content was slightly elevated in the adult constructs when compared to neonatal and juvenile constructs. A more nuanced view via bottom-up mass spectrometry showed that Col2a1 protein was not significantly different among groups, but content of several other collagen subtypes (i.e., Col1a1, Col9a1, Col11a2, and Col12a1) was modulated by donor age. For example, Col12a1 in adult constructs was found to be 102.9% higher than neonatal-derived constructs. Despite these differences, this study shows that different aged donors can be used to generate neocartilages of similar functional properties.
Collapse
Affiliation(s)
- Ryan P Donahue
- University of California, Irvine, Biomedical Engineering, Irvine, California, United States;
| | - Rachel C Nordberg
- University of California, Irvine, Biomedical Engineering, Irvine, California, United States;
| | - Benjamin J Bielajew
- University of California, Irvine, Biomedical Engineering, Irvine, California, United States;
| | - Jerry C Hu
- University of California, Irvine, Biomedical Engineering, Irvine, California, United States;
| | - Kyriacos A Athanasiou
- University of California, Irvine, Biomedical Engineering, Irvine, California, United States;
| |
Collapse
|
17
|
Otto IA, Capendale PE, Garcia JP, de Ruijter M, van Doremalen RFM, Castilho M, Lawson T, Grinstaff MW, Breugem CC, Kon M, Levato R, Malda J. Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities. Mater Today Bio 2021; 9:100094. [PMID: 33665603 PMCID: PMC7903133 DOI: 10.1016/j.mtbio.2021.100094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction. First application of human auricular cartilage progenitor cells for bioprinting. Dual-printing of hybrid ear-shaped constructs with excellent shape fidelity over time. Strategy and design ensured adequate deposition of cartilage-like matrix throughout large auricular constructs.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - P E Capendale
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J P Garcia
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - M de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - R F M van Doremalen
- Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Enschede, the Netherlands.,Bureau Science & Innovation, Deventer Hospital, Deventer, the Netherlands
| | - M Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - T Lawson
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - M W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - C C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, the Netherlands
| | - M Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, the Netherlands
| |
Collapse
|
18
|
Yoon KH, Park JY, Lee JY, Lee E, Lee J, Kim SG. Costal Chondrocyte-Derived Pellet-Type Autologous Chondrocyte Implantation for Treatment of Articular Cartilage Defect. Am J Sports Med 2020; 48:1236-1245. [PMID: 32125878 DOI: 10.1177/0363546520905565] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Because articular chondrocyte-based autologous chondrocyte implantations (ACIs) have restrictively restored articular cartilage defects, alternative cell sources as a new therapeutic option for cartilage repair have been introduced. PURPOSE To assess whether implantation of a costal chondrocyte-derived pellet-type (CCP) ACI allows safe, functional, and structural restoration of full-thickness cartilage defects in the knee. STUDY DESIGN Case series; Level of evidence, 4. METHODS In this first-in-human study, 7 patients with symptomatic, full-thickness cartilage lesions were enrolled. The chondrocytes isolated from the patients' costal cartilage were expanded, followed by 3-dimensional pellet culture to prepare the CCP-ACI. Implantation of the pellets was performed via minimal arthrotomy and secured with a fibrin sealant. Clinical scores, including the International Knee Documentation Committee (IKDC) subjective, Lysholm, and Tegner activity scores, were estimated preoperatively and at 1, 2, and 5 years postoperatively. High-resolution magnetic resonance imaging was also performed to evaluate cartilage repair as well as to calculate the MOCART (magnetic resonance observation of cartilage repair tissue) score. RESULTS The costal chondrocytes of all patients formed homogeneous-sized pellets, which showed the characteristics of the hyaline cartilaginous tissue with lacunae-occupied chondrocytes surrounded by glycosaminoglycan and type II collagen-rich extracellular matrix. There were no treatment-related serious adverse events during the 5-year follow-up period. Significant improvements were seen in all clinical scores from preoperative baseline to the 5-year follow-up (IKDC subjective score, 34.67 to 75.86; Lysholm score, 34.00 to 85.33; Tegner activity score, 1.17 to 4.67; and MOCART score, 28.33 to 83.33). Two patients had complete defect filling on magnetic resonance imaging evaluation at 1 year. Moreover, at 5 years postoperatively, complete defect filling was observed in 4 patients, and hypertrophy or incomplete defect filling (50%-100%) was observed in 2 patients. CONCLUSION The overall results of this clinical study suggest that CCP-ACI can emerge as a promising therapeutic option for articular cartilage repair with good clinical outcomes and structural regeneration and with stable results at midterm follow-up. REGISTRATION NCT03517046 ( ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Kyoung-Ho Yoon
- Department of Orthopaedics, Kyung-Hee University Hospital, Seoul, Republic of Korea
| | - Jae-Young Park
- Department of Orthopaedics, Kyung-Hee University Hospital, Seoul, Republic of Korea
| | - Jin-Yeon Lee
- R&D Institute, Biosolution Co, Ltd, Seoul, Republic of Korea
| | - EunAh Lee
- Impedance Imaging Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jungsun Lee
- R&D Institute, Biosolution Co, Ltd, Seoul, Republic of Korea
| | - Sang-Gyun Kim
- Department of Orthopaedics, Kyung-Hee University Hospital, Seoul, Republic of Korea.,Department of Orthopedic Surgery, Korea University Ansan Hospital, Gyeongki-do, Republic of Korea
| |
Collapse
|
19
|
Gao Y, Gao J, Li H, Du D, Jin D, Zheng M, Zhang C. Autologous costal chondral transplantation and costa-derived chondrocyte implantation: emerging surgical techniques. Ther Adv Musculoskelet Dis 2019; 11:1759720X19877131. [PMID: 31579403 PMCID: PMC6759717 DOI: 10.1177/1759720x19877131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
It is a great challenge to cure symptomatic lesions and considerable defects of hyaline cartilage due to its complex structure and poor self-repair capacity. If left untreated, unmatured degeneration will cause significant complications. Surgical intervention to repair cartilage may prevent progressive joint degeneration. A series of surgical techniques, including biological augmentation, microfracture and bone marrow stimulation, autologous chondrocyte implantation (ACI), and allogenic and autogenic chondral/osteochondral transplantation, have been used for various indications. However, the limited repairing capacity and the potential pitfalls of these techniques cannot be ignored. Increasing evidence has shown promising outcomes from ACI and cartilage transplantation. Nevertheless, the morbidity of autologous donor sites and limited resource of allogeneic bone have considerably restricted the wide application of these surgical techniques. Costal cartilage, which preserves permanent chondrocytes and the natural osteochondral junction, is an ideal candidate for the restoration of cartilage defects. Several in vitro and in vivo studies have shown good performance of costal cartilage transplantation. Although costal cartilage is a classic donor in plastic and cosmetic surgery, it is rarely used in skeletal cartilage restoration. In this review, we introduce the fundamental properties of costal cartilage and summarize costa-derived chondrocyte implantation and costal chondral/osteochondral transplantation. We will also discuss the pitfalls and pearls of costal cartilage transplantation. Costal chondral/osteochondral transplantation and costa-based chondrocytotherapy might be up-and-coming surgical techniques for recalcitrant cartilage lesions.
