1
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Yang D, Li Y, Zhu M, Cui R, Gao J, Shu Y, Lu X, Zhang H, Zhang K. Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses. Genes (Basel) 2023; 14:2006. [PMID: 38002948 PMCID: PMC10671320 DOI: 10.3390/genes14112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.
Collapse
Affiliation(s)
- Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yahui Li
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Mengdi Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Rongjing Cui
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Jiong Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| |
Collapse
|
3
|
Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, Ouyang L. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem 2021; 64:3493-3507. [PMID: 33764774 DOI: 10.1021/acs.jmedchem.0c01689] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of tools for targeted protein degradation are inspiring scientists to develop new drugs with advantages over traditional small-molecule drugs. Among these tools, proteolysis-targeting chimeras (PROTACs) are most representative of the technology based on proteasomes. However, the proteasome has little degradation effect on certain macromolecular proteins or aggregates, extracellular proteins, and organelles, which limits the application of PROTACs. Additionally, lysosomes play an important role in protein degradation. Therefore, lysosome-induced protein degradation drugs can directly regulate protein levels in vivo, achieve the goal of treating diseases, and provide new strategies for drug discovery. Lysosome-based degradation technology has the potential for clinical translation. In this review, strategies targeting lysosomal pathways and lysosome-based degradation techniques are summarized. In addition, lysosome-based degrading drugs are described, and the advantages and challenges are listed. Our efforts will certainly promote the design, discovery, and clinical application of drugs associated with this technology.
Collapse
Affiliation(s)
- Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Zhai Y, Dong X, Gao H, Chen H, Yang P, Li P, Yin Z, Zheng L, Yu Y. Quantitative Proteomic and Transcriptomic Analyses of Metabolic Regulation of Adult Reproductive Diapause in Drosophila suzukii (Diptera: Drosophilidae) Females. Front Physiol 2019; 10:344. [PMID: 31019467 PMCID: PMC6458243 DOI: 10.3389/fphys.2019.00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Diapause is a form of dormancy used by many insects to survive adverse environmental conditions, which can occur in specific developmental stages in different species. Drosophila suzukii is a serious economic pest and we determined the conditions for adult reproductive diapause by the females in our previous studies. In this study, we combined RNA-Seq transcriptomic and quantitative proteomic analyses to identify adult reproductive diapause-related genes and proteins. According to the transcriptomic analysis, among 242 annotated differentially expressed genes in non-diapause and diapause females, 129 and 113 genes were up- and down-regulated, respectively. In addition, among the 2,375 proteins quantified, 39 and 23 proteins were up- and down-regulated, respectively. The gene expression patterns in diapause- and non-diapause were confirmed by qRT-PCR or western blot analysis. The overall analysis of robustly regulated genes at the protein and mRNA levels found four genes that overlapped in the up-regulated group and six genes in the down-regulated group, and thus these proteins/genes may regulate adult reproductive diapause. These differentially expressed proteins/genes act in the citrate cycle, insulin signaling pathway, PI3K-Akt signaling pathway, and amino acid biosynthesis pathways. These results provide the basis for further studies of the molecular regulation of reproductive diapause in this species.
