1
|
Guo D, Lin S, Wang X, Jiao Z, Li G, An L, Zhang Z, Zhang L. Establishment and Characterization of a Chicken Myoblast Cell Line. Int J Mol Sci 2024; 25:8340. [PMID: 39125909 PMCID: PMC11312951 DOI: 10.3390/ijms25158340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle, which is predominantly constituted by multinucleated muscle fibers, plays a pivotal role in sustaining bodily movements and energy metabolism. Myoblasts, which serve as precursor cells for differentiation and fusion into muscle fibers, are of critical importance in the exploration of the functional genes associated with embryonic muscle development. However, the in vitro proliferation of primary myoblasts is inherently constrained. In this study, we achieved a significant breakthrough by successfully establishing a chicken myoblast cell line through the introduction of the exogenous chicken telomerase reverse transcriptase (chTERT) gene, followed by rigorous G418-mediated pressure screening. This newly developed cell line, which was designated as chTERT-myoblasts, closely resembled primary myoblasts in terms of morphology and exhibited remarkable stability in culture for at least 20 generations of population doublings without undergoing malignant transformation. In addition, we conducted an exhaustive analysis that encompassed cellular proliferation, differentiation, and transfection characteristics. Our findings revealed that the chTERT-myoblasts had the ability to proliferate, differentiate, and transfect after multiple rounds of population doublings. This achievement not only furnished a valuable source of homogeneous avian cell material for investigating embryonic muscle development, but also provided valuable insights and methodologies for establishing primary cell lines.
Collapse
Affiliation(s)
- Dongxue Guo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaotong Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenhai Jiao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guo Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lilong An
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zihao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation in Zhanjiang, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Chotiprasidhi P, Sato-Espinoza AK, Wangensteen KJ. Germline Genetic Associations for Hepatobiliary Cancers. Cell Mol Gastroenterol Hepatol 2023; 17:623-638. [PMID: 38163482 PMCID: PMC10899027 DOI: 10.1016/j.jcmgh.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Hepatobiliary cancers (HBCs) include hepatocellular carcinoma, cholangiocarcinoma, and gallbladder carcinoma, which originate from the liver, bile ducts, and gallbladder, respectively. They are responsible for a substantial burden of cancer-related deaths worldwide. Despite knowledge of risk factors and advancements in therapeutics and surgical interventions, the prognosis for most patients with HBC remains bleak. There is evidence from familial aggregation and case-control studies to suggest a familial risk component in HBC susceptibility. Recent progress in genomics research has led to the identification of germline variants including single nucleotide polymorphisms (SNPs) and pathogenic or likely pathogenic (P/LP) variants in cancer-associated genes associated with HBC risk. These findings emerged from genome-wide association studies and next-generation sequencing techniques such as whole-exome sequencing. Patients with other cancer types, including breast, colon, ovarian, prostate, and pancreatic cancer, are recommended by guidelines to undergo germline genetic testing, but similar recommendations are lagging in HBC. This prompts the question of whether multi-gene panel testing should be integrated into clinical guidelines for HBC management. Here, we review the hereditary genetics of HBC, explore studies investigating SNPs and P/LP variants in HBC patients, discuss the clinical implications and potential for personalized treatments and impact on patient's family members, and conclude that additional studies are needed to examine how genetic testing can be applied clinically.
Collapse
Affiliation(s)
- Perapa Chotiprasidhi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Kirk J Wangensteen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Kumawat S, Martinez I, Logeswaran D, Chen H, Coughlan JM, Chen JJL, Yuan Y, Sobel JM, Choi JY. Transposition, duplication, and divergence of the telomerase RNA underlies the evolution of Mimulus telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.568249. [PMID: 38106000 PMCID: PMC10723376 DOI: 10.1101/2023.12.06.568249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Telomeres are nucleoprotein complexes with a crucial role of protecting chromosome ends. It consists of simple repeat sequences and dedicated telomere-binding proteins. Because of its vital functions, components of the telomere, for example its sequence, should be under strong evolutionary constraint. But across all plants, telomere sequences display a range of variation and the evolutionary mechanism driving this diversification is largely unknown. Here, we discovered in Monkeyflower (Mimulus) the telomere sequence is even variable between species. We investigated the basis of Mimulus telomere sequence evolution by studying the long noncoding telomerase RNA (TR), which is a core component of the telomere maintenance complex and determines the telomere sequence. We conducted total RNA-based de novo transcriptomics from 16 Mimulus species and analyzed reference genomes from 6 species, and discovered Mimulus species have evolved at least three different telomere sequences: (AAACCCT)n, (AAACCCG)n, and (AAACCG)n. Unexpectedly, we discovered several species with TR duplications and the paralogs had functional consequences that could influence telomere evolution. For instance, M. lewisii had two sequence-divergent TR paralogs and synthesized a telomere with sequence heterogeneity, consisting of AAACCG and AAACCCG repeats. Evolutionary analysis of the M. lewisii TR paralogs indicated it had arisen from a transposition-mediate duplication process. Further analysis of the TR from multiple Mimulus species showed the gene had frequently transposed and inserted into new chromosomal positions during Mimulus evolution. From our results, we propose the TR transposition, duplication, and divergence model to explain the evolutionary sequence turnovers in Mimulus and potentially all plant telomeres.
Collapse
Affiliation(s)
- Surbhi Kumawat
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Irene Martinez
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | | | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Jenn M. Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | | | - Yaowu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
| | - James M. Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | - Jae Young Choi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Konečná KP, Kilar A, Kováčiková P, Fajkus J, Sýkorová E, Fojtová M. Compromised function of ARM, the interactor of Arabidopsis telomerase, suggests its role in stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111453. [PMID: 36087885 DOI: 10.1016/j.plantsci.2022.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
ARM was identified previously as an interaction partner of the telomerase protein subunit (TERT) in Arabidopsis thaliana. To investigate the interconnection between ARM and telomerase and to identify ARM cellular functions, we analyzed a set of arm mutant lines and arm/tert double mutants. Telomere length was not affected in arm single mutant plants, in contrast to double mutants. In the second generation of homozygous arm-1/tert double mutants following the heterozygous state during the double mutant construction, telomeres shortened dramatically, even below levels in tert plants displaying severe morphological defects. Intriguingly, homozygous arm-1/tert double mutants with short telomeres grew without obvious phenotypic changes for next two generations. Then, in agreement with the onset of phenotypic changes in tert, morphological defects were timed to the 5th arm-1/tert homozygous generation. RNAseq analyses of arm-1/tert and respective single mutants displayed markedly overlapping sets of differentially expressed genes in arm-1/tert double mutant and arm-1 single mutant lines, indicating a dominant effect of the ARM mutation. RNAseq data further implied ARM involvement in circadian rhythms, responses to drugs and to biotic and abiotic stimuli. In agreement with it, we observed sensitivity of arm-1 single mutant to the heat stress during germination. Altogether, our results suggest ARM involvement in crucial cellular processes without evidencing its role in the telomerase canonical function.