Collapse
Affiliation(s)
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Centre for Orthopaedic Translational Research, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Hengyuan Li
- Department of Orthopaedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dajiang Du
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Dongxu Jin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai 200233, China
| |
Collapse
|
20
|
Lee J, Lee JY, Chae BC, Jang J, Lee E, Son Y. Fully Dedifferentiated Chondrocytes Expanded in Specific Mesenchymal Stem Cell Growth Medium with FGF2 Obtains Mesenchymal Stem Cell Phenotype In Vitro but Retains Chondrocyte Phenotype In Vivo. Cell Transplant 2018; 26:1673-1687. [PMID: 29251111 PMCID: PMC5753982 DOI: 10.1177/0963689717724794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Given recent progress in regenerative medicine, we need a means to expand chondrocytes in quantity without losing their regenerative capability. Although many reports have shown that growth factor supplementation can have beneficial effects, the use of growth factor-supplemented basal media has widespread effect on the characteristics of chondrocytes. Chondrocytes were in vitro cultured in the 2 most widely used chondrocyte growth media, conventional chondrocyte culture medium and mesenchymal stem cell (MSC) culture medium, both with and without fibroblast growth factor-2 (FGF2) supplementation. Their expansion rates, expressions of extracellular matrix-related factors, senescence, and differentiation potentials were examined in vitro and in vivo. Our results revealed that chondrocytes quickly dedifferentiated during expansion in all tested media, as assessed by the loss of type II collagen expression. The 2 basal media (chondrocyte culture medium vs. MSC culture medium) were associated with distinct differences in cell senescence. Consistent with the literature, FGF2 was associated with accelerated dedifferentiation during expansion culture and superior redifferentiation upon induction. However, chondrocytes expanded in FGF2-containing conventional chondrocyte culture medium showed MSC-like features, as indicated by their ability to direct ectopic bone formation and cartilage formation. In contrast, chondrocytes cultured in FGF2-supplemented MSC culture medium showed potent chondrogenesis and almost no bone formation. The present findings show that the chosen basal medium can exert profound effects on the characteristics and activity of in vitro-expanded chondrocytes and indicate that right growth factor/medium combination can help chondrocytes retain a high-level chondrogenic potential without undergoing hypertrophic transition.
Collapse
Affiliation(s)
- Jungsun Lee
- 1 R&D Institute, Biosolution Inc., Seoul, South Korea
| | - Jin-Yeon Lee
- 1 R&D Institute, Biosolution Inc., Seoul, South Korea
| | | | - Jeongho Jang
- 2 Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - EunAh Lee
- 2 Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea.,3 Impedance Imaging Research Center, Kyung Hee University, Seoul, South Korea
| | - Youngsook Son
- 2 Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
21
|
Wong CC, Chen CH, Chiu LH, Tsuang YH, Bai MY, Chung RJ, Lin YH, Hsieh FJ, Chen YT, Yang TL. Facilitating In Vivo Articular Cartilage Repair by Tissue-Engineered Cartilage Grafts Produced From Auricular Chondrocytes. Am J Sports Med 2018; 46:713-727. [PMID: 29211970 DOI: 10.1177/0363546517741306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Insufficient cell numbers still present a challenge for articular cartilage repair. Converting heterotopic auricular chondrocytes by extracellular matrix may be the solution. HYPOTHESIS Specific extracellular matrix may convert the phenotype of auricular chondrocytes toward articular cartilage for repair. STUDY DESIGN Controlled laboratory study. METHODS For in vitro study, rabbit auricular chondrocytes were cultured in monolayer for several passages until reaching status of dedifferentiation. Later, they were transferred to chondrogenic type II collagen (Col II)-coated plates for further cell conversion. Articular chondrogenic profiles, such as glycosaminoglycan deposition, articular chondrogenic gene, and protein expression, were evaluated after 14-day cultivation. Furthermore, 3-dimensional constructs were fabricated using Col II hydrogel-associated auricular chondrocytes, and their histological and biomechanical properties were analyzed. For in vivo study, focal osteochondral defects were created in the rabbit knee joints, and auricular Col II constructs were implanted for repair. RESULTS The auricular chondrocytes converted by a 2-step protocol expressed specific profiles of chondrogenic molecules associated with articular chondrocytes. The histological and biomechanical features of converted auricular chondrocytes became similar to those of articular chondrocytes when cultivated with Col II 3-dimensional scaffolds. In an in vivo animal model of osteochondral defects, the treated group (auricular Col II) showed better cartilage repair than did the control groups (sham, auricular cells, and Col II). Histological analyses revealed that cartilage repair was achieved in the treated groups with abundant type II collagen and glycosaminoglycans syntheses rather than elastin expression. CONCLUSION The study confirmed the feasibility of applying heterotopic chondrocytes for cartilage repair via extracellular matrix-induced cell conversion. CLINICAL RELEVANCE This study proposes a feasible methodology to convert heterotopic auricular chondrocytes for articular cartilage repair, which may serve as potential alternative sources for cartilage repair.