Collapse
Affiliation(s)
- Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China.,College of Agriculture, Yangtze University, Jingzhou, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaolin Dong
- College of Agriculture, Yangtze University, Jingzhou, China
| | | | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Puyun Yang
- National Agro-technical Extension and Service Center, Beijing, China
| | - Ping Li
- National Agro-technical Extension and Service Center, Beijing, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
5
|
Waseem M, Ahmad F, Habib S, Gao Y, Li Z. Genome-wide identification of FK506-binding domain protein gene family, its characterization, and expression analysis in tomato (Solanum lycopersicum L.). Gene 2018; 678:143-154. [DOI: 10.1016/j.gene.2018.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 11/26/2022]
|
6
|
Holland EB, Goldstone JV, Pessah IN, Whitehead A, Reid NM, Karchner SI, Hahn ME, Nacci DE, Clark BW, Stegeman JJ. Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus): A phylogenetic and population-based comparison. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:105-115. [PMID: 28942070 PMCID: PMC5662517 DOI: 10.1016/j.aquatox.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 05/12/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine receptors (RyR), microsomal Ca2+ channels of broad significance. Teleost fish may be important models for NDL PCB neurotoxicity, and we used sequencing databases to characterize teleost RyR and FK506 binding protein 12 or 12.6kDa (genes FKBP1A; FKBP1B), which promote NDL PCB-triggered Ca2+ dysregulation. Particular focus was placed on describing genes in the Atlantic killifish (Fundulus heteroclitus) genome and searching available RNA-sequencing datasets for single nucleotide variants (SNV) between PCB tolerant killifish from New Bedford Harbor (NBH) versus sensitive killifish from Scorton Creek (SC), MA. Consistent with the teleost whole genome duplication (tWGD), killifish have six RyR genes, corresponding to a and b paralogs of mammalian RyR1, 2 and 3. The presence of six RyR genes was consistent in all teleosts investigated including zebrafish. Killifish have four FKBP1; one FKBP1b and three FKBP1a named FKBP1aa, FKBP1ab, likely from the tWGD and a single gene duplicate FKBP1a3 suggested to have arisen in Atherinomorphae. The RyR and FKBP1 genes displayed tissue and developmental stage-specific mRNA expression, and the previously uncharacterized RyR3, herein named RyR3b, and all FKBP1 genes were prominent in brain. We identified a SNV in RyR3b encoding missense mutation E1458D. In NBH killifish, 57% were heterozygous and 28% were homozygous for this SNV, whereas almost all SC killifish (94%) lacked the variant (n≥39 per population). The outlined sequence differences between mammalian and teleost RyR and FKBP1 together with outlined population differences in SNV frequency may contribute to our understanding of NDL PCB neurotoxicity.
Collapse
Affiliation(s)
- Erika B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA; Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences,University of California Davis, Davis, CA, USA
| | - Noah M Reid
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences,University of California Davis, Davis, CA, USA
| | - Sibel I Karchner
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Mark E Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Diane E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Bryan W Clark
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency, Office of Research and Development, Narragansett, RI, 02882, USA
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| |
Collapse
|
7
|
LeMaster DM, Hernandez G. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design. Curr Mol Pharmacol 2016; 9:5-26. [PMID: 25986571 DOI: 10.2174/1874467208666150519113146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/25/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.
Collapse
Affiliation(s)
| | - Griselda Hernandez
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York, 12201, USA.
| |
Collapse
|
8
|
Li S, Fei J, Cheng D, Jin Y, Zhang W, Zhang Y, Lv Z. BIOINFORMATICS, TISSUE DISTRIBUTION, AND SUBCELLULAR LOCALIZATION ANALYSES OF FK506 BINDING PROTEIN 12B FROM SILKWORMS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:109-123. [PMID: 26679986 DOI: 10.1002/arch.21312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
FK506 binding proteins (FKBPs) are intracellular receptors of the immunosuppressant FK506 and play important roles in the correct folding of new proteins and the self-assembly of biological macromolecules. FKBP12 is a member of the FKBP family that is widely expressed and highly conserved in many species. In this study, we identified the complete cDNA sequence encoding the FKBP12 ortholog in Bombyx mori, named Bm-FKBP12B (GenBank accession no. DQ443423). Multiple-sequence alignment among different species revealed a high similarity among FKBP12 paralogs and orthologs. Bioinformatics analysis of the Bm-FKBP12B gene showed that it is located on chromosome 20 and consists of three exons and two introns. We cloned, expressed, and purified the Bm-FKBP12B protein in Escherichia coli and generated a specific polyclonal antibody against Bm-FKBP12B. The real-time quantitative reverse-transcription (qRT) PCR and Western blotting results showed that Bm-FKBP12B was present throughout all of the development stages, but it was abundant in the adult and embryo stages. Bm-FKBP12B expression was higher in the silk gland and gut, suggesting that it might play important roles in regulating gene expression in the silk gland and during silk fiber formation. Bm-FKBP12B protein was distributed in the cytoplasm, nucleus, and nuclear membrane.
