1
|
Rüfer A, Nilius H, Hermine O, Niedoszytko M, Oude Elberink JNG, Bonadonna P, Shoumariyeh K, Gulen T, Hartmann K, Sabato V, Angelova-Fischer I, Baffoe D, Christen D, Belloni Fortina A, Breynaert C, Brockow K, von Bubnoff N, Bumbea H, van Daele P, Doubek M, Dybedal I, Elena C, Fokoloros C, Górska A, Heizmann M, Jentzsch M, Klein S, Lübke J, Mattsson M, Mulder A, Panse J, Schug TD, Sciumè M, Stefan A, Sztormowska M, Várkonyi J, Wortmann F, Yavuz AS, Sperr M, Gotlib J, Reiter A, Triggiani M, Sperr WR, Valent P. Prognostic impact of expression of CD2, CD25, and/or CD30 in/on mast cells in systemic mastocytosis: a registry study of the European Competence Network on Mastocytosis. Leukemia 2025:10.1038/s41375-024-02504-3. [PMID: 39815050 DOI: 10.1038/s41375-024-02504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Expression of CD2, CD25 and/or CD30 in extracutaneous mast cells (MC) is a minor diagnostic criterion for systemic mastocytosis (SM) in the classification of the World Health Organization and International Consensus Classification. So far, it remains unknown whether expression of these antigens on MC is of prognostic significance in SM. We performed a retrospective multi-center study of patients with SM using the data set of the registry of the European Competence Network on Mastocytosis, including 5034 patients with various MC disorders. The percentage of CD2-, CD25+ and/or CD30+ MC was considerably lower in patients with indolent SM compared to patients with advanced SM, including aggressive SM and MC leukemia. Whereas CD25 and CD30 expression in MC could not be associated with prognosis, we found that lack of CD2 expression in MC is associated with a significantly reduced overall survival (OS) in patients with SM (p < 0.0001). Lack of CD2 was also associated with the presence of extramedullary involvement affecting the spleen, liver, and/or lymph nodes (odds ratio 2.63 compared to SM with CD2+ MC). Together, lack of CD2 expression in MC is a prognostic marker and indicator of reduced OS and extramedullary disease expansion in patients with SM.
Collapse
Affiliation(s)
- Axel Rüfer
- Department of Hematology, Luzerner Kantonsspital, University of Luzern, Luzern, Switzerland.
| | - Henning Nilius
- Department of Clinical Chemistry, University Hospital Bern, Inselspital, Bern, Switzerland
| | - Olivier Hermine
- Hôpital Necker, Imagine Institute INSERM U1163, University of Sorbonne Paris Cité, Centre national de référence des mastocytoses, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | | | - Patrizia Bonadonna
- Allergy Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theo Gulen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, Stockholm; and Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | | | - Vito Sabato
- Universiteit Antwerpen, Campus Drie Eiken, Antwerp, Belgium
| | | | - Daniel Baffoe
- Departments of Hematology and Pharmacology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Deborah Christen
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany & Department of Haematology, Oncology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Anna Belloni Fortina
- Pediatric Dermatology, Internal Medicine, Azienda Ospedaliera, Università di Padova, Padova, Italy
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group and MASTeL, UZ Leuven, Leuven, Belgium
| | - Knut Brockow
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein; Technische Universität München, München, Germany
| | - Nikolas von Bubnoff
- Department for Hematology and Oncology, Universitätsklinikum Schleswig-Holstein and University Cancer Center Schleswig-Holstein, Lübeck, Germany
| | - Horia Bumbea
- Department of Hematology, Bone Marrow Transplant Unit, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital, Bucharest, Romania
| | - Paul van Daele
- Department of Internal Medicine, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | - Ingunn Dybedal
- Departments of Hematology and Pharmacology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Chiara Elena
- Policlinico San Matteo Pavia Fondazione IRCCS, Pavia, Italy
| | - Christos Fokoloros
- Mastocytosis Center, "Attikon" University Hospital of Athens, Athens, Greece
| | - Aleksandra Górska
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Marc Heizmann
- Kantonsspital Aarau AG, Medizinische Universitätsklinik, Hämatologie, Aarau, Switzerland
| | - Madlen Jentzsch
- Medical Clinic I, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Saskia Klein
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Mattias Mattsson
- Department of Hematology, Uppsala University Hospital, and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - André Mulder
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jens Panse
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany & Department of Haematology, Oncology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Tanja Daniela Schug
- Universitätsklinik für Dermatologie und Venerologie, Medical University of Graz, Graz, Austria
| | - Mariarita Sciumè
- S.C. Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alex Stefan
- Klinik für Innere Medizin 3 - Schwerpunkt Hämatologie und Onkologie, Kepler Universitätsklinikum, Linz, Austria
| | | | - Judit Várkonyi
- Department of Hematology, Semmelweis University, Budapest, Hungary
| | - Friederike Wortmann
- Department for Hematology and Oncology, Universitätsklinikum Schleswig-Holstein and University Cancer Center Schleswig-Holstein, Lübeck, Germany
| | - Akif Selim Yavuz
- Division of Hematology, Istanbul Medical School, University of Istanbul, Istanbul, Turkey
| | - Martina Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Jason Gotlib
- University of California, San Francisco, CA, USA
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Luo F, Sui L, Sun Y, Lai Z, Zhang C, Zhang G, Bi B, Yu S, Jin LH. Rab1 and Syntaxin 17 regulate hematopoietic homeostasis through β-integrin trafficking in Drosophila. J Genet Genomics 2025; 52:51-65. [PMID: 39542172 DOI: 10.1016/j.jgg.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and alters progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin is dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.