Collapse
Affiliation(s)
- Klára Přikrylová Konečná
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Kováčiková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Springhetti S, Bucan V, Liebsch C, Lazaridis A, Vogt PM, Strauß S. An Identification and Characterization of the Axolotl ( Ambystoma mexicanum, Amex) Telomerase Reverse Transcriptase (Amex TERT). Genes (Basel) 2022; 13:genes13020373. [PMID: 35205418 PMCID: PMC8924892 DOI: 10.3390/genes13020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
The Mexican axolotl is one of the few vertebrates that is able to replace its lost body parts during lifespan. Due to its remarkable regenerative abilities, the axolotl emerged as a model organism especially for limb regeneration. Telomeres and the telomerase enzyme are crucial for regeneration and protection against aging processes and degenerating diseases. Despite its relevance for regeneration, the axolotl telomerase and telomere length have not yet been investigated. Therefore, in the present paper, we reveal the sequence of the axolotl telomerase reverse transcriptase gene (Tert) and protein (TERT). Multiple sequence alignment (MSA) showed the known conserved RT- and TERT-specific motifs and residues found in other TERTs. In addition, we establish methods to determine the Tert expression (RT-PCR) and telomerase activity (Q-TRAP) of adult axolotl and blastema tissues. We found that both differentiated forelimb tissue and regenerating blastema tissue express Tert and show telomerase activity. Furthermore, blastema tissue appears to exhibit a higher Tert expression and telomerase activity. The presence of active telomerase in adult somatic cells is a decisive difference to somatic cells of non-regenerating vertebrates, such as humans. These findings indicate that telomere biology may play a key role in the regenerative abilities of cells.
Collapse
Affiliation(s)
- Sina Springhetti
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
- Department of Oral and Maxillofacial Surgery, Diakovere Henriettenstift, 30171 Hannover, Germany
- Correspondence:
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Christina Liebsch
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Andrea Lazaridis
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Peter Maria Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| |
Collapse
|
6
|
Fajkus P, Kilar A, Nelson ADL, Holá M, Peška V, Goffová I, Fojtová M, Zachová D, Fulnečková J, Fajkus J. Evolution of plant telomerase RNAs: farther to the past, deeper to the roots. Nucleic Acids Res 2021; 49:7680-7694. [PMID: 34181710 PMCID: PMC8287931 DOI: 10.1093/nar/gkab545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | | | - Marcela Holá
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague CZ-16000, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Ivana Goffová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| |
Collapse
|
7
|
Fajkus P, Peška V, Fajkus J, Sýkorová E. Origin and Fates of TERT Gene Copies in Polyploid Plants. Int J Mol Sci 2021; 22:1783. [PMID: 33670111 PMCID: PMC7916837 DOI: 10.3390/ijms22041783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.
Collapse
Affiliation(s)
- Petr Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Vratislav Peška
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Jiří Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| |
Collapse
|
8
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
9
|
Vysotskaya OV, Glukhov AI, Semochkina YP, Gordeev SA, Moskaleva EY. [Telomerase activity, mTert gene expression and the telomere length in mouse mesenchymal stem cells in the late period after γ- and γ,n-irradiation and in the tumors developed from these cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:265-273. [PMID: 32588833 DOI: 10.18097/pbmc20206603265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In proliferating normal and tumor cells, the telomere length (TL) is maintained by high telomerase activity (TA). In the absence of TA the TL maintenance involves a mechanism of alternative lengthening of telomeres (ALT). The aim of this study was to investigate the level of TA, the mTert expression and TL in cultured normal and transformed by γ- and γ,n-irradiation mesenchymal stem cells (MSCs) from mouse bone marrow, in sarcomas that developed after the transplantation of these cells into syngeneic mice, and in fibrosarcoma cell lines obtained from these tumors to find out the role of AT or ALT in maintaining TL in these cells. During prolonged cultivation of normal and transformed under the influence of γ- (1 Gy and 6 Gy) and γ,n-irradiation (0.05 Gy, 0.5 Gy, and 2 Gy) MSCs from mouse bone marrow, a decrease in TA was detected in irradiated cells. Even deeper decrease in TA was found in sarcomas developed after administration of transformed MSCs to syngeneic mice and in fibrosarcoma cell lines isolated from these tumors in which TA was either absent or was found to be at a very low level. TL in three of the four lines obtained was halved compared to the initial MSCs. With absent or low TA and reduced TL, the cells of all the obtained fibrosarcoma lines successfully proliferated without signs of a change in survival. The mechanism of telomere maintainance in fibrosarcoma cell lines in the absence of TA needs further investigation and it can be assumed that it is associated with the use of the ALT. The detected decrease or absence of TA in transformed under the action of irradiation MSCs with the preservation or even an increase in the telomerase gene expression may be associated with the formation of inactive splicing variants, and requires further study. The obtained lines of transformed MSCs and fibrosarcomas with TA and without the activity of this enzyme can be a useful model for studying the efficacy of TA and ALT inhibitors in vitro and in vivo.
Collapse
Affiliation(s)
| | - A I Glukhov
- Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov University, Moscow, Russia
| | | | - S A Gordeev
- Faculty of Biology, Moscow State University, Moscow, Russia
| | | |
Collapse
|
10
|
Schrumpfová PP, Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020; 10:biom10101425. [PMID: 33050064 PMCID: PMC7658794 DOI: 10.3390/biom10101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase—a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase—its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component—were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Correspondence:
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
11
|
A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genet 2019; 15:e1008188. [PMID: 31237867 PMCID: PMC6592521 DOI: 10.1371/journal.pgen.1008188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Telomerase, particularly its main subunit, the reverse transcriptase, TERT, prevents DNA erosion during eukaryotic chromosomal replication, but also has poorly understood non-canonical functions. Here, in the model social amoeba Dictyostelium discoideum, we show that the protein encoded by tert has telomerase-like motifs, and regulates, non-canonically, important developmental processes. Expression levels of wild-type (WT) tert were biphasic, peaking at 8 and 12 h post-starvation, aligning with developmental events, such as the initiation of streaming (~7 h) and mound formation (~10 h). In tert KO mutants, however, aggregation was delayed until 16 h. Large, irregular streams formed, then broke up, forming small mounds. The mound-size defect was not induced when a KO mutant of countin (a master size-regulating gene) was treated with TERT inhibitors, but anti-countin antibodies did rescue size in the tert KO. Although, conditioned medium (CM) from countin mutants failed to rescue size in the tert KO, tert KO CM rescued the countin KO phenotype. These and additional observations indicate that TERT acts upstream of smlA/countin: (i) the observed expression levels of smlA and countin, being respectively lower and higher (than WT) in the tert KO; (ii) the levels of known size-regulation intermediates, glucose (low) and adenosine (high), in the tert mutant, and the size defect's rescue by supplemented glucose or the adenosine-antagonist, caffeine; (iii) the induction of the size defect in the WT by tert KO CM and TERT inhibitors. The tert KO's other defects (delayed aggregation, irregular streaming) were associated with changes to cAMP-regulated processes (e.g. chemotaxis, cAMP pulsing) and their regulatory factors (e.g. cAMP; acaA, carA expression). Overexpression of WT tert in the tert KO rescued these defects (and size), and restored a single cAMP signaling centre. Our results indicate that TERT acts in novel, non-canonical and upstream ways, regulating key developmental events in Dictyostelium.