Collapse
Affiliation(s)
- Chin-Chean Wong
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hwa Chen
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsuan Chiu
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Center for Nano Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yang-Hwei Tsuang
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Yi Bai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yun-Ho Lin
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fon-Jou Hsieh
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,a Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
22
|
Pleumeekers MM, Nimeskern L, Koevoet JLM, Karperien M, Stok KS, van Osch GJVM. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture. PLoS One 2018; 13:e0190744. [PMID: 29489829 PMCID: PMC5830031 DOI: 10.1371/journal.pone.0190744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. METHODS hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. RESULTS The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. CONCLUSIONS This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.
Collapse
Affiliation(s)
- M. M. Pleumeekers
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - L. Nimeskern
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - J. L. M. Koevoet
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - M. Karperien
- Department of Tissue Regeneration, MIRA-institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - K. S. Stok
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - G. J. V. M. van Osch
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
23
|
Huwe LW, Brown WE, Hu JC, Athanasiou KA. Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 2018; 12:1163-1176. [PMID: 29286211 DOI: 10.1002/term.2630] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Costal cartilage is a promising donor source of chondrocytes to alleviate cell scarcity in articular cartilage tissue engineering. Limited knowledge exists, however, on costal cartilage characteristics. This study describes the characterization of costal cartilage and articular cartilage properties and compares neocartilage engineered with costal chondrocytes to native articular cartilage, all within a sheep model. Specifically, we (a) quantitatively characterized the properties of costal cartilage in comparison to patellofemoral articular cartilage, and (b) evaluated the quality of neocartilage derived from costal chondrocytes for potential use in articular cartilage regeneration. Ovine costal and articular cartilages from various topographical locations were characterized mechanically, biochemically, and histologically. Costal cartilage was stiffer in compression but softer and weaker in tension than articular cartilage. These differences were attributed to high amounts of glycosaminoglycans and mineralization and a low amount of collagen in costal cartilage. Compared to articular cartilage, costal cartilage was more densely populated with chondrocytes, rendering it an excellent chondrocyte source. In terms of tissue engineering, using the self-assembling process, costal chondrocytes formed articular cartilage-like neocartilage. Quantitatively compared via a functionality index, neocartilage achieved 55% of the medial condyle cartilage mechanical and biochemical properties. This characterization study highlighted the differences between costal and articular cartilages in native forms and demonstrated that costal cartilage is a valuable source of chondrocytes suitable for articular cartilage regeneration strategies.
Collapse
Affiliation(s)
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
24
|
Huwe LW, Brown WE, Hu JC, Athanasiou KA. Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 2017. [PMID: 29286211 DOI: 10.1002/term.2630.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Costal cartilage is a promising donor source of chondrocytes to alleviate cell scarcity in articular cartilage tissue engineering. Limited knowledge exists, however, on costal cartilage characteristics. This study describes the characterization of costal cartilage and articular cartilage properties and compares neocartilage engineered with costal chondrocytes to native articular cartilage, all within a sheep model. Specifically, we (a) quantitatively characterized the properties of costal cartilage in comparison to patellofemoral articular cartilage, and (b) evaluated the quality of neocartilage derived from costal chondrocytes for potential use in articular cartilage regeneration. Ovine costal and articular cartilages from various topographical locations were characterized mechanically, biochemically, and histologically. Costal cartilage was stiffer in compression but softer and weaker in tension than articular cartilage. These differences were attributed to high amounts of glycosaminoglycans and mineralization and a low amount of collagen in costal cartilage. Compared to articular cartilage, costal cartilage was more densely populated with chondrocytes, rendering it an excellent chondrocyte source. In terms of tissue engineering, using the self-assembling process, costal chondrocytes formed articular cartilage-like neocartilage. Quantitatively compared via a functionality index, neocartilage achieved 55% of the medial condyle cartilage mechanical and biochemical properties. This characterization study highlighted the differences between costal and articular cartilages in native forms and demonstrated that costal cartilage is a valuable source of chondrocytes suitable for articular cartilage regeneration strategies.
Collapse
Affiliation(s)
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
25
|
He A, Xia H, Xiao K, Wang T, Liu Y, Xue J, Li D, Tang S, Liu F, Wang X, Zhang W, Liu W, Cao Y, Zhou G. Cell yield, chondrogenic potential, and regenerated cartilage type of chondrocytes derived from ear, nasoseptal, and costal cartilage. J Tissue Eng Regen Med 2017; 12:1123-1132. [PMID: 29139602 DOI: 10.1002/term.2613] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/24/2017] [Accepted: 10/28/2017] [Indexed: 11/12/2022]
Abstract
Functional reconstruction of large cartilage defects in subcutaneous sites remains clinically challenging because of limited donor cartilage. Tissue engineering is a promising and widely accepted strategy for cartilage regeneration. To date, however, this strategy has not achieved a significant breakthrough in clinical translation owing to a lack of detailed preclinical data on cell yield and functionality of clinically applicable chondrocytes. To address this issue, the current study investigated the initial cell yield, proliferative potential, chondrogenic capacity, and regenerated cartilage type of human chondrocytes derived from auricular, nasoseptal, and costal cartilage using a scaffold-free cartilage regeneration model (cartilage sheet). Chondrocytes from all sources exhibited high sensitivity to basic fibroblast growth factor within 8 passages. Nasoseptal chondrocytes presented the strongest proliferation rate, whereas auricular chondrocytes obtained the highest total cell amount using comparable cartilage sample weights. Importantly, all chondrocytes at fifth passage showed strong chondrogenic capacity both in vitro and in the subcutaneous environment of nude mice. Although some significant differences in histological structure, cartilage matrix content and cartilage type specific proteins were observed between the in vitro engineered cartilage and original tissue; the in vivo regenerated cartilage showed mature cartilage features with high similarity to their original native tissue, except for minor matrix changes influenced by the in vivo environment. The current study provides detailed preclinical data for choice of chondrocyte source and thus promotes the clinical translation of cartilage regeneration approach.