Collapse
Affiliation(s)
- Fangzhou Luo
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Luwei Sui
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Ying Sun
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zhixian Lai
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Chengcheng Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Gaoqun Zhang
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bing Bi
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Shichao Yu
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
3
|
Pays E. Apolipoprotein-L Functions in Membrane Remodeling. Cells 2024; 13:2115. [PMID: 39768205 PMCID: PMC11726835 DOI: 10.3390/cells13242115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The mammalian Apolipoprotein-L families (APOLs) contain several isoforms of membrane-interacting proteins, some of which are involved in the control of membrane dynamics (traffic, fission and fusion). Specifically, human APOL1 and APOL3 appear to control membrane remodeling linked to pathogen infection. Through its association with Non-Muscular Myosin-2A (NM2A), APOL1 controls Golgi-derived trafficking of vesicles carrying the lipid scramblase Autophagy-9A (ATG9A). These vesicles deliver APOL3 together with phosphatidylinositol-4-kinase-B (PI4KB) and activated Stimulator of Interferon Genes (STING) to mitochondrion-endoplasmic reticulum (ER) contact sites (MERCSs) for the induction and completion of mitophagy and apoptosis. Through direct interactions with PI4KB and PI4KB activity controllers (Neuronal Calcium Sensor-1, or NCS1, Calneuron-1, or CALN1, and ADP-Ribosylation Factor-1, or ARF1), APOL3 controls PI(4)P synthesis. PI(4)P is required for different processes linked to infection-induced inflammation: (i) STING activation at the Golgi and subsequent lysosomal degradation for inflammation termination; (ii) mitochondrion fission at MERCSs for induction of mitophagy and apoptosis; and (iii) phagolysosome formation for antigen processing. In addition, APOL3 governs mitophagosome fusion with endolysosomes for mitophagy completion, and the APOL3-like murine APOL7C is involved in phagosome permeabilization linked to antigen cross-presentation in dendritic cells. Similarly, APOL3 can induce the fusion of intracellular bacterial membranes, and a role in membrane fusion can also be proposed for endothelial APOLd1 and adipocyte mAPOL6, which promote angiogenesis and adipogenesis, respectively, under inflammatory conditions. Thus, different APOL isoforms play distinct roles in membrane remodeling associated with inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
4
|
Pays E. The Janus-faced functions of Apolipoproteins L in membrane dynamics. Cell Mol Life Sci 2024; 81:134. [PMID: 38478101 PMCID: PMC10937811 DOI: 10.1007/s00018-024-05180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| |
Collapse
|
5
|
Roberts BS, Mitra D, Abishek S, Beher R, Satpute-Krishnan P. The p24-family and COPII subunit SEC24C facilitate the clearance of alpha1-antitrypsin Z from the endoplasmic reticulum to lysosomes. Mol Biol Cell 2024; 35:ar45. [PMID: 38294851 PMCID: PMC10916869 DOI: 10.1091/mbc.e23-06-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
A subpopulation of the alpha-1-antitrypsin misfolding Z mutant (ATZ) is cleared from the endoplasmic reticulum (ER) via an ER-to-lysosome-associated degradation (ERLAD) pathway. Here, we report that the COPII subunit SEC24C and the p24-family of proteins facilitate the clearance of ATZ via ERLAD. In addition to the previously reported ERLAD components calnexin and FAM134B, we discovered that ATZ coimmunoprecipitates with the p24-family members TMP21 and TMED9. This contrasts with wild type alpha1-antitrypsin, which did not coimmunoprecipitate with FAM134B, calnexin or the p24-family members. Live-cell imaging revealed that ATZ and the p24-family members traffic together from the ER to lysosomes. Using chemical inhibitors to block ER exit or autophagy, we demonstrated that p24-family members and ATZ co-accumulate at SEC24C marked ER-exit sites or in ER-derived compartments, respectively. Furthermore, depletion of SEC24C, TMP21, or TMED9 inhibited lysosomal trafficking of ATZ and resulted in the increase of intracellular ATZ levels. Conversely, overexpression of these p24-family members resulted in the reduction of ATZ levels. Intriguingly, the p24-family members coimmunoprecipitate with ATZ, FAM134B, and SEC24C. Thus, we propose a model in which the p24-family functions in an adaptor complex linking SEC24C with the ERLAD machinery for the clearance of ATZ.
Collapse
Affiliation(s)
| | - Debashree Mitra
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Sudhanshu Abishek
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Richa Beher
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | |
Collapse
|
6
|
Lecordier L, Heo P, Graversen JH, Hennig D, Skytthe MK, Cornet d'Elzius A, Pincet F, Pérez-Morga D, Pays E. Apolipoproteins L1 and L3 control mitochondrial membrane dynamics. Cell Rep 2023; 42:113528. [PMID: 38041817 PMCID: PMC10765320 DOI: 10.1016/j.celrep.2023.113528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris-Cité, 75005 Paris, France; Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Jonas H Graversen
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Dorle Hennig
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Maria Kløjgaard Skytthe
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | | | - Frédéric Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris-Cité, 75005 Paris, France
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
7
|
Wang TT, Zhang LC, Qin Z, Chen SJ, Zeng JM, Li JY, An L, Wang CY, Gao Y, Wang LM, Zhao ZX, Liu ZQ, Wang SG. Decreased syntaxin17 expression contributes to the pathogenesis of acute pancreatitis in murine models by impairing autophagic degradation. Acta Pharmacol Sin 2023; 44:2445-2454. [PMID: 37580492 PMCID: PMC10692237 DOI: 10.1038/s41401-023-01139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/09/2023] [Indexed: 08/16/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas. Disruptions in organelle homeostasis, including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress, have been implicated in human and rodent pancreatitis. Syntaxin 17 (STX17) belongs to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) subfamily. The Qa-SNARE STX17 is an autophagosomal SNARE protein that interacts with SNAP29 (Qbc-SNARE) and the lysosomal SNARE VAMP8 (R-SNARE) to drive autophagosome-lysosome fusion. In this study, we investigated the role of STX17 in the pathogenesis of AP in male mice or rats induced by repeated intraperitoneal injections of cerulein. We showed that cerulein hyperstimulation induced AP in mouse and rat models, which was characterized by increased serum amylase and lipase activities, pancreatic edema, necrotic cell death and the infiltration of inflammatory cells, as well as markedly decreased pancreatic STX17 expression. A similar reduction in STX17 levels was observed in primary and AR42J pancreatic acinar cells treated with CCK (100 nM) in vitro. By analyzing autophagic flux, we found that the decrease in STX17 blocked autophagosome-lysosome fusion and autophagic degradation, as well as the activation of ER stress. Pancreas-specific STX17 knockdown using adenovirus-shSTX17 further exacerbated pancreatic edema, inflammatory cell infiltration and necrotic cell death after cerulein injection. These data demonstrate a critical role of STX17 in maintaining pancreatic homeostasis and provide new evidence that autophagy serves as a protective mechanism against AP.
Collapse
Affiliation(s)
- Tian-Tian Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li-Chun Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhen Qin
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shu-Jun Chen
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing-Min Zeng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing-Yan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin An
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Cai-Yan Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li-Ming Wang
- School of Biomedical Science, Hunan University, Changsha, 410082, China
| | - Zhong-Xiang Zhao
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shao-Gui Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Roberts BS, Satpute-Krishnan P. The many hats of transmembrane emp24 domain protein TMED9 in secretory pathway homeostasis. Front Cell Dev Biol 2023; 10:1096899. [PMID: 36733337 PMCID: PMC9888432 DOI: 10.3389/fcell.2022.1096899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The secretory pathway is an intracellular highway for the vesicular transport of newly synthesized proteins that spans the endoplasmic reticulum (ER), Golgi, lysosomes and the cell surface. A variety of cargo receptors, chaperones, and quality control proteins maintain the smooth flow of cargo along this route. Among these is vesicular transport protein TMED9, which belongs to the p24/transmembrane emp24 domain (TMED) family of proteins, and is expressed across vertebrate species. The TMED family is comprised of structurally-related type I transmembrane proteins with a luminal N-terminal Golgi-dynamics domain, a luminal coiled-coil domain, a transmembrane domain and a short cytosolic C-terminal tail that binds COPI and COPII coat proteins. TMED9, like other members of the TMED family, was first identified as an abundant constituent of the COPI and COPII coated vesicles that mediate traffic between the ER and the Golgi. TMED9 is typically purified in hetero-oligomers together with TMED family members, suggesting that it may function as part of a complex. Recently, TMED family members have been discovered to play various roles in secretory pathway homeostasis including secreted protein processing, quality control and degradation of misfolded proteins, and post-Golgi trafficking. In particular, TMED9 has been implicated in autophagy, lysosomal sorting, viral replication and cancer, which we will discuss in this Mini-Review.