Collapse
|
12
|
Crhák T, Zachová D, Fojtová M, Sýkorová E. The region upstream of the telomerase reverse transcriptase gene is essential for in planta telomerase complementation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:41-51. [PMID: 30824060 DOI: 10.1016/j.plantsci.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Telomerase is essential for the maintenance of telomeres, structures located at the ends of linear eukaryotic chromosomes that are crucial for genomic stability. Telomerase has been frequently explored in mammals because of its activity in many types of cancers, but knowledge in plants is rather sketchy despite plants representing useful models due to peculiarities in their telomeres and telomerase biology. We studied in planta complementation of telomerase in Arabidopsis thaliana mutant plants with disrupted expression of the gene encoding the telomerase protein subunit (AtTERT) and significantly shortened telomeres. We found that the upstream region of AtTERT, previously identified as a putative minimal promoter, was essential for reconstitution of telomerase function, as demonstrated by the full or partial recovery of the telomere phenotype in mutants. In contrast, transformation by the full length AtTERT gene construct resulted in more progressive telomere shortening in mutants and even in wild type plants, despite the high level of AtTERT transcript and telomerase activity detected by in vitro assay. Thus, the telomerase protein subunit putative promoter is essential for in planta telomerase reconstitution and restoration of its catalytical activity. Contributions from other factors, including those tissue-specific, for proper telomerase function are discussed.
Collapse
Affiliation(s)
- Tomáš Crhák
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Eva Sýkorová
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| |
Collapse
|
13
|
Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells 2019; 8:cells8010058. [PMID: 30654521 PMCID: PMC6356271 DOI: 10.3390/cells8010058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the “telomere clock” in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Collapse
|
14
|
Sováková PP, Magdolenová A, Konečná K, Rájecká V, Fajkus J, Fojtová M. Telomere elongation upon transfer to callus culture reflects the reprogramming of telomere stability control in Arabidopsis. PLANT MOLECULAR BIOLOGY 2018; 98:81-99. [PMID: 30128721 DOI: 10.1007/s11103-018-0765-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/12/2018] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE Standard pathways involved in the regulation of telomere stability do not contribute to gradual telomere elongation observed in the course of A. thaliana calli propagation. Genetic and epigenetic changes accompanying the culturing of plant cells have frequently been reported. Here we aimed to characterize the telomere homeostasis during long term callus propagation. While in Arabidopsis thaliana calli gradual telomere elongation was observed, telomeres were stable in Nicotiana tabacum and N. sylvestris cultures. Telomere elongation during callus propagation is thus not a general feature of plant cells. The long telomere phenotype in Arabidopsis calli was correlated neither with changes in telomerase activity nor with activation of alternative mechanisms of telomere elongation. The dynamics of telomere length changes was maintained in mutant calli with loss of function of important epigenetic modifiers but compromised in the presence of epigenetically active drug zebularine. To examine whether the cell culture-induced disruption of telomere homeostasis is associated with the modulated structure of chromosome ends, epigenetic properties of telomere chromatin were analysed. Albeit distinct changes in epigenetic modifications of telomere histones were observed, these were broadly stochastic. Our results show that contrary to animal cells, the structure and function of plant telomeres is not determined significantly by the epigenetic character of telomere chromatin. Set of differentially transcribed genes was identified in calli, but considering the known telomere- or telomerase-related functions of respective proteins, none of these changes per se was apparently related to the elongated telomere phenotype. Based on our data, we propose that the disruption in telomere homeostasis in Arabidopsis calli arises from the interplay of multiple factors, as a part of reprogramming of plant cells to long-term culture conditions.
Collapse
Affiliation(s)
- Pavla Polanská Sováková
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Alžbeta Magdolenová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Klára Konečná
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Veronika Rájecká
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., 612 65, Brno, Czech Republic
| | - Miloslava Fojtová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Armstrong CA, Tomita K. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biol 2018; 7:rsob.160338. [PMID: 28330934 PMCID: PMC5376709 DOI: 10.1098/rsob.160338] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of telomerase occurs in 85–90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments.