Collapse
Affiliation(s)
- Aijuan He
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Huitang Xia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, China
| | - Kaiyan Xiao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Tingting Wang
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, China
| | - Yu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Jixin Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Shengjian Tang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, China
| | - Fangjun Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, China
| | - Xiaoyun Wang
- Department of General Surgery, Wu Jing Hospital, Minhang District, Shanghai, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, China
| |
Collapse
|
26
|
Huwe LW, Sullan GK, Hu JC, Athanasiou KA. Using Costal Chondrocytes to Engineer Articular Cartilage with Applications of Passive Axial Compression and Bioactive Stimuli. Tissue Eng Part A 2017; 24:516-526. [PMID: 28683690 DOI: 10.1089/ten.tea.2017.0136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generating neocartilage with suitable mechanical integrity from a cell source that can circumvent chondrocyte scarcity is indispensable for articular cartilage regeneration strategies. Costal chondrocytes of the rib eliminate donor site morbidity in the articular joint, but it remains unclear how neocartilage formed from these cells responds to mechanical loading, especially if the intent is to use it in a load-bearing joint. In a series of three experiments, this study sought to determine efficacious parameters of passive axial compressive stimulation that would enable costal chondrocytes to synthesize mechanically robust cartilage. Experiment 1 determined a suitable time window for stimulation by its application during either the matrix synthesis phase, the maturation phase, or during both phases of the self-assembling process. The results showed that compressive stimulation at either time was effective in increasing instantaneous moduli by 92% and 87% in the synthesis and maturation phases, respectively. Compressive stimulation during both phases did not further improve properties beyond a one-time stimulation. The magnitude of passive axial compression was examined in Experiment 2 by applying 0, 3.3, 5.0, or 6.7 kPa stresses to the neocartilage. Unlike 6.7 kPa, both 3.3 and 5.0 kPa significantly increased neocartilage compressive properties by 42% and 48% over untreated controls, respectively. Experiment 3 examined how the passive axial compression regimen developed from the previous phases interacted with a bioactive regimen (transforming growth factor [TGF]-β1, chondroitinase ABC, and lysyl oxidase-like 2). Passive axial compression significantly improved the relaxation modulus compared with bioactive treatment alone. Furthermore, a combined treatment of compressive and bioactive stimulation improved the tensile properties of neocartilage 2.6-fold compared with untreated control. The ability to create robust articular cartilage from passaged costal chondrocytes through appropriate mechanical and bioactive stimuli will greatly extend the clinical applicability of tissue-engineered products to a wider patient population.
Collapse
Affiliation(s)
- Le W Huwe
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Gurdeep K Sullan
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Jerry C Hu
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Kyriacos A Athanasiou
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California.,2 Department of Orthopaedic Surgery, University of California , Davis, One Shields Avenue, Davis, California
| |
Collapse
|
27
|
Koh S, Purser M, Wysk R, Piedrahita JA. Improved Chondrogenic Potential and Proteomic Phenotype of Porcine Chondrocytes Grown in Optimized Culture Conditions. Cell Reprogram 2017; 19:232-244. [PMID: 28749737 DOI: 10.1089/cell.2017.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
For successful cartilage tissue engineering, the ability to generate a high number of chondrocytes in vitro while avoiding terminal differentiation or de-differentiation is critical. The ability to accomplish this by using the abundant and easily sampled costal cartilage could provide a practical alternative to the use of articular cartilage and mesenchymal stem cells. Chondrocytes isolated from pig costal cartilage were expanded in either serum-free medium with FGF2 (SFM) or fetal bovine serum-containing medium (SCM), under either high (21%) or low (5%) oxygen conditions. Overall, chondrocytes cultured in SFM and low oxygen (Low-SFM) demonstrated the highest cell growth rate (p < 0.05). The effect of passage number on the differentiation status of the chondrocytes was analyzed by alkaline phosphatase (AP) staining and real-time PCR for known chondrocyte quality markers. AP staining indicated that chondrocytes grown in SCM had a higher proportion of terminally differentiated (hypertrophic) chondrocytes (p < 0.05). At the mRNA level, expression ratios of ACAN/VCAN and COL2/COL1 were significantly higher (p < 0.05) in cells expanded in Low-SFM, indicating reduced de-differentiation. In vitro re-differentiation capacity was assessed after a 6-week induction, and chondrocytes grown in Low-SFM showed similar expression ratios of COL2/COL1 and ACAN/VCAN to native cartilage. Proteomic analysis of in vitro produced cartilage indicated that the Low-SFM condition most closely matched the proteomic profile of native costal and articular cartilage. In conclusion, Low-SFM culture conditions resulted in improved cell growth rates, reduced levels of de-differentiation during expansion, greater ability to re-differentiate into cartilage on induction, and an improved proteomic profile that resembles that of in vivo cartilage.
Collapse
Affiliation(s)
- Sehwon Koh
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,3 Department of Cell Biology, Duke University , Durham, North Carolina
| | - Molly Purser
- 4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina.,5 RTI Health Solutions, Research Triangle International , Raleigh, North Carolina
| | - Richard Wysk
- 2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina
| | - Jorge A Piedrahita
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,6 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
28
|
Efficiency of Human Epiphyseal Chondrocytes with Differential Replication Numbers for Cellular Therapy Products. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6437658. [PMID: 27999805 PMCID: PMC5143694 DOI: 10.1155/2016/6437658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Abstract
The cell-based therapy for cartilage or bone requires a large number of cells; serial passages of chondrocytes are, therefore, needed. However, fates of expanded chondrocytes from extra fingers remain unclarified. The chondrocytes from human epiphyses morphologically changed from small polygonal cells to bipolar elongated spindle cells and to large polygonal cells with degeneration at early passages. Gene of type II collagen was expressed in the cells only at a primary culture (Passage 0) and Passage 1 (P1) cells. The nodules by implantation of P0 to P8 cells were composed of cartilage and perichondrium. The cartilage consisted of chondrocytes with round nuclei and type II collagen-positive matrix, and the perichondrium consisted of spindle cells with type I collage-positive matrix. The cartilage and perichondrium developed to bone with marrow cavity through enchondral ossification. Chondrogenesis and osteogenesis by epiphyseal chondrocytes depended on replication number in culture. It is noteworthy to take population doubling level in correlation with pharmaceutical efficacy into consideration when we use chondrocytes for cell-based therapies.