Collapse
|
9
|
Warner H, Mahajan S, van den Bogaart G. Rerouting trafficking circuits through posttranslational SNARE modifications. J Cell Sci 2022; 135:276344. [PMID: 35972760 DOI: 10.1242/jcs.260112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are membrane-associated trafficking proteins that confer identity to lipid membranes and facilitate membrane fusion. These functions are achieved through the complexing of Q-SNAREs with a specific cognate target R-SNARE, leading to the fusion of their associated membranes. These SNARE complexes then dissociate so that the Q-SNAREs and R-SNAREs can repeat this cycle. Whilst the basic function of SNAREs has been long appreciated, it is becoming increasingly clear that the cell can control the localisation and function of SNARE proteins through posttranslational modifications (PTMs), such as phosphorylation and ubiquitylation. Whilst numerous proteomic methods have shown that SNARE proteins are subject to these modifications, little is known about how these modifications regulate SNARE function. However, it is clear that these PTMs provide cells with an incredible functional plasticity; SNARE PTMs enable cells to respond to an ever-changing extracellular environment through the rerouting of membrane traffic. In this Review, we summarise key findings regarding SNARE regulation by PTMs and discuss how these modifications reprogramme membrane trafficking pathways.
Collapse
Affiliation(s)
- Harry Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Shweta Mahajan
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
10
|
Sandvig K, Kavaliauskiene S, Myrann AG, Iversen TG, Skotland T. Modulation of Ricin Intoxication by the Autophagy Inhibitor EACC. Toxins (Basel) 2022; 14:toxins14050360. [PMID: 35622606 PMCID: PMC9145485 DOI: 10.3390/toxins14050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The compound EACC (ethyl (2-(5-nitrothiophene-2-carboxamido) thiophene-3-carbonyl) carbamate) was recently reported to inhibit fusion of autophagosomes with lysosomes in a reversible manner by inhibiting recruitment of syntaxin 17 to autophagosomes. We report here that this compound also provides a strong protection against the protein toxin ricin as well as against other plant toxins such as abrin and modeccin. The protection did not seem to be caused by inhibition of endocytosis and retrograde transport, but rather by inhibited release of the enzymatically active A-moiety to the cytosol. The TANK-binding kinase 1 (TBK1) has been reported to phosphorylate syntaxin 17 and be required for initiation of autophagy. The inhibitor of TBK1, MRT68601, induced in itself a strong sensitization to ricin, apparently by increasing transport to the Golgi apparatus. Importantly, MRT68601 increased Golgi transport of ricin even in the presence of EACC, but EACC was still able to inhibit intoxication, supporting the idea that EACC protects at a late step along the retrograde pathway. These results also indicate that phosphorylation of syntaxin 17 is not required for the protection observed.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.K.); (A.G.M.); (T.G.I.); (T.S.)
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway
- Correspondence:
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.K.); (A.G.M.); (T.G.I.); (T.S.)
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Anne Grethe Myrann
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.K.); (A.G.M.); (T.G.I.); (T.S.)
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.K.); (A.G.M.); (T.G.I.); (T.S.)
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.K.); (A.G.M.); (T.G.I.); (T.S.)
| |
Collapse
|
11
|
Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways. Cells 2022; 11:cells11050780. [PMID: 35269404 PMCID: PMC8909885 DOI: 10.3390/cells11050780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis.
Collapse
|
12
|
Stempels FC, Janssens MH, Ter Beest M, Mesman RJ, Revelo NH, Ioannidis M, van den Bogaart G. Novel and conventional inhibitors of canonical autophagy differently affect LC3-associated phagocytosis. FEBS Lett 2022; 596:491-509. [PMID: 35007347 DOI: 10.1002/1873-3468.14280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022]
Abstract
In autophagy, LC3-positive autophagophores fuse and encapsulate the autophagic cargo in a double-membrane structure. In contrast, lipidated LC3 (LC3-II) is directly formed at the phagosomal membrane in LC3-associated phagocytosis (LAP). In this study, we dissected the effects of autophagy inhibitors on LAP. SAR405, an inhibitor of VPS34, reduced levels of LC3-II and inhibited LAP. In contrast, the inhibitors of endosomal acidification bafilomycin A1 and chloroquine increased levels of LC3-II, due to reduced degradation in acidic lysosomes. However, while bafilomycin A1 inhibited LAP, chloroquine did not. Finally, EACC, which inhibits the fusion of autophagosomes with lysosomes, promoted LC3 degradation possibly by the proteasome. Targeting LAP with small molecule inhibitors is important given its emerging role in infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Femmy C Stempels
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Maaike H Janssens
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, RIBES, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Tian X, Teng J, Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy 2021; 17:2680-2688. [PMID: 32924745 PMCID: PMC8525925 DOI: 10.1080/15548627.2020.1823124] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy/autophagy refers to the engulfment of cellular contents selected for lysosomal degradation. The final step in autophagy is the fusion of autophagosome with the lysosome, which is mediated by SNARE proteins. Of the SNAREs, autophagosome-localized Q-SNAREs, such as STX17 and SNAP29, and lysosome-localized R-SNAREs, such as VAMP8 or VAMP7, have been reported to be involved. Recent studies also reveal participation of the R-SNARE, YKT6, in autophagosome-lysosome fusion. These SNAREs, with the help of other regulatory factors, act coordinately to spatiotemporally control the fusion process. Besides regulating autophagosome-lysosome fusion, some SNAREs, such as STX17, also function in other autophagic processes, including autophagosome formation and mitophagy. A better understanding of the functions of SNAREs will shed light on the molecular mechanisms of autophagosome-lysosome fusion as well as on the mechanisms by which autophagy is globally regulated.Abbreviations: ATG: autophagy related; DNM1L: dynamin 1 like; ER: endoplasmic reticulum; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; IRGM: immunity related GTPase M; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PLEKHM1: pleckstrin homology and RUN domain containing M1; PRKN: PRKN RBR E3 ubiquitin protein ligase; RAB2A: RAB2A, member RAS oncogene family; RAB33B: RAB33B, member RAS oncogene family; RAB7A: RAB7A, member RAS oncogene family; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; RUBCNL: rubicon like autophagy enhancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SNAP29: synaptosomal associated protein 29; STX17: syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1; VAMP7: vesicle associated membrane protein 7; VAMP8: vesicle associated membrane protein 8; YKT6: YKT6 v-SNARE homolog.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
14
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
15
|