Collapse
Affiliation(s)
- Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
16
|
Lai AG, Pouchkina-Stantcheva N, Di Donfrancesco A, Kildisiute G, Sahu S, Aboobaker AA. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evol Biol 2017; 17:107. [PMID: 28441946 PMCID: PMC5405514 DOI: 10.1186/s12862-017-0949-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most animals employ telomerase, which consists of a catalytic subunit known as the telomerase reverse transcriptase (TERT) and an RNA template, to maintain telomere ends. Given the importance of TERT and telomere biology in core metazoan life history traits, like ageing and the control of somatic cell proliferation, we hypothesised that TERT would have patterns of sequence and regulatory evolution reflecting the diverse life histories across the Animal Kingdom. RESULTS We performed a complete investigation of the evolutionary history of TERT across animals. We show that although TERT is almost ubiquitous across Metazoa, it has undergone substantial sequence evolution within canonical motifs. Beyond the known canonical motifs, we also identify and compare regions that are highly variable between lineages, but show conservation within phyla. Recent data have highlighted the importance of alternative splice forms of TERT in non-canonical functions and although animals may share some conserved introns, we find that the selection of exons for alternative splicing appears to be highly variable, and regulation by alternative splicing appears to be a very dynamic feature of TERT evolution. We show that even within a closely related group of triclad flatworms, where alternative splicing of TERT was previously correlated with reproductive strategy, we observe highly diverse splicing patterns. CONCLUSIONS Our work establishes that the evolutionary history and structural evolution of TERT involves previously unappreciated levels of change and the emergence of lineage specific motifs. The sequence conservation we describe within phyla suggests that these new motifs likely serve essential biological functions of TERT, which along with changes in splicing, underpin diverse functions of TERT important for animal life histories.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | | - Gerda Kildisiute
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Sounak Sahu
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
17
|
Nakamoto Y. Promising new strategies for hepatocellular carcinoma. Hepatol Res 2017; 47:251-265. [PMID: 27558453 DOI: 10.1111/hepr.12795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. It usually arises based on a background of chronic liver diseases, defined as the hypercarcinogenic state. The current treatment options for HCC ranging from locoregional treatments to chemotherapies, including sorafenib, effectively regulate the limited sizes and numbers of the nodules. However, these treatments remain unsatisfactory because they have insufficient antitumor effects on the large and numerous nodules associated with HCC and because of a high recurrence rate in the surrounding inflamed liver. To develop novel and promising therapies with higher antitumor effects, recent progress in identifying molecular targets and developing immunological procedures for HCC are reviewed. The molecular targets discussed include the intracellular signaling pathways of protein kinase B/mammalian target of rapamycin and RAS/RAF/mitogen-activated protein kinase, Wnt/β-catenin and glutamine synthetase, insulin-like growth factor, signal transducer and activator of transcription 3, nuclear factor-κB and telomerase reverse transcriptase, and c-MET. Immunological studies have focused mainly on target identification, T cells, natural killer cells, dendritic cells, natural killer T cells, and vaccine development.
Collapse
Affiliation(s)
- Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
18
|
Rousseau P, Khondaker S, Zhu S, Lauzon C, Mai S, Autexier C. An intact putative mouse telomerase essential N-terminal domain is necessary for proper telomere maintenance. Biol Cell 2016; 108:96-112. [PMID: 26787169 DOI: 10.1111/boc.201500089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND INFORMATION Naturally occurring telomerase reverse transcriptase (TERT) isoforms may regulate telomerase activity, and possibly function independently of telomeres to modulate embryonic stem (ES) cell self-renewal and differentiation. RESULTS We report the characterisation of two novel mouse TERT (mTERT) splice variants, Ins-i1[1-102] (Insi1 for short) and Del-e12[1-40] (Dele12 for short) that have not been previously described. Insi1 represents an in-frame insertion of nucleotides 1-102 from intron 1, encoding a 34 amino acid insertion at amino acid 73. Based on known functions of this region in human and Tetrahymena TERTs, the insertion interrupts the RNA interaction domain 1 implicated in low-affinity RNA binding and the telomerase essential N-terminal domain implicated in DNA substrate interactions. Dele12 contains a 40 nucleotide deletion of exon 12 which generates a premature stop codon, and possible protein lacking the C-terminus. We found Insi1 expressed in adult mouse brain and kidney and Dele12 expressed in adult mouse ovary. Dele12 was inactive in vitro and in mTERT(-/-) ES cells and Insi1 retained 26-48% of telomerase activity reconstituted by wild-type mTERT in vitro and in mTERT(-/-) ES cells. The Insi1 variant exhibited reduced DNA substrate binding in vitro and both variants exhibited a reduction in binding the telomerase RNA, mTR, when expressed in mTERT(-/-) ES cells. Stable expression of Dele12 in the mouse fibroblast CB17 cell line inhibited telomerase activity and slowed cell growth, suggesting a potential dominant-negative effect. Levels of signal-free ends, representing short telomeres, and end-to-end fusions were higher in mTERT(-/-) ES cells expressing mTERT-Insi1 and mTERT-Dele12, compared with levels observed in mTERT(-/-) ES cells expressing wild-type mTERT. In addition, in mTERT(-/-) cells expressing mTERT-Insi1, we observed chromosomes that were products of repeated breakage-bridge-fusion cycles and other telomere dysfunction-related aberrations. CONCLUSION AND SIGNIFICANCE An intact mTERT N-terminus which contributes to mTR binding, DNA binding and telomerase activity is necessary for elongation of short telomeres and the maintenance of functional telomeres. It is reasonable to speculate that relative levels of mTERT-Insi1 may regulate telomere function in specific tissues.
Collapse
Affiliation(s)
- Philippe Rousseau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Shanjadia Khondaker
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Shusen Zhu
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Catherine Lauzon
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Sabine Mai
- Manitoba Institute of Cell Biology, University of Manitoba, Manitoba, R3E 0V9, Canada
| | - Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
19
|
Fajkus P, Peška V, Sitová Z, Fulnečková J, Dvořáčková M, Gogela R, Sýkorová E, Hapala J, Fajkus J. Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:337-47. [PMID: 26716914 DOI: 10.1111/tpj.13115] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 05/25/2023]
Abstract
Phylogenetic divergence in Asparagales plants is associated with switches in telomere sequences. The last switch occurred with divergence of the genus Allium (Amaryllidaceae) from the other Allioideae (formerly Alliaceae) genera, resulting in uncharacterized telomeres maintained by an unknown mechanism. To characterize the unknown Allium telomeres, we applied a combination of bioinformatic processing of transcriptomic and genomic data with standard approaches in telomere biology such as BAL31 sensitivity tests, terminal restriction fragment analysis, the telomere repeat amplification protocol (TRAP), and fluorescence in situ hybridization (FISH). Using these methods, we characterize the unusual telomeric sequence (CTCGGTTATGGG)n present in Allium species, demonstrate its synthesis by telomerase, and characterize the telomerase reverse transcriptase (TERT) subunit of Allium cepa. Our findings open up the possibility of studying the molecular details of the evolutionary genetic change in Allium telomeres and its possible role in speciation. Experimental studies addressing the implications of this change in terms of the interplay of telomere components may now be designed to shed more light on telomere functions and evolution in general.
Collapse
Affiliation(s)
- Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Vratislav Peška
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Zdeňka Sitová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Jana Fulnečková
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Roman Gogela
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Jan Hapala
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
20
|
Procházková Schrumpfová P, Schořová Š, Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. FRONTIERS IN PLANT SCIENCE 2016; 7:851. [PMID: 27446102 PMCID: PMC4924339 DOI: 10.3389/fpls.2016.00851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Petra Procházková Schrumpfová,
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Brno, Czech Republic
| |
Collapse
|
21
|
Dokládal L, Honys D, Rana R, Lee LY, Gelvin SB, Sýkorová E. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase. FRONTIERS IN PLANT SCIENCE 2015; 6:985. [PMID: 26617625 PMCID: PMC4641898 DOI: 10.3389/fpls.2015.00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/27/2015] [Indexed: 05/27/2023]
Abstract
Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.