Collapse
|
29
|
Disc-type hyaline cartilage reconstruction using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes and maintenance of its shape and phenotype after transplantation. Tissue Eng Regen Med 2016; 13:352-363. [PMID: 30603417 DOI: 10.1007/s13770-016-9065-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/21/2015] [Accepted: 09/22/2016] [Indexed: 01/04/2023] Open
Abstract
In this study, we developed the disc-type bio-cartilage reconstruction strategies for transplantable hyaline cartilage for reconstructive surgery using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes. We compared chondrogenesis efficiency between different chondrogenic-induction methods such as micromass culture, pellet culture, and 3D-cell sheet culture. Among them, the 3D-cell sheet culture resulted in the best chondrogenesis with the disc-type bio-cartilage (>12 mm diameter in size) in vitro, but sometimes spontaneous curling and contraction of 3D-cell sheet culture resulted in the formation of bead-type cartilage, which was prevented by type I collagen coating or by culturing on amniotic membrane. Previously, it was reported that tissue-engineered cartilage reconstructed in vitro does not maintain its cartilage phenotype after transplantation but tends to transform to other tissue type such as bone or connective tissue. However, the disc-type bio-cartilage of 3D-cell sheet culture maintained its hyaline cartilage phenotype even after exposure to the osteogenic-induction condition in vitro for 3 weeks or after the transplantation for 4 weeks in mouse subcutaneous. Collectively, the disc-type bio-cartilage with 12 mm diameter can be reproducibly reconstructed by the 3D-cell sheet culture, whose hyaline cartilage phenotype and shape can be maintained under the osteogenic-induction condition as well as after the transplantation. This disc-type bio-cartilage can be proposed for the application to reconstructive surgery and repair of disc-type cartilage such as mandibular cartilage and digits. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-9065-6 and is accessible for authorized users.
Collapse
|
30
|
Evaluation of the Therapeutic Potential In vitro and In vivo of the SIS/PLGA Scaffolds for Costal Cartilage Regeneration. Macromol Res 2016. [DOI: 10.1007/s13233-016-4065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Srour MK, Fogel JL, Yamaguchi KT, Montgomery AP, Izuhara AK, Misakian AL, Lam S, Lakeland DL, Urata MM, Lee JS, Mariani FV. Natural large-scale regeneration of rib cartilage in a mouse model. J Bone Miner Res 2015; 30:297-308. [PMID: 25142306 PMCID: PMC8253918 DOI: 10.1002/jbmr.2326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/07/2022]
Abstract
The clinical need for methods to repair and regenerate large cartilage and bone lesions persists. One way to make new headway is to study skeletal regeneration when it occurs naturally. Cartilage repair is typically slow and incomplete. However, an exception to this observation can be found in the costal cartilages, where complete repair has been reported in humans but the cellular and molecular mechanisms have not yet been characterized. In this study, we establish a novel animal model for cartilage repair using the mouse rib costal cartilage. We then use this model to test the hypothesis that the perichondrium, the dense connective tissue that surrounds the cartilage, is a tissue essential for repair. Our results show that full replacement of the resected cartilage occurs quickly (within 1 to 2 months) and properly differentiates but that repair occurs only in the presence of the perichondrium. We then provide evidence that the rib perichondrium contains a special niche that houses chondrogenic progenitors that possess qualities particularly suited for mediating repair. Label-retaining cells can be found within the perichondrium that can give rise to new chondrocytes. Furthermore, the perichondrium proliferates and thickens during the healing period and when ectopically placed can generate new cartilage. In conclusion, we have successfully established a model for hyaline cartilage repair in the mouse rib, which should be useful for gaining a more detailed understanding of cartilage regeneration and ultimately for developing methods to improve cartilage and bone repair in other parts of the skeleton.
Collapse
Affiliation(s)
- Marissa K. Srour
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Jennifer L. Fogel
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Kent T. Yamaguchi
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Aaron P. Montgomery
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Audrey K. Izuhara
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Aaron L. Misakian
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Stephanie Lam
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Daniel L. Lakeland
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| | - Mark M. Urata
- Division of Plastic and Reconstructive Surgery, Children’s Hospital Los Angeles, 4650 Sunset Blvd. #96, Los Angeles, CA 90027
| | - Janice S. Lee
- Department of Oral and Maxillofacial Surgery, Box 0440, C-522, University of California, San Francisco, San Francisco, CA 94143-0440
| | - Francesca V. Mariani
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., BCC 407, Los Angeles, CA 90033
| |
Collapse
|
32
|
Oh TI, Kim C, Karki B, Son Y, Lee E, Woo EJ. Non-destructive label-free continuous monitoring of in vitro chondrogenesis via electrical conductivity and its anisotropy. Biotechnol Bioeng 2014; 112:422-7. [DOI: 10.1002/bit.25350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 07/17/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Tong In Oh
- Department of Biomedical Engineering; Kyung Hee University; Gyeonggi-do Korea
| | - Changhwan Kim
- College of Life Science and Graduate School of Biotechnology; Kyung Hee University; 1732 Deogyeong-daero Giheung-gu Gyeonggi-do 446-701 Korea
| | - Bishal Karki
- Department of Biomedical Engineering; Kyung Hee University; Gyeonggi-do Korea
| | - Youngsook Son
- College of Life Science and Graduate School of Biotechnology; Kyung Hee University; 1732 Deogyeong-daero Giheung-gu Gyeonggi-do 446-701 Korea
| | - EunAh Lee
- College of Life Science and Graduate School of Biotechnology; Kyung Hee University; 1732 Deogyeong-daero Giheung-gu Gyeonggi-do 446-701 Korea
| | - Eung Je Woo
- Department of Biomedical Engineering; Kyung Hee University; Gyeonggi-do Korea
| |
Collapse
|
33
|
Nam S, Cho W, Cho H, Lee J, Lee E, Son Y. Xiphoid process-derived chondrocytes: a novel cell source for elastic cartilage regeneration. Stem Cells Transl Med 2014; 3:1381-91. [PMID: 25205841 DOI: 10.5966/sctm.2014-0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage.