Collapse
Affiliation(s)
- Si Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - JingJing Fei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - DanDan Cheng
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wenping Zhang
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yaozhou Zhang
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengbing Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Heras J, McClintock K, Sunagawa S, Aguilar A. Gonadal transcriptomics elucidate patterns of adaptive evolution within marine rockfishes (Sebastes). BMC Genomics 2015; 16:656. [PMID: 26329285 PMCID: PMC4557894 DOI: 10.1186/s12864-015-1870-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
Background The genetic mechanisms of speciation and adaptation in the marine environment are not well understood. The rockfish genus Sebastes provides a unique model system for studying adaptive evolution because of the extensive diversity found within this group, which includes morphology, ecology, and a broad range of life spans. Examples of adaptive radiations within marine ecosystems are considered an anomaly due to the absence of geographical barriers and the presence of gene flow. Using marine rockfishes, we identified signatures of natural selection from transcriptomes developed from gonadal tissue of two rockfish species (Sebastes goodei and S. saxicola). We predicted orthologous transcript pairs, and estimated their distributions of nonsynonymous (Ka) and synonymous (Ks) substitution rates. Results We identified 144 genes out of 1079 orthologous pairs under positive selection, of which 11 are functionally annotated to reproduction based on gene ontologies (GOs). One orthologous pair of the zona pellucida gene family, which is known for its role in the selection of sperm by oocytes, out of ten was identified to be evolving under positive selection. In addition to our results in the protein coding-regions of transcripts, we found substitution rates in 3’ and 5’ UTRs to be significantly lower than Ks substitution rates implying negative selection in these regions. Conclusions We were able to identify a series of candidate genes that are useful for the assessment of the critical genes that diverged and are responsible for the radiation within this genus. Genes associated with longevity hold potential for understanding the molecular mechanisms that have contributed to the radiation within this genus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1870-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph Heras
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA, 92697, USA.
| | - Kelly McClintock
- School of Natural Sciences and Graduate Group in Quantitative and Systems Biology, University of California Merced, 5200 N Lake Rd, Merced, CA, 95344, USA.
| | - Shinichi Sunagawa
- European Molecular Biology Laboratory, Meyerhofstr 1, 69117, Heidelberg, Germany.
| | - Andres Aguilar
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.
| |
Collapse
|
10
|
Anderson JS, Mustafi SM, Hernández G, LeMaster DM. Statistical allosteric coupling to the active site indole ring flip equilibria in the FK506-binding domain. Biophys Chem 2014; 192:41-8. [PMID: 25016286 DOI: 10.1016/j.bpc.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
In solution, the Trp 59 indole ring at the base of the active site cleft in the FKBP domain protein FKBP12 is rotated by ~90° at a population level of 20%, relative to its canonical crystallographic orientation. NMR measurements on the homologous FK1 domains of human FKBP51 and FKBP52 indicate no observable indole ring flip conformation, while the V101I variant of FKBP12 decreases the population having a perpendicular indole orientation by 10-fold. A set of three parallel 400 ns CHARMM27 molecular simulations for both wild type FKBP12 and the V101I variant examined how this ring flip might be energetically coupled to a transition of the Glu 60 sidechain which interacts with the backbone of the 50's loop located ~12 Å from the indole nitrogen. Analysis of the transition matrix for the local dynamics of the Glu 60 sidechain, the Trp 59 sidechain, and of the structurally interposed α-helix hydrogen bonding pattern yielded a statistical allosteric coupling of 10 kJ/mol with negligible concerted dynamical coupling for the transitions of the two sidechains.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, NY 12308, United States
| | - Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States.
| |
Collapse
|
11
|
Chen H, Mustafi SM, LeMaster DM, Li Z, Héroux A, Li H, Hernández G. Crystal structure and conformational flexibility of the unligated FK506-binding protein FKBP12.6. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:636-46. [PMID: 24598733 PMCID: PMC3949516 DOI: 10.1107/s1399004713032112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022]
Abstract
The primary known physiological function of FKBP12.6 involves its role in regulating the RyR2 isoform of ryanodine receptor Ca(2+) channels in cardiac muscle, pancreatic β islets and the central nervous system. With only a single previously reported X-ray structure of FKBP12.6, bound to the immunosuppressant rapamycin, structural inferences for this protein have been drawn from the more extensive studies of the homologous FKBP12. X-ray structures at 1.70 and 1.90 Å resolution from P2₁ and P3₁21 crystal forms are reported for an unligated cysteine-free variant of FKBP12.6 which exhibit a notable diversity of conformations. In one monomer from the P3₁21 crystal form, the aromatic ring of Phe59 at the base of the active site is rotated perpendicular to its typical orientation, generating a steric conflict for the immunosuppressant-binding mode. The peptide unit linking Gly89 and Val90 at the tip of the protein-recognition `80s loop' is flipped in the P2₁ crystal form. Unlike the >30 reported FKBP12 structures, the backbone conformation of this loop closely follows that of the first FKBP domain of FKBP51. The NMR resonances for 21 backbone amides of FKBP12.6 are doubled, corresponding to a slow conformational transition centered near the tip of the 80s loop, as recently reported for 31 amides of FKBP12. The comparative absence of doubling for residues along the opposite face of the active-site pocket in FKBP12.6 may in part reflect attenuated structural coupling owing to increased conformational plasticity around the Phe59 ring.