Collapse
Affiliation(s)
- Ladislav Dokládal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics – Academy of Sciences of the Czech Republic v.v.i.Brno, Czech Republic
| | - David Honys
- Institute of Experimental Botany – Academy of Sciences of the Czech Republic v.v.i.Prague, Czech Republic
| | - Rajiv Rana
- Institute of Experimental Botany – Academy of Sciences of the Czech Republic v.v.i.Prague, Czech Republic
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West LafayetteIN, USA
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West LafayetteIN, USA
| | - Eva Sýkorová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics – Academy of Sciences of the Czech Republic v.v.i.Brno, Czech Republic
| |
Collapse
|
22
|
Fojtová M, Sýkorová E, Najdekrová L, Polanská P, Zachová D, Vagnerová R, Angelis KJ, Fajkus J. Telomere dynamics in the lower plant Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2015; 87:591-601. [PMID: 25701469 DOI: 10.1007/s11103-015-0299-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The p16INK4A/pRb pathway and telomerase activity define a subgroup of Ph+ adult Acute Lymphoblastic Leukemia associated with inferior outcome. Leuk Res 2015; 39:453-61. [DOI: 10.1016/j.leukres.2015.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 11/15/2022]
|
24
|
The putative Leishmania telomerase RNA (LeishTER) undergoes trans-splicing and contains a conserved template sequence. PLoS One 2014; 9:e112061. [PMID: 25391020 PMCID: PMC4229120 DOI: 10.1371/journal.pone.0112061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/11/2014] [Indexed: 02/07/2023] Open
Abstract
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5′ spliced leader (SL) cap, a putative 3′ polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5′SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Collapse
|
25
|
Deželak M, Gebremariam MM, Cadež N, Zupan J, Raspor P, Zarnkow M, Becker T, Košir IJ. The influence of serial repitching of Saccharomyces pastorianus on its karyotype and protein profile during the fermentation of gluten-free buckwheat and quinoa wort. Int J Food Microbiol 2014; 185:93-102. [PMID: 24935690 DOI: 10.1016/j.ijfoodmicro.2014.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Gluten-free beer-like beverages from malted buckwheat and quinoa are somehow close to their commercial production, but rather high expenses are expected due to the relatively high price of grain, some technological adaptations of process and the need for external enzyme supplementation during mashing. One of the common and efficient cost reduction measures in the industrial scale is serial repitching of the yeast biomass, which has not been studied for the buckwheat and quinoa wort fermentation before. In that manner we have monitored possible changes in yeast's proteins and chromosomal DNA during eleven serial repitchings of the yeast Saccharomyces pastorianus strain TUM 34/70 for fermentation of the barley, buckwheat and quinoa wort. Karyotypes showed changes in regard to the raw materials used and many responsible candidate proteins are suggested which could cause these differences. Different relative expressions of some protein bands were also linked to the proteins involved in yeast stress response and proteins involved in fermentation performance. Results suggest that serial repitching of the strain TUM 34/70 seems suitable for the production of gluten-free beer-like beverages from buckwheat and quinoa.
Collapse
Affiliation(s)
- Matjaž Deželak
- Slovenian Institute of Hop Research and Brewing, Department of Agrochemistry and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia.
| | - Mekonnen M Gebremariam
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Weihenstephaner Steig 20, D-85350 Freising, Germany.
| | - Neža Cadež
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Chair of Biotechnology, Microbiology and Food Safety, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Jure Zupan
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Chair of Biotechnology, Microbiology and Food Safety, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Peter Raspor
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Chair of Biotechnology, Microbiology and Food Safety, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Martin Zarnkow
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Weihenstephaner Steig 20, D-85350 Freising, Germany.
| | - Thomas Becker
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Weihenstephaner Steig 20, D-85350 Freising, Germany.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Department of Agrochemistry and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia.
| |
Collapse
|
26
|
Radan L, Hughes CS, Teichroeb JH, Vieira Zamora FM, Jewer M, Postovit LM, Betts DH. Microenvironmental regulation of telomerase isoforms in human embryonic stem cells. Stem Cells Dev 2014; 23:2046-66. [PMID: 24749509 DOI: 10.1089/scd.2013.0373] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent evidence points to extra-telomeric, noncanonical roles for telomerase in regulating stem cell function. In this study, human embryonic stem cells (hESCs) were cultured in 20% or 2% O2 microenvironments for up to 5 days and evaluated for telomerase reverse transcriptase (TERT) expression and telomerase activity. Results showed increased cell survival and maintenance of the undifferentiated state with elevated levels of nuclear TERT in 2% O2-cultured hESCs despite no significant difference in telomerase activity compared with their high-O2-cultured counterparts. Pharmacological inhibition of telomerase activity using a synthetic tea catechin resulted in spontaneous hESC differentiation, while telomerase inhibition with a phosphorothioate oligonucleotide telomere mimic did not. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed variations in transcript levels of full-length and alternate splice variants of TERT in hESCs cultured under varying O2 atmospheres. Steric-blocking of Δα and Δβ hTERT splicing using morpholino oligonucleotides altered the hTERT splicing pattern and rapidly induced spontaneous hESC differentiation that appeared biased toward endomesodermal and neuroectodermal cell fates, respectively. Together, these results suggest that post-transcriptional regulation of TERT under varying O2 microenvironments may help regulate hESC survival, self-renewal, and differentiation capabilities through expression of extra-telomeric telomerase isoforms.