Collapse
Affiliation(s)
- Seungwoo Nam
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seoul, Republic of Korea; R&D Institute, Modern Cell and Tissue Technologies Inc., Seoul, Republic of Korea
| | - Wheemoon Cho
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seoul, Republic of Korea; R&D Institute, Modern Cell and Tissue Technologies Inc., Seoul, Republic of Korea
| | - Hyunji Cho
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seoul, Republic of Korea; R&D Institute, Modern Cell and Tissue Technologies Inc., Seoul, Republic of Korea
| | - Jungsun Lee
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seoul, Republic of Korea; R&D Institute, Modern Cell and Tissue Technologies Inc., Seoul, Republic of Korea
| | - EunAh Lee
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seoul, Republic of Korea; R&D Institute, Modern Cell and Tissue Technologies Inc., Seoul, Republic of Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seoul, Republic of Korea; R&D Institute, Modern Cell and Tissue Technologies Inc., Seoul, Republic of Korea
| |
Collapse
|
34
|
Cho SA, Cha SR, Park SM, Kim KH, Lee HG, Kim EY, Lee D, Khang G. Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:625-40. [PMID: 24588773 DOI: 10.1080/09205063.2014.888304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells. Biodegradable synthetic polymer poly(lactic-co-glycolic acid) (PLGA) was approved by Food and Drug Administration. Hesperidin has antifungal, antiviral, antioxidant, anti-inflammatory, and anticarcinogenic properties. Hesperidin loaded (0, 3, 5, and 10 wt.%) PLGA scaffolds were prepared and in vitro and in vivo properties were characterized. Scaffolds were seeded with CCs isolated from rabbit, which were kept in culture to harvest for histological analysis. Hesperidin/PLGA scaffolds were also implanted in nude mice for 7 and 28 days. Assays of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfo-phenyl)-2H-tetrazolium, monosodium salt (WST), and scanning electron microscope were carried out to evaluate attachment and proliferation of CCs in hesperidin/PLGA scaffolds. Glycosaminoglycan assay was performed to confirm the effects of hesperidin on extracellular matrix formation. Reverse-transcriptase polymerase chain reaction was carried out to confirm the expression of the specific genes for CCs. In these results, we demonstrated that cell attachment and proliferation on hesperidin/PLGA scaffolds were more excellent compared with on PLGA scaffold. Specially, 5 wt.% hesperidin/PLGA scaffold represented the best results among other scaffolds. Thus, 5 wt.% hesperidin/PLGA scaffold will be applicable to tissue engineering cartilage.
Collapse
Affiliation(s)
- Sun Ah Cho
- a Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology and Polymer Fusion Research Center , Chonbuk National University , 567, Beackje-daero, Deokjin, Jeonju 561-756 , Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cell sources for nucleus pulposus regeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23 Suppl 3:S364-74. [PMID: 24297331 DOI: 10.1007/s00586-013-3106-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE There is increasing interest in the development of cell therapy as a possible approach for the treatment of degenerative disc disease. To regenerate nucleus pulposus tissue, the cells must produce an appropriate proteoglycan-rich matrix, as this is essential for the functioning of the intervertebral disc. The natural environment within the disc is very challenging to implanted cells, particularly if they have been subcultured in normal laboratory conditions. The purpose of this work is to discuss parameters relevant to translating different proposed cell therapies of IVD into clinical use. RESULTS Several sources of cells have been proposed, including nucleus pulposus cells, chondrocytes and mesenchymal stem cells derived from bone marrow or adipose tissue. There are some clinical trials and reports of attempts to regenerate nucleus pulposus utilising either autologous or allogenic cells. While the published results of clinical applications of these cell therapies do not indicate any safety issues, additional evidence will be needed to prove their long-term efficacy. CONCLUSION This article discusses parameters relevant for successful translation of research on different cell sources into clinically applicable cell therapies: the influence of the intervertebral disc microenvironment on the cell phenotype, issues associated with cell culture and technical preparation of cell products, as well as discussing current regulatory requirements. There are advantages and disadvantages of each proposed cell type, but no strong evidence to favour any one particular cell source at the moment.
Collapse
|
36
|
Zhu S, Liu H, Wu Y, Heng BC, Chen P, Liu H, Ouyang HW. Wnt and Rho GTPase signaling in osteoarthritis development and intervention: implications for diagnosis and therapy. Arthritis Res Ther 2013; 15:217. [PMID: 23856044 PMCID: PMC3979163 DOI: 10.1186/ar4240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Wnt and Rho GTPase signaling play critical roles in governing numerous aspects of cell physiology, and have been shown to be involved in endochondral ossification and osteoarthritis (OA) development. In this review, current studies of canonical Wnt signaling in OA development, together with the differential roles of Rho GTPases in chondrocyte maturation and OA pathology are critically summarized. Based on the current scientific literature together with our preliminary results, the strategy of targeting Wnt and Rho GTPase for OA prognosis and therapy is suggested, which is instructive for clinical treatment of the disease.