Collapse
Affiliation(s)
- Hui Chen
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | - Sourajit M. Mustafi
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | - David M. LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany – SUNY, Empire State Plaza, Albany, NY 12201, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany – SUNY, Empire State Plaza, Albany, NY 12201, USA
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany – SUNY, Empire State Plaza, Albany, NY 12201, USA
| |
Collapse
|
12
|
Zhang Y, Han J, Liu D, Wen X, Li Y, Tao R, Peng Y, Fang J, Wang C. Genome-wide identification and analysis of FK506-binding protein gene family in peach (Prunus persica). Gene 2014; 536:416-24. [PMID: 24342662 DOI: 10.1016/j.gene.2013.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 10/25/2022]
Abstract
The FKBP protein family has prolyl isomerase activity and is related in function to cyclophilins. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete peach genome sequences allowed the identification of 21 FKBP genes by HMMER and BLAST analyses. Scaffold locations of these FKBP genes in the peach genome were determined and the protein domain and motif organization of peach FKBPs were analyzed. The phylogenetic relationships between peach FKBPs were also assessed. The expression profiles of peach FKBP gene results revealed that most peach FKBPs were expressed in all tissues, while a few peach FKBPs were specifically expressed in some of the tissues. This data could contribute to better understanding of the complex regulation of the peach FKBP gene family, and also provide valuable information for further research in peach functional genomics.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xicheng Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongbin Peng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Leng X, Liu D, Zhao M, Sun X, Li Y, Mu Q, Zhu X, Li P, Fang J. Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria × ananassa). Gene 2013; 534:390-9. [PMID: 24230972 DOI: 10.1016/j.gene.2013.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 01/03/2023]
Abstract
The FK506 binding proteins (FKBPs) are abundant and ubiquitous proteins belonging to the large peptidyl-prolylcis-trans isomerase superfamily. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete strawberry genome sequences allowed the identification of 23 FKBP genes by HMMER and blast analysis. Chromosome scaffold locations of these FKBP genes in the strawberry genome were determined and the protein domain and motif organization of FaFKBPs analyzed. The phylogenetic relationships between strawberry FKBPs were also assessed. The expression profiles of FaFKBPs genes results revealed that most FaFKBPs were expressed in all tissues, while a few FaFKBPs were specifically expressed in some of the tissues. These data not only contribute to some better understanding of the complex regulation of the strawberry FKBP gene family, but also provide valuable information for further research in strawberry functional genomics.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Dan Liu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Mizhen Zhao
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, Nanjing 210014, PR China
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Yu Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China
| | - Pengyu Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR China.
| |
Collapse
|
14
|
Abstract
The 1H-15N 2D NMR correlation spectrum of the widely studied FK506-binding protein FKBP12 (FK506-binding protein of 12 kDa) contains previously unreported peak doublings for at least 31 residues that arise from a minor conformational state (12% of total) which exchanges with the major conformation with a time constant of 3.0 s at 43°C. The largest differences in chemical shift occur for the 80′s loop that forms critical recognition interactions with many of the protein partners for the FKBP family. The residues exhibiting doubling extend into the adjacent strands of the β-sheet, across the active site to the α-helix and into the 50′s loop. Each of the seven proline residues adopts a trans-peptide linkage in both the major and minor conformations, indicating that this slow transition is not the result of prolyl isomerization. Many of the residues exhibiting resonance doubling also participate in conformational line-broadening transition(s) that occur ~105-fold more rapidly, proposed previously to arise from a single global process. The 1.70 Å (1 Å=0.1 nm) resolution X-ray structure of the H87V variant is strikingly similar to that of FKBP12, yet this substitution quenches the slow conformational transition throughout the protein while quenching the line-broadening transition for residues near the 80′s loop. Line-broadening was also decreased for the residues in the α-helix and 50′s loop, whereas line-broadening in the 40′s loop was unaffected. The K44V mutation selectively reduces the line-broadening in the 40′s loop, verifying that at least three distinct conformational transitions underlie the line-broadening processes of FKBP12.