Lin TK, Lin KJ, Lin KL, Liou CW, Chen SD, Chuang YC, Wang PW, Chuang JH, Wang TJ. When Friendship Turns Sour: Effective Communication Between Mitochondria and Intracellular Organelles in Parkinson's Disease. Front Cell Dev Biol 2020; 8:607392. [PMID: 33330511 PMCID: PMC7733999 DOI: 10.3389/fcell.2020.607392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with pathological hallmarks including progressive neuronal loss from the substantia nigra pars compacta and α-synuclein intraneuronal inclusions, known as Lewy bodies. Although the etiology of PD remains elusive, mitochondrial damage has been established to take center stage in the pathogenesis of PD. Mitochondria are critical to cellular energy production, metabolism, homeostasis, and stress responses; the association with PD emphasizes the importance of maintenance of mitochondrial network integrity. To accomplish the pleiotropic functions, mitochondria are dynamic not only within their own network but also in orchestrated coordination with other organelles in the cellular community. Through physical contact sites, signal transduction, and vesicle transport, mitochondria and intracellular organelles achieve the goals of calcium homeostasis, redox homeostasis, protein homeostasis, autophagy, and apoptosis. Herein, we review the finely tuned interactions between mitochondria and surrounding intracellular organelles, with focus on the nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, and lysosomes. Participants that may contribute to the pathogenic mechanisms of PD will be highlighted in this review.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Chen L, Xia YF, Shen SF, Tang J, Chen JL, Qian K, Chen Z, Qin ZH, Sheng R. Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress. Free Radic Biol Med 2020; 160:319-333. [PMID: 32828953 DOI: 10.1016/j.freeradbiomed.2020.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that syntaxin 17 (STX17) is involved in mediating the fusion of autophagosomes and lysosomes. This study aimed to investigate the role and mechanism of STX17 in neuronal injury following cerebral ischemia/reperfusion. The ischemia/reperfusion (I/R) models were established by transient middle cerebral artery occlusion (tMCAO) in mice and oxygen glucose deprivation/reperfusion (O/R) in primary cultured cortical neurons and HT22 cells. Cerebral ischemia/reperfusion significantly up-regulated the expression of STX17 in neurons. Lentivirus mediated knockdown of STX17 in neurons reduced neuronal viability and increased LDH leakage. Injection of AAV9-shSTX17 into the brain of mice then subjected to tMCAO also significantly augmented the infarct area and exacerbated neurobehavioral deficits and mortality. Depletion of STX17 caused accumulation of autophagic marker/substrate LC3 II and p62, blockade of the autophagic flux, and the accumulation of dysfunctional lysosomes. Knockdown of STX17 also aggravated endoplasmic reticulum (ER) stress-dependent neuronal apoptosis induced by ischemia/reperfusion. Importantly, induction of autophagy-lysosomal pathway and alleviation of ER stress partially rescued STX17 knockdown-induced neuronal damage. These results suggest that STX17 may ameliorate ischemia/reperfusion-induced neuronal damage by enhancing autophagy flux and reducing ER stress-dependent neuronal apoptosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Yun-Fei Xia
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Shu-Fang Shen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Li Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ke Qian
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Deng S, Liu J, Wu X, Lu W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front Cell Dev Biol 2020; 8:564975. [PMID: 33015059 PMCID: PMC7509445 DOI: 10.3389/fcell.2020.564975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy has dual effects in human diseases: appropriate autophagy may protect cells from stress, while excessive autophagy may cause cell death. Additionally, close interactions exist between autophagy and the Golgi. This review outlines recent advances regarding the role of the Golgi apparatus in autophagy. The signaling processes of autophagy are dependent on the normal function of the Golgi. Specifically, (i) autophagy-related protein 9 is mainly located in the Golgi and forms new autophagosomes in response to stressors; (ii) Golgi fragmentation is induced by Golgi-related proteins and accompanied with autophagy induction; and (iii) the endoplasmic reticulum-Golgi intermediate compartment and the reticular trans-Golgi network play essential roles in autophagosome formation to provide a template for lipidation of microtubule-associated protein 1A/1B-light chain 3 and induce further ubiquitination. Golgi-related proteins regulate formation of autophagosomes, and disrupted formation of autophagy can influence Golgi function. Notably, aberrant autophagy has been demonstrated to be implicated in neurological diseases. Thus, targeted therapies aimed at protecting the Golgi or regulating Golgi proteins might prevent or ameliorate autophagy-related neurological diseases. Further studies are needed to investigate the potential application of Golgi therapy in autophagy-based neurological diseases.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Halloran M, Ragagnin AMG, Vidal M, Parakh S, Yang S, Heng B, Grima N, Shahheydari H, Soo KY, Blair I, Guillemin GJ, Sundaramoorthy V, Atkin JD. Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell Mol Life Sci 2020; 77:3859-3873. [PMID: 31802140 PMCID: PMC11105036 DOI: 10.1007/s00018-019-03394-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER-Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.
Collapse
Affiliation(s)
- Mark Halloran
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Audrey M G Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Shu Yang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Natalie Grima
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Kai-Ying Soo
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ian Blair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vinod Sundaramoorthy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia.
| |
Collapse
|
19
|
Wang B, Xiao X, Huang F, Liu R. Syntaxin-17-Dependent Mitochondrial Dynamics is Essential for Protection Against Oxidative-Stress-Induced Apoptosis. Antioxidants (Basel) 2019; 8:antiox8110522. [PMID: 31671682 PMCID: PMC6912610 DOI: 10.3390/antiox8110522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, cell death induced by the oxidant tert-butylhydroperoxide (tBH) was observed in U2OS cells; this phenotype was rescued by Syntaxin 17 (STX17) knockout (KO) but the mechanism is unknown. STX17 plays dual roles in autophagosome–lysosome fusion and mitochondrial fission. However, the contribution of the two functions of STX17 to apoptosis has not been extensively studied. Here, we sought to dissect the dual roles of STX17 in oxidative-stress-induced apoptosis by taking advantage of STX17 knockout cells and an autophagosome–lysosome fusion defective mutant of STX17. We generated STX17 knockout U2OS cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and the STX17 knockout cells were reconstituted with wild-type STX17 and its autophagosome–lysosome fusion defective mutant. Autophagy was assessed by autophagic flux assay, Monomer red fluorescent protein (mRFP)–GFP–LC3 assay and protease protection assay. Golgi, endoplasmic reticulum (ER)/ER–Golgi intermediate compartment (ERGIC) and mitochondrial dynamics were examined by staining the different indicator proteins. Apoptosis was evaluated by caspase cleavage assay. The general reactive oxygen species (ROS) were detected by flow cytometry. In STX17 complete knockout cells, sealed autophagosomes were efficiently formed but their fusion with lysosomes was less defective. The fusion defect was rescued by wild-type STX17 but not the autophagosome–lysosome fusion defective mutant. No obvious defects in Golgi, ERGIC or ER dynamics were observed. Mitochondria were significantly elongated, supporting a role of STX17 in mitochondria fission and the elongation caused by STX17 KO was reversed by the autophagosome–lysosome fusion defective mutant. The clearance of protein aggregation was compromised, correlating with the autophagy defect but not with mitochondrial dynamics. This study revealed a mixed role of STX17 in autophagy, mitochondrial dynamics and oxidative stress response. STX17 knockout cells were highly resistant to oxidative stress, largely due to the function of STX17 in mitochondrial fission rather than autophagy.