Collapse
Affiliation(s)
- Lida Radan
- 1 Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario , London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Inactive C-terminal telomerase reverse transcriptase insertion splicing variants are dominant-negative inhibitors of telomerase. Biochimie 2014; 101:93-103. [DOI: 10.1016/j.biochi.2013.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
|
28
|
López de Abechuco E, Bilbao E, Soto M, Díez G. Molecular cloning and measurement of telomerase reverse transcriptase (TERT) transcription patterns in tissues of European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua) during aging. Gene 2014; 541:8-18. [PMID: 24607378 DOI: 10.1016/j.gene.2014.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 01/01/2023]
Abstract
Telomerase is a reverse transcriptase ribonucleoprotein that maintains the ends of linear chromosomes. This enzyme plays a major role in cell processes like proliferation, differentiation and tumorigenesis, being associated with aging and survival of species. In this study, the gene coding for TERT (Telomerase Reverse Transcriptase) of two commercial fish species, European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua), has been partially cloned. A fragment of 1581bp (hake) and 633bp (cod) showed high homology (identity 74%, query cover 99%, E-value=0) with known Perciformes TERT sequences. TERT transcription patterns were assessed by qRT-PCR in different tissues of hake (brain, ovary, testis, muscle, skin, gills, liver and kidney) and cod (brain, muscle and skin) of different sizes/ages in order to understand its role in the physiological aging of teleosts. TERT was found to be ubiquitously transcribed in all tissues and size/age groups studied in both species. Significantly higher relative transcription levels (p<0.05) were found with increasing size/age of M. merluccius in the kidney, muscle, skin and gonad, the latter exhibiting particularly high relative transcription levels. Male hakes showed higher TERT relative transcription levels in the brain, gonad and liver than females, although these differences were not statistically significant (p<0.05). In G. morhua, higher TERT relative transcription levels were recorded in the muscle and brain of fry and juvenile individuals. Therefore, TERT relative transcription pattern exhibited a higher telomerase demand in early developmental stages and also in mature stages, suggesting tissue renewal or regeneration processes as a conserved mechanism for maintaining long-term cell proliferation capacity and preventing senescence. Thus, it can be concluded that TERT relative transcription level was species and tissue specific and changed with the age of fishes.
Collapse
Affiliation(s)
- E López de Abechuco
- AZTI-Tecnalia, Marine Research Division, Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Bizkaia, Spain
| | - E Bilbao
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), University of the Basque Country, Areatza z/g, Plentzia, Bizkaia, Spain
| | - M Soto
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), University of the Basque Country, Areatza z/g, Plentzia, Bizkaia, Spain
| | - G Díez
- AZTI-Tecnalia, Marine Research Division, Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Bizkaia, Spain
| |
Collapse
|
29
|
Procházková Schrumpfová P, Vychodilová I, Dvořáčková M, Majerská J, Dokládal L, Schořová Š, Fajkus J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:770-81. [PMID: 24397874 PMCID: PMC4282523 DOI: 10.1111/tpj.12428] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 05/19/2023]
Abstract
Although telomere-binding proteins constitute an essential part of telomeres, in vivo data indicating the existence of a structure similar to mammalian shelterin complex in plants are limited. Partial characterization of a number of candidate proteins has not identified true components of plant shelterin or elucidated their functional mechanisms. Telomere repeat binding (TRB) proteins from Arabidopsis thaliana bind plant telomeric repeats through a Myb domain of the telobox type in vitro, and have been shown to interact with POT1b (Protection of telomeres 1). Here we demonstrate co-localization of TRB1 protein with telomeres in situ using fluorescence microscopy, as well as in vivo interaction using chromatin immunoprecipitation. Classification of the TRB1 protein as a component of plant telomeres is further confirmed by the observation of shortening of telomeres in knockout mutants of the trb1 gene. Moreover, TRB proteins physically interact with plant telomerase catalytic subunits. These findings integrate TRB proteins into the telomeric interactome of A. thaliana.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- *For correspondence (e-mails or )
| | - Ivona Vychodilová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republicv.v.i, Královopolská 135, Brno, CZ, 61265, Czech Republic
| | - Jana Majerská
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- †Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de LausanneStation 19, 1015, Lausanne, Switzerland
| | - Ladislav Dokládal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republicv.v.i, Královopolská 135, Brno, CZ, 61265, Czech Republic
| | - Šárka Schořová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republicv.v.i, Královopolská 135, Brno, CZ, 61265, Czech Republic
- *For correspondence (e-mails or )
| |
Collapse
|
30
|
Abstract
Telomerase reverse transcriptase (TERT) is the protein component of telomerase and combined with an RNA molecule, telomerase RNA component, forms the telomerase enzyme responsible for telomere elongation. Telomerase is essential for maintaining telomere length from replicative attrition and thus contributes to the preservation of genome integrity. Although diverse mouse models have been developed and studied to prove the physiological roles of telomerase as a telomere- elongating enzyme, recent studies have revealed non-canonical TERT activities beyond telomeres. To gain insights into the physiological impact of extra-telomeric roles, this review revisits the strategies and phenotypes of telomerase mouse models in terms of the extra-telomeric functions of telomerase.
Collapse
Affiliation(s)
- Young Hoon Sung
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| | - Muhammad Ali
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| |
Collapse
|
31
|
Zachová D, Fojtová M, Dvořáčková M, Mozgová I, Lermontova I, Peška V, Schubert I, Fajkus J, Sýkorová E. Structure-function relationships during transgenic telomerase expression in Arabidopsis. PHYSIOLOGIA PLANTARUM 2013; 149:114-26. [PMID: 23278240 DOI: 10.1111/ppl.12021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 05/11/2023]
Abstract
Although telomerase (EC 2.7.7.49) is important for genome stability and totipotency of plant cells, the principles of its regulation are not well understood. Therefore, we studied subcellular localization and function of the full-length and truncated variants of the catalytic subunit of Arabidopsis thaliana telomerase, AtTERT, in planta. Our results show that multiple sites in AtTERT may serve as nuclear localization signals, as all the studied individual domains of the AtTERT were targeted to the nucleus and/or the nucleolus. Although the introduced genomic or cDNA AtTERT transgenes display expression at transcript and protein levels, they are not able to fully complement the lack of telomerase functions in tert -/- mutants. The failure to reconstitute telomerase function in planta suggests a more complex telomerase regulation in plant cells than would be expected based on results of similar experiments in mammalian model systems.
Collapse
Affiliation(s)
- Dagmar Zachová
- Faculty of Science and Central European Institute of Technology, Masaryk University, CZ-61137, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Listerman I, Sun J, Gazzaniga FS, Lukas JL, Blackburn EH. The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 2013; 73:2817-28. [PMID: 23610451 DOI: 10.1158/0008-5472.can-12-3082] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human telomerase reverse transcriptase (hTERT; the catalytic protein subunit of telomerase) is subjected to numerous alternative splicing events, but the regulation and function of these splice variants is obscure. Full-length hTERT includes conserved domains that encode reverse transcriptase activity, RNA binding, and other functions. The major splice variant termed α+β- or β-deletion is highly expressed in stem and cancer cells, where it codes for a truncated protein lacking most of the reverse transcriptase domain but retaining the known RNA-binding motifs. In a breast cancer cell panel, we found that β-deletion was the hTERT transcript that was most highly expressed. Splicing of this transcript was controlled by the splice regulators SRSF11, HNRNPH2, and HNRNPL, and the β-deletion transcript variant was associated with polyribosomes in cells. When ectopically overexpressed, β-deletion protein competed for binding to telomerase RNA (hTR/TERC), thereby inhibiting endogenous telomerase activity. Overexpressed β-deletion protein localized to the nucleus and mitochondria and protected breast cancer cells from cisplatin-induced apoptosis. Our results reveal that a major hTERT splice variant can confer a growth advantage to cancer cells independent of telomere maintenance, suggesting that hTERT makes multiple contributions to cancer pathophysiology.