Collapse
|
15
|
Chen M, Chen MM, Yao R, Li Y, Wang H, Li YP, Liu YQ. Molecular cloning and characterization of two 12 kDa FK506-binding protein genes in the Chinese oak silkworm, Antheraea pernyi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4599-4605. [PMID: 23617895 DOI: 10.1021/jf4006092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two 12 kDa FK506-binding protein (FKBP12) genes were isolated and characterized from Chinese oak silkworm Antheraea pernyi , an important agricultural and edible insect, designated ApFKBP12 A and B, respectively. Both ApFKBP12 A and B contained 108 amino acids with 82% sequence identity. Phylogenetic analysis showed that FKBP12 B sequences of A. pernyi, Bombyx mori , and Danaus plexippus were clearly separated from FKBP12 A sequences of these three species, suggesting that insect FKBP12 A and B may have been evolving independently. RT-PCR analyses revealed that two ApFKBP12 genes were expressed during the four developmental stages and in all tested tissues, and that the mRNA expression level of the ApFKBP12 A gene was significantly higher than that of the ApFKBP12 B gene. After heat shock treatment, expressions of the two FKBP12 genes were up-regulated, but at different time points. The results suggested that each paralogue of the FKBP12 genes may play a distinct functional role in the development of A. pernyi.
Collapse
Affiliation(s)
- Mo Chen
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Shotgun proteomic analysis on the diapause and non-diapause eggs of domesticated silkworm Bombyx mori. PLoS One 2013; 8:e60386. [PMID: 23580252 PMCID: PMC3620277 DOI: 10.1371/journal.pone.0060386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/27/2013] [Indexed: 12/31/2022] Open
Abstract
To clarify the molecular mechanisms of silkworm diapause, it is necessary to investigate the molecular basis at protein level. Here, the spectra of peptides digested from silkworm diapause and non-diapause eggs were obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) and were analyzed by bioinformatics methods. A total of 501 and 562 proteins were identified from the diapause and non-diapause eggs respectively, of which 309 proteins were shared commonly. Among these common-expressed proteins, three main storage proteins (vitellogenin precursor, egg-specific protein and low molecular lipoprotein 30 K precursor), nine heat shock proteins (HSP19.9, 20.1, 20.4, 20.8, 21.4, 23.7, 70, 90-kDa heat shock protein and heat shock cognate protein), 37 metabolic enzymes, 22 ribosomal proteins were identified. There were 192 and 253 unique proteins identified in the diapause and non-diapause eggs respectively, of which 24 and 48 had functional annotations, these unique proteins indicated that the metabolism, translation of the mRNA and synthesis of proteins were potentially more highly represented in the non-dipause eggs than that in the diapause eggs. The relative mRNA levels of four identified proteins in the two kinds of eggs were also compared using quantitative reverse transcription PCR (qRT-PCR) and showed some inconsistencies with protein expression. GO signatures of 486 out of the 502 and 545 out of the 562 proteins identified in the diapause and non-diapause eggs respectively were available. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed the Metabolism, Translation and Transcription pathway were potentially more active in the non-dipause eggs at this stage.