Collapse
Affiliation(s)
- Binran Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiaoyue Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fanwei Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Rong Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing 210095, China.
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing 210095, China.
| |
Collapse
|
20
|
Sesta A, Cassarino MF, Terreni M, Ambrogio AG, Libera L, Bardelli D, Lasio G, Losa M, Pecori Giraldi F. Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing. Neuroendocrinology 2019; 110:119-129. [PMID: 31280266 PMCID: PMC6979434 DOI: 10.1159/000500688] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have recently been shown to occur in ACTH-secreting pituitary adenomas, thus calling attention to the ubiquitin system in corticotrope adenomas. OBJECTIVES Assess the consequences of USP8 mutations and establish the role of ubiquitin on ACTH turnover in human ACTH-secreting pituitary adenomas. METHODS USP8 mutation status was established in 126 ACTH-secreting adenomas. Differences in ACTH secretion and POMC expression from adenoma primary cultures and in microarray gene expression profiles from archival specimens were sought according to USP8 sequence. Ubiquitin/ACTH coimmunoprecipitation and incubation with MG132, a proteasome inhibitor, were performed in order to establish whether ubiquitin plays a role in POMC/ACTH degradation in corticotrope adenomas. RESULTS USP8 mutations were identified in 29 adenomas (23%). Adenomas presenting USP8 mutations secreted greater amounts of ACTH and expressed POMC at higher levels compared to USP wild-type specimens. USP8 mutant adenomas were also more sensitive to modulation by CRH and dexamethasone in vitro. At microarray analysis, genes associated with endosomal protein degradation and membrane components were downregulated in USP8 mutant adenomas as were AVPR1B, IL11RA, and PITX2. Inhibition of the ubiquitin-proteasome pathway increased ACTH secretion and POMC itself proved a target of ubiquitylation, independently of USP8 sequence status. CONCLUSIONS Our study has shown that USP8 mutant ACTH-secreting adenomas present a more "typical" corticotrope phenotype and reduced expression of several genes associated with protein degradation. Further, ubiquitylation is directly involved in intracellular ACTH turnover, suggesting that the ubiquitin-proteasome system may represent a target for treatment of human ACTH-secreting adenomas.
Collapse
Affiliation(s)
- Antonella Sesta
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Maria Francesca Cassarino
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | | | - Alberto G Ambrogio
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Laura Libera
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Donatella Bardelli
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Giovanni Lasio
- Department of Neurosurgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marco Losa
- Department of Neurosurgery, Ospedale San Raffaele, Milan, Italy
| | - Francesca Pecori Giraldi
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy,
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
21
|
D'Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID, Lupashin VV. Defects in COG-Mediated Golgi Trafficking Alter Endo-Lysosomal System in Human Cells. Front Cell Dev Biol 2019; 7:118. [PMID: 31334232 PMCID: PMC6616090 DOI: 10.3389/fcell.2019.00118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
The conserved oligomeric complex (COG) is a multi-subunit vesicle tethering complex that functions in retrograde trafficking at the Golgi. We have previously demonstrated that the formation of enlarged endo-lysosomal structures (EELSs) is one of the major glycosylation-independent phenotypes of cells depleted for individual COG complex subunits. Here, we characterize the EELSs in HEK293T cells using microscopy and biochemical approaches. Our analysis revealed that the EELSs are highly acidic and that vATPase-dependent acidification is essential for the maintenance of this enlarged compartment. The EELSs are accessible to both trans-Golgi enzymes and endocytic cargo. Moreover, the EELSs specifically accumulate endolysosomal proteins Lamp2, CD63, Rab7, Rab9, Rab39, Vamp7, and STX8 on their surface. The EELSs are distinct from lysosomes and do not accumulate active Cathepsin B. Retention using selective hooks (RUSH) experiments revealed that biosynthetic cargo mCherry-Lamp1 reaches the EELSs much faster as compared to both receptor-mediated and soluble endocytic cargo, indicating TGN origin of the EELSs. In support to this hypothesis, EELSs are enriched with TGN specific lipid PI4P. Additionally, analysis of COG4/VPS54 double KO cells revealed that the activity of the GARP tethering complex is necessary for EELSs’ accumulation, indicating that protein mistargeting and the imbalance of Golgi-endosome membrane flow leads to the formation of EELSs in COG-deficient cells. The EELSs are likely to serve as a degradative storage hybrid organelle for mistargeted Golgi enzymes and underglycosylated glycoconjugates. To our knowledge this is the first report of the formation of an enlarged hybrid endosomal compartment in a response to malfunction of the intra-Golgi trafficking machinery.
Collapse
Affiliation(s)
- Zinia D'Souza
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jessica Bailey Blackburn
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tetyana Kudlyk
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Irina D Pokrovskaya
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vladimir V Lupashin
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
22
|
Shin JH, Park SJ, Jo DS, Park NY, Kim JB, Bae JE, Jo YK, Hwang JJ, Lee JA, Jo DG, Kim JC, Jung YK, Koh JY, Cho DH. Down-regulated TMED10 in Alzheimer disease induces autophagy via ATG4B activation. Autophagy 2019; 15:1495-1505. [PMID: 30821607 DOI: 10.1080/15548627.2019.1586249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that dysfunction of macroautophagy/autophagy is associated with many human diseases, including neurodegenerative disease and cancer. To explore the molecular mechanisms of autophagy, we performed a cell-based functional screening with SH-SY5Y cells stably expressing GFP-LC3, using an siRNA library and identified TMED10 (transmembrane p24 trafficking protein 10), previously known as the γ-secretase-modulating protein, as a novel regulator of autophagy. Further investigations revealed that depletion of TMED10 induced the activation of autophagy. Interestingly, protein-protein interaction assays showed that TMED10 directly binds to ATG4B (autophagy related gene 4B cysteine peptidase), and the interaction is diminished under autophagy activation conditions such as rapamycin treatment and serum deprivation. In addition, inhibition of TMED10 significantly enhanced the proteolytic activity of ATG4B for LC3 cleavage. Importantly, the expression of TMED10 in AD (Alzheimer disease) patients was considerably decreased, and downregulation of TMED10 increased amyloid-β (Aβ) production. Treatment with Aβ increased ATG4B proteolytic activity as well as dissociation of TMED10 and ATG4B. Taken together, our results suggest that the AD-associated protein TMED10 negatively regulates autophagy by inhibiting ATG4B activity.Abbreviations: Aβ: amyloid-β; AD: Alzheimer disease; ATG: autophagy related; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CD: cytosolic domain; GFP: green fluorescent protein; GLUC: Gaussia luciferase; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LD: luminal domain; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SNP: single-nucleotide polymorphisms; TD: transmembrane domain; TMED10: transmembrane p24 trafficking protein 10; VC: C terminus of Venus fluorescent protein; VN: N terminus of Venus fluorescent protein.