Collapse
|
37
|
Leijten JC, Georgi N, Wu L, van Blitterswijk CA, Karperien M. Cell Sources for Articular Cartilage Repair Strategies: Shifting from Monocultures to Cocultures. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:31-40. [DOI: 10.1089/ten.teb.2012.0273] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jeroen C.H. Leijten
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nicole Georgi
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ling Wu
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens A. van Blitterswijk
- Faculty of Science and Technology, Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
38
|
Dai J, Wang J, Lu J, Zou D, Sun H, Dong Y, Yu H, Zhang L, Yang T, Zhang X, Wang X, Shen G. The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials 2012; 33:7699-711. [PMID: 22841919 DOI: 10.1016/j.biomaterials.2012.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/08/2012] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs), which arise from cranial neural crest cells, are multipotent, making them a candidate for use in tissue engineering that may be especially useful for craniofacial tissues. Costal chondrocytes (CCs) can be easily obtained and demonstrate higher initial cell yields and expansion than articular chondrocytes. CCs have been found to retain chondrogenic capacity that can effectively repair articular defects. In this study, human CCs were co-cultured with human DPSCs, and the results showed that the CCs were able to supply a chondro-inductive niche that promoted the DPSCs to undergo chondrogenic differentiation and to enhance the formation of cartilage. Although CCs alone could not prevent the mineralization of chondro-differentiated DPSCs, CCs combined with exogenous FGF9 were able to simultaneously promote the chondrogenesis of DPSCs and partially inhibit their mineralization. Furthermore, FGF9 may activate this inhibition by binding to FGFR3 and enhancing the phosphorylation of ERK1/2 in DPSCs. Our results strongly suggest that the co-culture of CCs and DPSCs combined with exogenous FGF9 can simultaneously enhance chondrogenesis and partially inhibit ossification in engineered cartilage.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tripathy S, Berger EJ. Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy. Comput Methods Biomech Biomed Engin 2012; 15:475-86. [DOI: 10.1080/10255842.2010.545820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
He CX, Zhang TY, Miao PH, Hu ZJ, Han M, Tabata Y, Hu YL, Gao JQ. TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem 2012; 59:163-9. [PMID: 23586825 DOI: 10.1002/bab.1001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/10/2012] [Indexed: 12/23/2022]
Abstract
This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-β1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF-β1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF-β1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF-β1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF-β1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF-β1-gene engineered MSCs can induce cartilage regeneration in vivo.
Collapse
Affiliation(s)
- Cai-Xia He
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Egli RJ, Wernike E, Grad S, Luginbühl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 289:37-87. [PMID: 21749898 DOI: 10.1016/b978-0-12-386039-2.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of cartilaginous tissues has been studied for many years, and tissue-engineered constructs are sought to be used clinically for treating articular cartilage defects. Even though there is a plethora of studies and data available, no breakthroughs have been achieved yet that allow for implanting in vivo cultured articular cartilaginous tissues in patients. A review of contributions to cartilage tissue engineering over the past decades emphasizes that most of the studies were performed under environmental conditions neglecting the physiological situation. This is specifically pronounced in the use of bioreactor systems which neither allow for application of near physiomechanical stimulations nor for controlling a hypoxic environment as it is experienced in synovial joints. It is suspected that the negligence of these important parameters has slowed down progress and prevented major breakthroughs in the field. This review focuses on the main aspects of cartilage tissue engineering with emphasis on the relation and understanding of employing physiological conditions.
Collapse
|
42
|
El Sayed K, Marzahn U, John T, Hoyer M, Zreiqat H, Witthuhn A, Kohl B, Haisch A, Schulze-Tanzil G. PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med 2011; 7:61-72. [PMID: 22081560 DOI: 10.1002/term.496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/23/2011] [Accepted: 07/12/2011] [Indexed: 11/06/2022]
Abstract
The availability of autologous articular chondrocytes remains a limiting issue in matrix assisted autologous chondrocyte transplantation. Non-articular heterotopic chondrocytes could be an alternative autologous cell source. The aims of this study were to establish heterotopic chondrocyte cocultures to analyze cell-cell compatibilities and to characterize the chondrogenic potential of nasoseptal chondrocytes compared to articular chondrocytes. Primary porcine and human nasoseptal and articular chondrocytes were investigated for extracellular cartilage matrix (ECM) expression in a monolayer culture. 3D polyglycolic acid- (PGA) associated porcine heterotopic mono- and cocultures were assessed for cell vitality, types II, I, and total collagen-, and proteoglycan content. The type II collagen, lubricin, and Sox9 gene expressions were significantly higher in articular compared with nasoseptal monolayer chondrocytes, while type IX collagen expression was lower in articular chondrocytes. Only β1-integrin gene expression was significantly inferior in humans but not in porcine nasoseptal compared with articular chondrocytes, indicating species-dependent differences. Heterotopic chondrocytes in PGA cultures revealed high vitality with proteoglycan-rich hyaline-like ECM production. Similar amounts of type II collagen deposition and type II/I collagen ratios were found in heterotopic chondrocytes cultured on PGA compared to articular chondrocytes. Quantitative analyses revealed a time-dependent increase in total collagen and proteoglycan content, whereby the differences between heterotopic and articular chondrocyte cultures were not significant. Nasoseptal and auricular chondrocytes monocultured in PGA or cocultured with articular chondrocytes revealed a comparable high chondrogenic potential in a tissue engineering setting, which created the opportunity to test them in vivo for articular cartilage repair.