Collapse
|
17
|
Whole genome identification and analysis of FK506-binding protein family genes in grapevine (Vitis vinifera L.). Mol Biol Rep 2012; 40:4015-31. [PMID: 23269629 DOI: 10.1007/s11033-012-2480-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
In plant and animal species FK506-binding protein (FKBP) family genes are important conserved genes and it is defined as the receptors of FK506 and rapamycin, where they work as PPIase and protein folding chaperones. FKBP have been isolated from Arabidopsis thaliana, Oryza sativa, and Zea mays. In grape, twenty-three genes containing the FK506-binding domain (FKBP_C) were first time identified by HMMER and blast research, they were classified into three groups and 17 out of the 23 genes were located on 11 chromosomes (Chr1, 3, 5, 7, 8, 14, 15, 16, 17, 18, and 19). The predicted gene expression pattern and semi-quantitative RT-PCR results revealed that five VvFKBPs were expressed in all tissues, while seven VvFKBPs were expressed only in some of the tissues, and the remaining VvFKBPs were not expressed in leaf, stem, inflorescences, flowers, and a mixture of fruit tissues (small, medium and big-sized fruits). Most of the VvFKBPs in grapevine 'Summer Black' were similar to those predicted one in 'Pinot Noir' except for VvFKBP16-4 and VvFKBPa. VvFKBP12, FaFKBP12 and PpFKBP12 were cloned from 'Summer Black', 'Sweet Charlie' and 'Xiahui 6'. Protein structure analysis confirmed that homologous genes have some differences during the process of protein structure construction. In this study, we characterized and verified 23 FKBP family genes in grapevine (Vitis vinifera L.) as well as their sub-cellular and chromosome location. The successful cloning of CDS regions and protein structural analysis of VvFKBP12, FaFKBP12, and PpFKBP12 can provide useful information for further study.
Collapse
|
18
|
Trivedi DK, Yadav S, Vaid N, Tuteja N. Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. PLANT SIGNALING & BEHAVIOR 2012; 7:1653-66. [PMID: 23073011 PMCID: PMC3578907 DOI: 10.4161/psb.22306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cyclophilin proteins are the members of immunophillin group of proteins, known for their property of binding to the immune-suppressant drug cyclosporin A, hence named as cyclophilins. These proteins are characterized by the presence of peptidyl prolyl isomerase (PPIase) domain which catalyzes the cis-trans isomerisation process of proline residues. In the present study, an in-silico based approach was followed to identify and characterize the cyclophilin family from rice, Arabidopsis and yeast. We were able to identify 28 rice, 35 Arabidopsis and 8 yeast cyclophilin genes from their respective genomes on the basis of their annotation as well as the presence of highly conserved PPIase domain. The evolutionary relationship of the cyclophilin genes from the three genomes was analyzed using the phylogenetic tree. We have also classified the rice cyclophilin genes on the basis of localization of the protein in cell. The structural similarity of the cyclophilins was also analyzed on the basis of their homology model. The expression analysis performed using Genevestigator revealed a very strong stress responsive behavior of the gene family which was more prominent in later stages of stress. The study indicates the importance of the gene family in stress response as well as several developmental stages thus opening up many avenues for future study on the cyclophilin proteins.
Collapse
|
19
|
Chakraborty G, Shin J, Nguyen QT, Harikishore A, Baek K, Yoon HS. Solution structure of FK506-binding protein 12 from Aedes aegypti. Proteins 2012; 80:2476-81. [PMID: 22806993 DOI: 10.1002/prot.24146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/26/2012] [Accepted: 07/05/2012] [Indexed: 11/11/2022]
Abstract
Dengue remains one of the major public concerns as the virus eludes the immune response. Currently, no vaccines or antiviral therapeutics are available for dengue prevention or treatment. Immunosuppressive drug FK506 shows an antimalarial activity, and its molecular target, FK506-binding protein (FKBP), was identified in human Plasmodium parasites. Likewise, a conserved FKBP family protein has also been identified in Aedes aegypti (AaFKBP12), which is expected to play a similar role in the life cycle of Aedes aegypti, the primary vector of dengue virus infection. As FKBPs belong to a highly conserved class of immunophilin family and are involved in key biological regulations, they are considered as attractive pharmacological targets. In this study, we have determined the nuclear magnetic resonance solution structure of AaFKBP12, a novel FKBP member from Aedes aegypti, and presented its structural features, which may facilitate the design of potential inhibitory ligands against the dengue-transmitting mosquitoes.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Division of Structural Biology and Biochemistry, School of Biological Science, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
20
|
Dimou M, Zografou C, Venieraki A, Katinakis P. Biochemical characterization of two Azotobacter vinelandii FKBPs and analysis of their interaction with the small subunit of carbamoyl phosphate synthetase. Mol Biol Rep 2012; 39:10003-12. [DOI: 10.1007/s11033-012-1869-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
21
|
Yu Y, Zhang H, Li W, Mu C, Zhang F, Wang L, Meng Z. Genome-wide analysis and environmental response profiling of the FK506-binding protein gene family in maize (Zea mays L.). Gene 2012; 498:212-22. [PMID: 22366304 DOI: 10.1016/j.gene.2012.01.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
The FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, and have been implicated in a wide spectrum of biological processes, including protein folding, hormone signaling, plant growth, and stress responses. Genome-wide structural and evolutionary analyses of the entire FKBP gene family have been conducted in Arabidopsis and rice. In the present study, a genome-wide analysis was performed to identify all maize FKBP genes. The availability of complete maize genome sequences allowed for the identification of 24 FKBP genes. Chromosomal locations in the maize genome were determined and the protein domain and motif organization of ZmFKBPs analyzed. The phylogenetic relationships between maize FKBPs were also assessed. The expression profiles of ZmFKBP genes were measured under different environmental conditions and revealed distinct ZmFKBP gene expression patterns under heat, cold, salt, and drought stress. These data not only contribute to a better understanding of the complex regulation of the maize FKBP gene family, but also provide evidence supporting the role of FKBPs in multiple signaling pathways involved in stress responses. This investigation may provide valuable information for further research on stress tolerance in plants and potential strategies for enhancing maize survival under stressful conditions.