Collapse
Affiliation(s)
- Ji Hyun Shin
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea.,b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - So Jung Park
- b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Doo Sin Jo
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Na Yeon Park
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Joon Bum Kim
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ji-Eun Bae
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea.,b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Yoon Kyung Jo
- b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Jung Jin Hwang
- c Asan Institute for Life Sciences, Asan Medical Center , Seoul , South Korea
| | - Jin-A Lee
- d College of Life Sciences and Nanotechnology, Hannam University , Daejeon , South Korea
| | - Dong-Gyu Jo
- e School of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Jin Cheon Kim
- f Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center , Seoul , South Korea
| | - Yong Keun Jung
- g School of Biological Sciences, Seoul National University , Seoul , South Korea
| | - Jae-Young Koh
- h Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center , Seoul , South Korea
| | - Dong-Hyung Cho
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
23
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
24
|
Khurana GK, Vishwakarma P, Puri N, Lynn AM. Phylogenetic Analysis of the vesicular fusion SNARE machinery revealing its functional divergence across Eukaryotes. Bioinformation 2018; 14:361-368. [PMID: 30262973 PMCID: PMC6143360 DOI: 10.6026/97320630014361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Proteins of the SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) family play a significant role in all
vesicular fusion events involved in endocytic and exocytic pathways. These proteins act as molecular machines that assemble into tight
four-helix bundle complex, bridging the opposing membranes into close proximity forming membrane fusion. Almost all SNARE
proteins share a 53 amino acid coiled-coil domain, which is mostly linked to the transmembrane domain at the C-terminal end. Despite
significant variations between SNARE sequences across species, the SNARE mediated membrane fusion is evolutionary conserved in
all eukaryotes. It is of interest to compare the functional divergence of SNARE proteins across various eukaryotic groups during
evolution. Here, we report an exhaustive phylogeny of the SNARE proteins retrieved from SNARE database including plants, animals,
fungi and protists. The Initial phylogeny segregated SNARE protein sequences into five well-supported clades Qa, Qb, Qc, Qbc and R
reflective of their positions in the four-helix SNARE complex. Further to improve resolution the Qa, Qb, Qc and R family specific trees
were reconstructed, each of these were further segregated into organelle specific clades at first and later diverged into lineage specific
subgroups. This revealed that most of the SNARE orthologs are conserved at subcellular locations or at trafficking pathways across
various species during eukaryotic evolution. The paralogous expansion in SNARE repertoire was observed at metazoans (animals) and
plants independently during eukaryotic evolution. However, results also show that the multi-cellular and saprophytic fungi have
limited SNAREs.
Collapse
Affiliation(s)
- Gagandeep K Khurana
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India- 110067
| | - Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India-110067
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India- 110067
| | - Andrew Michael Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India-110067
| |
Collapse
|
25
|
Abstract
Macroautophagy is an intracellular pathway used for targeting of cellular components to the lysosome for their degradation and involves sequestration of cytoplasmic material into autophagosomes formed from a double membrane structure called the phagophore. The nucleation and elongation of the phagophore is tightly regulated by several autophagy-related (ATG) proteins, but also involves vesicular trafficking from different subcellular compartments to the forming autophagosome. Such trafficking must be tightly regulated by various intra- and extracellular signals to respond to different cellular stressors and metabolic states, as well as the nature of the cargo to become degraded. We are only starting to understand the interconnections between different membrane trafficking pathways and macroautophagy. This review will focus on the membrane trafficking machinery found to be involved in delivery of membrane, lipids, and proteins to the forming autophagosome and in the subsequent autophagosome fusion with endolysosomal membranes. The role of RAB proteins and their regulators, as well as coat proteins, vesicle tethers, and SNARE proteins in autophagosome biogenesis and maturation will be discussed.
Collapse
|
26
|
Kanazawa T, Era A, Minamino N, Shikano Y, Fujimoto M, Uemura T, Nishihama R, Yamato KT, Ishizaki K, Nishiyama T, Kohchi T, Nakano A, Ueda T. SNARE Molecules in Marchantia polymorpha: Unique and Conserved Features of the Membrane Fusion Machinery. PLANT & CELL PHYSIOLOGY 2016; 57:307-24. [PMID: 26019268 DOI: 10.1093/pcp/pcv076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 05/18/2023]
Abstract
The membrane trafficking pathway has been diversified in a specific way for each eukaryotic lineage, probably to fulfill specific functions in the organisms. In green plants, comparative genomics has supported the possibility that terrestrialization and/or multicellularization could be associated with the elaboration and diversification of membrane trafficking pathways, which have been accomplished by an expansion of the numbers of genes required for machinery components of membrane trafficking, including soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, information regarding membrane trafficking pathways in basal land plant lineages remains limited. In the present study, we conducted extensive analyses of SNARE molecules, which mediate membrane fusion between target membranes and transport vesicles or donor organelles, in the liverwort, Marchantia polymorpha. The M. polymorpha genome contained at least 34 genes for 36 SNARE proteins, comprising fundamental sets of SNARE proteins that are shared among land plant lineages with low degrees of redundancy. We examined the subcellular distribution of a major portion of these SNARE proteins by expressing Citrine-tagged SNARE proteins in M. polymorpha, and the results showed that some of the SNARE proteins were targeted to different compartments from their orthologous products in Arabidopsis thaliana. For example, MpSYP12B was localized to the surface of the oil body, which is a unique organelle in liverworts. Furthermore, we identified three VAMP72 members with distinctive structural characteristics, whose N-terminal extensions contain consensus sequences for N-myristoylation. These results suggest that M. polymorpha has acquired unique membrane trafficking pathways associated with newly acquired machinery components during evolution.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Atsuko Era
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Department of Cell Genetics, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Naoki Minamino
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yu Shikano
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
27
|
Dorfman DM, LaPlante CD, Pozdnyakova O, Li B. FLOCK cluster analysis of mast cell event clustering by high-sensitivity flow cytometry predicts systemic mastocytosis. Am J Clin Pathol 2015; 144:764-70. [PMID: 26486741 DOI: 10.1309/ajcp87eymcyusdzv] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES In our high-sensitivity flow cytometric approach for systemic mastocytosis (SM), we identified mast cell event clustering as a new diagnostic criterion for the disease. METHODS To objectively characterize mast cell gated event distributions, we performed cluster analysis using FLOCK, a computational approach to identify cell subsets in multidimensional flow cytometry data in an unbiased, automated fashion. RESULTS FLOCK identified discrete mast cell populations in most cases of SM (56/75 [75%]) but only a minority of non-SM cases (17/124 [14%]). FLOCK-identified mast cell populations accounted for 2.46% of total cells on average in SM cases and 0.09% of total cells on average in non-SM cases (P < .0001) and were predictive of SM, with a sensitivity of 75%, a specificity of 86%, a positive predictive value of 76%, and a negative predictive value of 85%. CONCLUSIONS FLOCK analysis provides useful diagnostic information for evaluating patients with suspected SM, and may be useful for the analysis of other hematopoietic neoplasms.