Collapse
Affiliation(s)
- K El Sayed
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, Garystraße 5, 14195, Berlin
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cheuk YC, Wong MWN, Lee KM, Fu SC. Use of allogeneic scaffold-free chondrocyte pellet in repair of osteochondral defect in a rabbit model. J Orthop Res 2011; 29:1343-50. [PMID: 21425327 DOI: 10.1002/jor.21339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/28/2010] [Indexed: 02/04/2023]
Abstract
Cell-based therapies are currently being used in treating osteochondral defect (OCD), but technical advances are needed to tackle the problems of scaffold and grafting technique. This study aimed to test the potential of allogeneic scaffold-free bioengineered chondrocyte pellet (BCP) in treating OCD. BCP was fabricated from rabbit costal cartilage and implanted into 3 mm × 3 mm OCD in medial femoral condyle of 20 rabbits. Samples were harvested at 2, 4, 8, and 16 weeks for histology, histological scoring and histomorphometric analysis. At treated side, cartilage score was significantly better at week 4 (p = 0.027), and cartilage thickness measured in histomorphometric analysis was significantly thicker at week 4 (p = 0.028) and week 16 (p = 0.028) compared to the empty controls. At treated side, bone score remained significantly lower from week 8 onwards (p = 0.024 at week 8, p = 0.02 at week 16) whereas bone area was significantly smaller from week 4 onwards compared to the empty controls (p = 0.028 at week 4, 8, 16). No immunorejection was observed throughout the experiment. The results demonstrated that the BCP enhanced cartilage repair at early stage. Press-fitting of allogeneic BCP was a simple method for OCD repair without immunorejection. Further optimization of the treatment is required before clinical application.
Collapse
Affiliation(s)
- Yau-Chuk Cheuk
- Faculty of Medicine, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | |
Collapse
|
44
|
Sayed KE, Haisch A, John T, Marzahn U, Lohan A, Müller RD, Kohl B, Ertel W, Stoelzel K, Schulze-Tanzil G. Heterotopic Autologous Chondrocyte Transplantation—A Realistic Approach to Support Articular Cartilage Repair? TISSUE ENGINEERING PART B-REVIEWS 2010; 16:603-16. [DOI: 10.1089/ten.teb.2010.0167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Karym El Sayed
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Andreas Haisch
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Thilo John
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Ulrike Marzahn
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Anke Lohan
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Riccarda D. Müller
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Benjamin Kohl
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Wolfgang Ertel
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Katharina Stoelzel
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Gundula Schulze-Tanzil
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
45
|
Stamenković V, Keller G, Nesic D, Cogoli A, Grogan SP. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering. Tissue Eng Part A 2010; 16:1729-36. [PMID: 20141387 DOI: 10.1089/ten.tea.2008.0624] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM The aim of this study was to analyze and compare the deposition of cartilage-specific extracellular matrix components and cellular organization in scaffold-free neocartilage produced in microgravity and simulated microgravity. METHODS Porcine chondrocytes were seeded (100 x 10(6)/mL) into cylindrical culture chambers (n = 8) and cultured in the following environments: (i) microgravity during the Flight 7S (Cervantes mission) on the International Space Station (ISS), (ii) simulated microgravity in a random positioning machine (RPM), and (iii) normal gravity (1 g, control). After 16 days, each neocartilage tissue was processed for histology, immunohistochemistry, quantitative real-time reverse transcriptase-polymerase chain reaction, and histomorphometric analysis. RESULTS Weaker extracellular matrix staining of ISS neocartilage tissue was noted compared with both Earth-cultivated tissues. Higher collagen II/I expression ratios were observed in ISS samples compared with control tissue. Conversely, higher aggrecan/versican gene expression profiles were seen in control 1 g samples compared with microgravity samples. Cell density produced in microgravity was significantly reduced compared with the normal gravity neocartilage tissues. CONCLUSION Tissue cultivated on the RPM showed intermediate characteristics compared with ISS and 1 g conditions. These data indicate that the RPM system does not sustain microgravity. Although microgravity impacts the development of in vitro generated cartilage, simulated microgravity using the RPM may be a useful tool to produce cartilaginous tissue grafts with fewer cells.
Collapse
|
46
|
Jiang Y, Chen LK, Zhu DC, Zhang GR, Guo C, Qi YY, Ouyang HW. The Inductive Effect of Bone Morphogenetic Protein-4 on Chondral-Lineage Differentiation and In Situ Cartilage Repair. Tissue Eng Part A 2010; 16:1621-32. [DOI: 10.1089/ten.tea.2009.0681] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- YangZi Jiang
- Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou, China
| | - Long Kun Chen
- Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou, China
| | - Ding Cheng Zhu
- Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou, China
| | - Guo Rong Zhang
- Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou, China
| | - Chao Guo
- Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou, China
| | - Yi Ying Qi
- Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou, China
| | - Hong Wei Ouyang
- Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou, China
- Institute of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
|
48
|
Hwang NS, Varghese S, Elisseeff J. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 2008; 3:e2498. [PMID: 18575581 PMCID: PMC2423617 DOI: 10.1371/journal.pone.0002498] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 03/18/2008] [Indexed: 11/19/2022] Open
Abstract
Background Heterogeneous and uncontrolled differentiation of human embryonic stem cells (hESCs) in embryoid bodies (EBs) limits the potential use of hESCs for cell-based therapies. More efficient strategies are needed for the commitment and differentiation of hESCs to produce a homogeneous population of specific cell types for tissue regeneration applications. Methodology/Principal Findings We report here that significant chondrocytic commitment of feeder-free cultured human embryonic stem cells (FF-hESCs), as determined by gene expression and immunostaining analysis, was induced by co-culture with primary chondrocytes. Furthermore, a dynamic expression profile of chondrocyte-specific genes was observed during monolayer expansion of the chondrogenically-committed cells. Chondrogenically-committed cells synergistically responded to transforming growth factor-β1 (TGF-β1) and β1-integrin activating antibody by increasing tissue mass in pellet culture. In addition, when encapsulated in hydrogels, these cells formed cartilage tissue both in vitro and in vivo. In contrast, the absence of chondrocyte co-culture did not result in an expandable cell population from FF-hESCs. Conclusions/Significance The direct chondrocytic commitment of FF-hESCs can be induced by morphogenetic factors from chondrocytes without EB formation and homogenous cartilage tissue can be formed in vitro and in vivo.
Collapse
Affiliation(s)
- Nathaniel S. Hwang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shyni Varghese
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|