Collapse
Affiliation(s)
- Imke Listerman
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
33
|
Exclusion of exon 2 is a common mRNA splice variant of primate telomerase reverse transcriptases. PLoS One 2012; 7:e48016. [PMID: 23110161 PMCID: PMC3480478 DOI: 10.1371/journal.pone.0048016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022] Open
Abstract
Telomeric sequences are added by an enzyme called telomerase that is made of two components: a catalytic protein called telomerase reverse transcriptase (TERT) and an integral RNA template (TR). Telomerase expression is tightly regulated at each step of gene expression, including alternative splicing of TERT mRNA. While over a dozen different alternative splicing events have been reported for human TERT mRNA, these were all in the 3' half of the coding region. We were interested in examining splicing of the 5' half of hTERT mRNA, especially since exon 2 is unusually large (1.3 kb). Internal mammalian exons are usually short, typically only 50 to 300 nucleotides, and most long internal exons are alternatively processed. We used quantitative RT-PCR and high-throughput sequencing data to examine the variety and quantity of mRNA species generated from the hTERT locus. We determined that there are approximately 20-40 molecules of hTERT mRNA per cell in the A431 human cell line. In addition, we describe an abundant, alternatively-spliced mRNA variant that excludes TERT exon 2 and was seen in other primates. This variant causes a frameshift and results in translation termination in exon 3, generating a 12 kDa polypeptide.
Collapse
|
34
|
Alternatively spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol Cell Biol 2012; 32:4283-96. [PMID: 22907755 DOI: 10.1128/mcb.00550-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight human and six chicken novel alternatively spliced (AS) variants of telomerase reverse transcriptase (TERT) were identified, including a human variant (Δ4-13) containing an in-frame deletion which removed exons 4 through 13, encoding the catalytic domain of telomerase. This variant was expressed in telomerase-negative normal cells and tissues as well as in transformed telomerase-positive cell lines and cells which employ an alternative method to maintain telomere length. The overexpression of the Δ4-13 variant significantly elevated the proliferation rates of several cell types without enhancing telomerase activity, while decreasing the endogenous expression of this variant by use of small interfering RNA (siRNA) technology reduced cell proliferation. The expression of the Δ4-13 variant stimulated Wnt signaling. In chicken cells, AS TERT variants containing internal deletions or insertions that eliminated or reduced telomerase activity also enhanced cell proliferation. This is the first report that naturally occurring AS TERT variants which lack telomerase activity stimulate cell proliferation.
Collapse
|
35
|
Hrdličková R, Nehyba J, Lim SL, Grützner F, Bose HR. Insights into the evolution of mammalian telomerase: platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes. BMC Genomics 2012; 13:216. [PMID: 22655747 PMCID: PMC3546421 DOI: 10.1186/1471-2164-13-216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 05/04/2012] [Indexed: 01/05/2023] Open
Abstract
Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT) ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.
Collapse
Affiliation(s)
- Radmila Hrdličková
- Section of Molecular Genetics and Microbiology, School of Biological Science, University of Texas at Austin, 78712-1095, USA
| | | | | | | | | |
Collapse
|
36
|
Sýkorová E, Fulnečková J, Mokroš P, Fajkus J, Fojtová M, Peška V. Three TERT genes in Nicotiana tabacum. Chromosome Res 2012; 20:381-94. [PMID: 22543812 DOI: 10.1007/s10577-012-9282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 01/15/2023]
Abstract
Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5' end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.
Collapse
Affiliation(s)
- Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Polanská E, Dobšáková Z, Dvořáčková M, Fajkus J, Štros M. HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction. Chromosoma 2012; 121:419-31. [PMID: 22544226 DOI: 10.1007/s00412-012-0373-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/09/2023]
Abstract
Telomere repeats are added onto chromosome ends by telomerase, consisting of two main core components: a catalytic protein subunit (telomerase reverse trancriptase, TERT), and an RNA subunit (telomerase RNA, TR). Here, we report for the first time evidence that HMGB1 (a chromatin-associated protein in mammals, acting as a DNA chaperone in transcription, replication, recombination, and repair) can modulate cellular activity of mammalian telomerase. Knockout of the HMGB1 gene (HMGB1 KO) in mouse embryonic fibroblasts (MEFs) results in chromosomal abnormalities, enhanced colocalization of γ-H2AX foci at telomeres, and a moderate shortening of telomere lengths. HMGB1 KO MEFs also exhibit significantly (>5-fold) lower telomerase activity than the wild-type MEFs. Correspondingly, enhanced telomerase activity is observed upon overexpression of HMGB1 in MEFs. HMGB1 physically interacts with both TERT and TR, as well as with active telomerase complex in vitro. However, direct interaction of HMGB1 with telomerase is most likely not accountable for the observed higher telomerase activity in HMGB1-containing cells, as revealed from the inability of purified HMGB1 protein to stimulate telomerase activity in vitro. While no transcriptional silencing of TERT is observed in HMGB1 KO MEFs, levels of TR are diminished (~3-fold), providing possible explanation for the observed lower telomerase activity in HMGB1 KO cells. Interestingly, knockout of the HMGB2 gene elevates telomerase activity (~3-fold) in MEFs, suggesting that the two closely related proteins of the HMGB family, HMGB1 and HMGB2, have opposite effects on telomerase activity in the cell. The ability of HMGB1 to modulate cellular activity of telomerase and to maintain telomere integrity can help to understand some aspects of the protein involvement in chromosome stability and cancer.