Collapse
|
28
|
A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS One 2015; 10:e0138289. [PMID: 26376340 PMCID: PMC4574030 DOI: 10.1371/journal.pone.0138289] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/29/2015] [Indexed: 02/03/2023] Open
Abstract
Certain missense mutations in optineurin/OPTN and amplification of TBK1 are associated with normal tension glaucoma. A glaucoma-associated variant of OPTN, M98K, induces autophagic degradation of transferrin receptor (TFRC) and death in retinal cells. Here, we have explored the role of Tbk1 in M98K-OPTN-induced autophagy and cell death, and the effect of Tbk1 overexpression in retinal cells. Cell death induced by M98K-OPTN was dependent on Tbk1 as seen by the effect of Tbk1 knockdown and blocking of Tbk1 activity by a chemical inhibitor. Inhibition of Tbk1 also restores M98K-OPTN-induced transferrin receptor degradation. M98K-OPTN-induced autophagosome formation, autophagy and cell death were dependent on its phosphorylation at S177 by Tbk1. Knockdown of OPTN reduced starvation-induced autophagosome formation. M98K-OPTN expressing cells showed higher levels of Tbk1 activation and enhanced phosphorylation at Ser177 compared to WT-OPTN expressing cells. M98K-OPTN-induced activation of Tbk1 and its ability to be phosphorylated better by Tbk1 was dependent on ubiquitin binding. Phosphorylated M98K-OPTN localized specifically to autophagosomes and endogenous Tbk1 showed increased localization to autophagosomes in M98K-OPTN expressing cells. Overexpression of Tbk1 induced cell death and caspase-3 activation that were dependent on its catalytic activity. Tbk1-induced cell death possibly involves autophagy, as shown by the effect of Atg5 knockdown, and requirement of autophagic function of OPTN. Our results show that phosphorylation of Ser177 plays a crucial role in M98K-OPTN-induced autophagosome formation, autophagy flux and retinal cell death. In addition, we provide evidence for cross talk between two glaucoma associated proteins and their inter-dependence to mediate autophagy-dependent cell death.
Collapse
|
29
|
Arasaki K, Shimizu H, Mogari H, Nishida N, Hirota N, Furuno A, Kudo Y, Baba M, Baba N, Cheng J, Fujimoto T, Ishihara N, Ortiz-Sandoval C, Barlow LD, Raturi A, Dohmae N, Wakana Y, Inoue H, Tani K, Dacks JB, Simmen T, Tagaya M. A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev Cell 2015; 32:304-17. [PMID: 25619926 DOI: 10.1016/j.devcel.2014.12.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/22/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022]
Abstract
Recent evidence suggests that endoplasmic reticulum (ER) tubules mark the sites where the GTPase Drp1 promotes mitochondrial fission via a largely unknown mechanism. Here, we show that the SNARE protein syntaxin 17 (Syn17) is present on raft-like structures of ER-mitochondria contact sites and promotes mitochondrial fission by determining Drp1 localization and activity. The hairpin-like C-terminal hydrophobic domain, including Lys-254, but not the SNARE domain, is important for this regulation. Syn17 also regulates ER Ca(2+) homeostasis and interferes with Rab32-mediated regulation of mitochondrial dynamics. Starvation disrupts the Syn17-Drp1 interaction, thus favoring mitochondrial elongation during autophagy. Because we also demonstrate that Syn17 is an ancient SNARE, our findings suggest that Syn17 is one of the original key regulators for ER-mitochondria contact sites present in the last eukaryotic common ancestor. As such, Syn17 acts as a switch that responds to nutrient conditions and integrates functions for the ER and autophagosomes with mitochondrial dynamics.
Collapse
Affiliation(s)
- Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Shimizu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hirofumi Mogari
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Nishida
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Naohiko Hirota
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akiko Furuno
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshihisa Kudo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Misuzu Baba
- Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015, Japan; Informatics Program, Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Norio Baba
- Informatics Program, Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
| | | | - Lael D Barlow
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Arun Raturi
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Naoshi Dohmae
- Biomolecular Characterization Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
30
|
Fokin AI, Brodsky IB, Burakov AV, Nadezhdina ES. Interaction of early secretory pathway and Golgi membranes with microtubules and microtubule motors. BIOCHEMISTRY (MOSCOW) 2014; 79:879-93. [DOI: 10.1134/s0006297914090053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Blanco-Sánchez B, Clément A, Fierro J, Washbourne P, Westerfield M. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis. Dis Model Mech 2014; 7:547-59. [PMID: 24626987 PMCID: PMC4007406 DOI: 10.1242/dmm.014068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Usher syndrome (USH), the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER). Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.
Collapse
|
32
|
Chan SN, Tang BL. Location and membrane sources for autophagosome formation - from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Mol Membr Biol 2013; 30:394-402. [PMID: 24175710 DOI: 10.3109/09687688.2013.850178] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have revealed much about the signaling events and molecular components associated with autophagy. Although it is clear that there are multiple points of intersection and connection between autophagy and known vesicular membrane transport processes between membrane compartments, autophagy is modulated by a distinct set of molecular components, and the autophagosome has a unique membrane composition. A key question that has yet to be resolved with regards to autophagosome formation is its membrane source. Various evidences have indicated that membranes from the endoplasmic reticulum (ER), mitochondria, Golgi, endosomes and the plasma membrane could all potentially act as a source of autophagosomal membrane in non-specialized macroautophagy. Recent investigations have generated advances in terms of the mitochondria's involvement in starvation-induced autophagy, and refined localization of autophagosome formation to ER-mitochondria contact sites. On the other hand, data accumulates on the delivery of membrane sources to the pre-autophagosome structure by Atg9-containing mobile carriers, which likely originated from the Golgi-endosome system. The answer to the question on the origin of membrane materials for autophagosome biogenesis awaits further reconciliation of these different findings.
Collapse
Affiliation(s)
- Shu Ning Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Medical Drive , Singapore
| | | |
Collapse
|
33
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 2013; 140:327-39. [PMID: 23812035 DOI: 10.1007/s00418-013-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
34
|
A cataract-causing connexin 50 mutant is mislocalized to the ER due to loss of the fourth transmembrane domain and cytoplasmic domain. FEBS Open Bio 2013; 3:22-9. [PMID: 23772370 PMCID: PMC3668514 DOI: 10.1016/j.fob.2012.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 11/22/2022] Open
Abstract
Mutations in the eye lens gap junction protein connexin 50 cause cataract. Earlier we identified a frameshift mutant of connexin 50 (c.670insA; p.Thr203AsnfsX47) in a family with autosomal recessive cataract. The mutant protein is smaller and contains 46 aberrant amino acids at the C-terminus after amino acid 202. Here, we have analysed this frameshift mutant and observed that it localized to the endoplasmic reticulum (ER) but not in the plasma membrane. Moreover, overexpression of the mutant resulted in disintegration of the ER-Golgi intermediate compartment (ERGIC), reduction in the level of ERGIC-53 protein and breakdown of the Golgi in many cells. Overexpression of the frameshift mutant partially inhibited the transport of wild type connexin 50 to the plasma membrane. A deletion mutant lacking the aberrant sequence showed predominant localization in the ER and inhibited anterograde protein transport suggesting, therefore, that the aberrant sequence is not responsible for improper localization of the frameshift mutant. Further deletion analysis showed that the fourth transmembrane domain and a membrane proximal region (231-294 amino acids) of the cytoplasmic domain are needed for transport from the ER and localization to the plasma membrane. Our results show that a frameshift mutant of connexin 50 mislocalizes to the ER and causes disintegration of the ERGIC and Golgi. We have also identified a sequence of connexin 50 crucial for transport from the ER and localization to the plasma membrane.