Collapse
Affiliation(s)
- Yanli Yu
- Maize Institute, Shandong Academy of Agricultural Sciences/National Maize Improvement Sub-Center, Jinan, Shandong 250100, PR China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dimou M, Zografou C, Venieraki A, Katinakis P. Transcriptional and biochemical characterization of two Azotobacter vinelandii FKBP family members. J Microbiol 2011; 49:635-40. [DOI: 10.1007/s12275-011-0498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/18/2011] [Indexed: 02/02/2023]
|
23
|
Gollan PJ, Bhave M. Genome-wide analysis of genes encoding FK506-binding proteins in rice. PLANT MOLECULAR BIOLOGY 2010; 72:1-16. [PMID: 19768557 DOI: 10.1007/s11103-009-9547-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/31/2009] [Indexed: 05/28/2023]
Abstract
The FK506-binding proteins (FKBPs) are a class of peptidyl-prolyl cis/trans isomerase enzymes, some of which can also operate as molecular chaperones. FKBPs comprise a large ubiquitous family, found in virtually every part of the cell and involved in diverse processes from protein folding to stress response. Higher plant genomes typically encode about 20 FKBPs, half of these found in the chloroplast thylakoid lumen. Several FKBPs in plants are regulators of hormone signalling pathways, with important roles in seed germination, plant growth and stress response. Some FKBP isoforms exists as homologous duplicates operating in finely tuned mechanisms to cope with abiotic stress. In order to understand the roles of the plant FKBPs, especially in view of the warming environment, we have identified and analysed the gene families encoding these proteins in rice using computational approaches. The work has led to identification of all FKBPs from the rice genome, including novel high molecular weight forms. The rice FKBP family appears to have evolved by duplications of FKBP genes, which may be a strategy for increased stress tolerance.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | | |
Collapse
|
24
|
van de Hoef DL, Hughes J, Livne-Bar I, Garza D, Konsolaki M, Boulianne GL. Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis 2009; 47:246-60. [PMID: 19241393 DOI: 10.1002/dvg.20485] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gamma-secretase complex is involved in cleaving transmembrane proteins such as Notch and one of the genes targeted in Alzheimer's disease known as amyloid precursor protein (APP). Presenilins function within the catalytic core of gamma-secretase, and mutated forms of presenilins were identified as causative factors in familial Alzheimer's disease. Recent studies show that in addition to Notch and APP, numerous signal transduction pathways are modulated by presenilins, including intracellular calcium signaling. Thus, presenilins appear to have diverse roles. To further understand presenilin function, we searched for Presenilin-interacting genes in Drosophila by performing a genetic modifier screen for enhancers and suppressors of Presenilin-dependent Notch-related phenotypes. We identified 177 modifiers, including known members of the Notch pathway and genes involved in intracellular calcium homeostasis. We further demonstrate that 53 of these modifiers genetically interacted with APP. Characterization of these genes may provide valuable insights into Presenilin function in development and disease.