Collapse
Affiliation(s)
- Eva Polanská
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
38
|
Fojtová M, Peška V, Dobšáková Z, Mozgová I, Fajkus J, Sýkorová E. Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5531-45. [PMID: 21865176 PMCID: PMC3223050 DOI: 10.1093/jxb/err235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Analysis of plants bearing a T-DNA insertion is a potent tool of modern molecular biology, providing valuable information about the function and involvement of genes in metabolic pathways. A collection of 12 Arabidopsis thaliana lines with T-DNA insertions in the gene coding for the catalytic subunit of telomerase (AtTERT) and in adjacent regions was screened for telomerase activity [telomere repeat amplification protocol (TRAP) assay], telomere length (terminal restriction fragments), and AtTERT transcription (quantitative reverse transcription-PCR). Lines with the insertion located upstream of the start codon displayed unchanged telomere stability and telomerase activity, defining a putative minimal AtTERT promoter and the presence of a regulatory element linked to increased transcription in the line SALK_048471. Lines bearing a T-DNA insertion inside the protein-coding region showed telomere shortening and lack of telomerase activity. Transcription in most of these lines was unchanged upstream of the T-DNA insertion, while it was notably decreased downstream. The expression profile varied markedly in mutant lines harbouring insertions at the 5' end of AtTERT which showed increased transcription and abolished tissue specificity. Moreover, the line FLAG_385G01 (T-DNA insertion inside intron 1) revealed the presence of a highly abundant downstream transcript with normal splicing but without active telomerase. The role of regulatory elements found along the AtTERT gene is discussed in respect to natural telomerase expression and putative intron-mediated enhancement.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Vratislav Peška
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Zuzana Dobšáková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| | - Iva Mozgová
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
NF-kappaB p65 modulates the telomerase reverse transcriptase in the HepG₂ hepatoma cell line. Eur J Pharmacol 2011; 672:113-20. [PMID: 22008847 DOI: 10.1016/j.ejphar.2011.09.187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/19/2011] [Accepted: 09/24/2011] [Indexed: 01/11/2023]
Abstract
Nuclear factor-kappa B (NF-kappaB) regulates the expression of various genes, several genes involved in inflammation and tumorigenesis, including those of the liver. A role for NF-kappaB has been implicated in the pathogenesis of hepatocellular carcinoma. This transcription factor can regulate hTERT gene transcription. Expression of hTERT was found to be at high levels in hepatocellular carcinoma. However, positive effects of NF-kappaB on hTERT protein synthesis in HepG(2) cells are unknown. In this study, we show that LPS (specific binding to TLR4 to activate NF-kappaB) was positive for NF-kappaB p65 mRNA expression and activation, and also up-regulated hTERT mRNA and protein expressions at 36h in a dose-dependent manner. In contrast, MG-132 (blocking the activity of 26S proteasome and thereby preventing nuclear translocation of NF-kappaB) significantly inhibited activation of NF-kappaB and mRNA expression. And also reduced the expression of hTERT at both mRNA and protein levels at 36h in a dose-dependent manner. Furthermore, dexamethasone inhibited LPS-induced activation of NF-kappaB and expression of the hTERT in HepG(2) cells. These findings suggest that NF-kappaB may modulate hTERT mRNA level, importantly, in protein level in HepG(2) cells and dexamethasone inhibits LPS-induced hTERT via blocking NF-kappaB.
Collapse
|
40
|
Majerská J, Sýkorová E, Fajkus J. Non-telomeric activities of telomerase. MOLECULAR BIOSYSTEMS 2011; 7:1013-1023. [PMID: 21283914 DOI: 10.1039/c0mb00268b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Recent results suggest that telomerase is involved in many more cellular processes than merely telomere elongation. These include telomere-independent anti-apoptotic, cytoprotective and pro-proliferative effects of telomerase or protection of mitochondrial DNA against oxidative stress. Telomerase also participates in DNA repair and its essential subunits, hTR and hTERT, are able to modulate independently the cell's response to DNA damage. Recent high throughput analyses of gene expression showed that hTERT expression modulates expression of about 300 genes, including genes involved in the regulation of cell cycle progression, proliferation and differentiation. Besides the well-known telomerase catalytic activity of RNA-dependent DNA polymerase, its RNA-dependent RNA polymerase activity was recently described in association with the RNA subunit of mitochondrial RNA processing endoribonuclease, thus suggesting involvement of telomerase in RNA interference processes. These recent discoveries open novel possibilities and entirely unexpected research perspectives, branching off from the mainstream telomere and telomerase research.
Collapse
Affiliation(s)
- Jana Majerská
- Department of Functional Genomics and Proteomics, Faculty of Science, Masaryk University and Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | | | | |
Collapse
|
41
|
Stixová L, Bártová E, Matula P, Daněk O, Legartová S, Kozubek S. Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 2011; 4:5. [PMID: 21418567 PMCID: PMC3068931 DOI: 10.1186/1756-8935-4-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/18/2011] [Indexed: 11/17/2022] Open
Abstract
Background Protein exchange kinetics correlate with the level of chromatin condensation and, in many cases, with the level of transcription. We used fluorescence recovery after photobleaching (FRAP) to analyse the kinetics of 18 proteins and determine the relationships between nuclear arrangement, protein molecular weight, global transcription level, and recovery kinetics. In particular, we studied heterochromatin-specific heterochromatin protein 1β (HP1β) B lymphoma Mo-MLV insertion region 1 (BMI1), and telomeric-repeat binding factor 1 (TRF1) proteins, and nucleolus-related proteins, upstream binding factor (UBF) and RNA polymerase I large subunit (RPA194). We considered whether the trajectories and kinetics of particular proteins change in response to histone hyperacetylation by histone deacetylase (HDAC) inhibitors or after suppression of transcription by actinomycin D. Results We show that protein dynamics are influenced by many factors and events, including nuclear pattern and transcription activity. A slower recovery after photobleaching was found when proteins, such as HP1β, BMI1, TRF1, and others accumulated at specific foci. In identical cells, proteins that were evenly dispersed throughout the nucleoplasm recovered more rapidly. Distinct trajectories for HP1β, BMI1, and TRF1 were observed after hyperacetylation or suppression of transcription. The relationship between protein trajectory and transcription level was confirmed for telomeric protein TRF1, but not for HP1β or BMI1 proteins. Moreover, heterogeneity of foci movement was especially observed when we made distinctions between centrally and peripherally positioned foci. Conclusion Based on our results, we propose that protein kinetics are likely influenced by several factors, including chromatin condensation, differentiation, local protein density, protein binding efficiency, and nuclear pattern. These factors and events likely cooperate to dictate the mobility of particular proteins.
Collapse
Affiliation(s)
- Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
42
|
Giardini M, Fernández M, Lira C, Cano M. Leishmania amazonensis: Partial purification and study of the biochemical properties of the telomerase reverse transcriptase activity from promastigote-stage. Exp Parasitol 2011; 127:243-8. [DOI: 10.1016/j.exppara.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
|
43
|
Amor S, Remy S, Dambrine G, Le Vern Y, Rasschaert D, Laurent S. Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo. BMC Cancer 2010; 10:571. [PMID: 20964812 PMCID: PMC2976754 DOI: 10.1186/1471-2407-10-571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis in vivo, from the start point to tumor establishment. RESULTS We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without in vitro telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants. CONCLUSIONS TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target.
Collapse
Affiliation(s)
- Souheila Amor
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | | | | | | | | | | |
Collapse
|