Collapse
Affiliation(s)
- Diana L van de Hoef
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Somarelli JA, Lee SY, Skolnick J, Herrera RJ. Structure-based classification of 45 FK506-binding proteins. Proteins 2008; 72:197-208. [PMID: 18214965 DOI: 10.1002/prot.21908] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The FK506-binding proteins (FKBPs) are a unique group of chaperones found in a wide variety of organisms. They perform a number of cellular functions including protein folding, regulation of cytokines, transport of steroid receptor complexes, nucleic acid binding, histone assembly, and modulation of apoptosis. These functions are mediated by specific domains that adopt distinct tertiary conformations. Using the Threading/ASSEmbly/Refinement (TASSER) approach, tertiary structures were predicted for a total of 45 FKBPs in 23 species. These models were compared with previously characterized FKBP solution structures and the predicted structures were employed to identify groups of homologous proteins. The resulting classification may be utilized to infer functional roles of newly discovered FKBPs. The three-dimensional conformations revealed that this family may have undergone several modifications throughout evolution, including loss of N- and C-terminal regions, duplication of FKBP domains as well as insertions of entire functional motifs. Docking simulations suggest that additional sequence segments outside FKBP domains may modulate the binding affinity of FKBPs to immunosuppressive drugs. The docking models also indicate the presence of a helix-loop-helix (HLH) region within a subset of FKBPs, which may be responsible for the interaction between this group of proteins and nucleic acids.
Collapse
Affiliation(s)
- J A Somarelli
- Department of Biological Sciences, OE304, Florida International University, Miami, Florida 33199, USA
| | | | | | | |
Collapse
|
26
|
Galat A. Functional drift of sequence attributes in the FK506-binding proteins (FKBPs). J Chem Inf Model 2008; 48:1118-30. [PMID: 18412331 DOI: 10.1021/ci700429n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diverse members of the FK506-binding proteins (FKBPs) group and their complexes with different macrocyclic ligands of fungal origins such as FK506, rapamycin, ascomycin, and their immunosuppressive and nonimmunosuppressive derivatives display a variety of cellular and biological activities. The functional relatedness of the FKBPs was estimated from the following attributes of their aligned sequences: 1 degrees conservation of the consensus sequence; 2 degrees sequence similarity; 3 degrees pI; 4 degrees hydrophobicity; 5 degrees amino acid hydrophobicity and bulkiness profiles. Analyses of the multiple sequence alignments and intramolecular interaction networks calculated from a series of structures of the FKBPs revealed some variations in the interaction clusters formed by the AA residues that are crucial for sustaining peptidylprolyl cis/trans isomerases (PPIases) activity and binding capacity of the FKBPs. Fine diversification of the sequences of the multiple paralogues and orthologues of the FKBPs encoded in different genomes alter the intramolecular interaction patterns of their structures and allowed them to gain some selectivity in binding to diverse targets (functional drift).
Collapse
Affiliation(s)
- Andrzej Galat
- Institute de Biologie et de Technologies de Saclay, DSV/CEA, CE-Saclay, F-91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
27
|
Zhou L, Li-Ling J, Huang H, Ma F, Li Q. Phylogenetic analysis of vertebrate kininogen genes. Genomics 2007; 91:129-41. [PMID: 18096361 DOI: 10.1016/j.ygeno.2007.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/26/2022]
Abstract
Kininogens, the precursors of bradykinins, vary extremely in both structure and function among different taxa of animals, in particular between mammals and amphibians. This includes even the most conserved bradykinin domain in terms of biosynthesis mode and structure. To elucidate the evolutionary dynamics of kininogen genes, we have identified 19 novel amino acid sequences from EST and genomic databases (for mammals, birds, and fishes) and explored their phylogenetic relationships using combined amino acid sequence and gene structure as markers. Our results show that there were initially two paralogous kininogen genes in vertebrates. During their evolution, the original gene was saved with frequent multiplication in amphibians, but lost in fishes, birds, and mammals, while the novel gene was saved with multiple functions in fishes, birds, and mammals, but became a pseudogene in amphibians. We also propose that the defense mechanism against specific predators in amphibian skin secretions has been bradykinin receptor dependent. Our findings may provide a foundation for identification and structural, functional, and evolutionary analyses of more kininogen genes and other gene families.
Collapse
Affiliation(s)
- Liwei Zhou
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | |
Collapse
|