Collapse
|
35
|
Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. mBio 2013; 4:e00606-12. [PMID: 23362322 PMCID: PMC3560531 DOI: 10.1128/mbio.00606-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen that replicates within a lysosome-like vacuole. A Dot/Icm type IVB secretion system is used by C. burnetii to translocate effector proteins into the host cytosol that likely modulate host factor function. To identify host determinants required for C. burnetii intracellular growth, a genome-wide screen was performed using gene silencing by small interfering RNA (siRNA). Replication of C. burnetii was measured by immunofluorescence microscopy in siRNA-transfected HeLa cells. Newly identified host factors included components of the retromer complex, which mediates cargo cycling between the endocytic pathway and the Golgi apparatus. Reducing the levels of the retromer cargo-adapter VPS26-VPS29-VPS35 complex or retromer-associated sorting nexins abrogated C. burnetii replication. Several genes, when silenced, resulted in enlarged vacuoles or an increased number of vacuoles within C. burnetii-infected cells. Silencing of the STX17 gene encoding syntaxin-17 resulted in a striking defect in homotypic fusion of vacuoles containing C. burnetii, suggesting a role for syntaxin-17 in regulating this process. Lastly, silencing host genes needed for C. burnetii replication correlated with defects in the translocation of Dot/Icm effectors, whereas, silencing of genes that affected vacuole morphology, but did not impact replication, did not affect Dot/Icm translocation. These data demonstrate that C. burnetii vacuole maturation is important for creating a niche that permits Dot/Icm function. Thus, genome-wide screening has revealed host determinants involved in sequential events that occur during C. burnetii infection as defined by bacterial uptake, vacuole transport and acidification, activation of the Dot/Icm system, homotypic fusion of vacuoles, and intracellular replication. Q fever in humans is caused by the bacterium Coxiella burnetii. Infection with C. burnetii is marked by its unique ability to replicate within a large vacuolar compartment inside cells that resembles the harsh, acidic environment of a lysosome. Central to its pathogenesis is the delivery of bacterial effector proteins into the host cell cytosol by a Dot/Icm type IVB secretion system. These proteins can interact with and manipulate host factors, thereby leading to creation and maintenance of the vacuole that the bacteria grow within. Using high-throughput genome-wide screening in human cells, we identified host factors important for several facets of C. burnetii infection, including vacuole transport and membrane fusion events that promote vacuole expansion. In addition, we show that maturation of the C. burnetii vacuole is necessary for creating an environment permissive for the Dot/Icm delivery of bacterial effector proteins into the host cytosol.
Collapse
|
36
|
Muppirala M, Gupta V, Swarup G. Emerging role of tyrosine phosphatase, TCPTP, in the organelles of the early secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1125-32. [PMID: 23328081 DOI: 10.1016/j.bbamcr.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 01/21/2023]
Abstract
T-cell protein tyrosine phosphatase, TCPTP, is a ubiquitously expressed non-receptor type tyrosine phosphatase. There are two splice variants of TCPTP, TC48 and TC45, which differ in their sub-cellular localizations and functions. TC45 is a nuclear protein, which has both nuclear and cytoplasmic substrates, and is involved in many signaling events including endocytic recycling of platelet-derived growth factor β-receptor. TC48 is a predominantly endoplasmic reticulum (ER)-localizing protein, which dephosphorylates some of the substrates of TC45 at the ER. However, recently few specific substrates for TC48 have been identified. These include C3G (RapGEF1), syntaxin 17 and BCR-Abl. TC48 moves from the ER to post-ER compartments, the ER-Golgi intermediate compartment (ERGIC) and Golgi, and it is retrieved back to the ER. The retrieval of ER proteins from post-ER compartments is generally believed as a mechanism of targeting these proteins to the ER. However, it is possible that this shuttling of TC48 serves to regulate signaling in the early secretory pathway. For example, TC48 dephosphorylates phosphorylated C3G at the Golgi and inhibits neurite outgrowth. TC48 interacts with and dephosphorylates syntaxin 17, which is an ER and ERGIC-localizing protein involved in vesicle transport. A yeast two-hybrid screen identified several unique interacting partners of TC48 belonging to two groups - proteins involved in vesicle trafficking and proteins involved in cell adhesion. These interacting proteins could be substrates or regulators of TC48 function and localization. Thus, the role of TC48 seems to be more diverse, which is still to be explored.
Collapse
Affiliation(s)
- Madhavi Muppirala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
37
|
Muppirala M, Gupta V, Swarup G. Tyrosine phosphorylation of a SNARE protein, syntaxin 17: implications for membrane trafficking in the early secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2109-19. [PMID: 23006999 DOI: 10.1016/j.bbamcr.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
The T-cell protein tyrosine phosphatase is expressed as two splice variants - TC45, a nuclear protein, and TC48, which is localized predominantly in the ER (endoplasmic reticulum). Yeast two-hybrid screening revealed direct interaction of TC48 with Syntaxin17, a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein localized predominantly in the ER and to some extent in the ER-Golgi intermediate compartment. Syntaxin 17 did not interact with TC45. C-terminal 40 amino acids of TC48 were sufficient for interaction with syntaxin 17. Overexpressed syntaxin 17 was phosphorylated at tyrosine upon pervanadate treatment (a tyrosine phosphatase inhibitor/tyrosine kinase activator) of COS-1 cells. Mutational analysis identified Tyr156 in the cytoplasmic domain as the major site of phosphorylation. Endogenous syntaxin 17 was phosphorylated by pervanadate treatment in CHO and MIN6 cells but was not phosphorylated in a variety of other cell lines tested. c-Abl was identified as one of the kinases, which phosphorylates syntaxin 17 in MIN6 cells. Phosphorylation of endogenous and overexpressed syntaxin 17 was reduced in the presence of IGF receptor and EGF receptor kinase inhibitors. Serum depletion reduced pervanadate-induced phosphorylation of endogenous syntaxin 17. TC48 coexpression reduced phosphorylation of syntaxin 17 by pervanadate and purified TC48 directly dephosphorylated syntaxin 17. β-COP dispersal by overexpressed syntaxin 17 was reduced after pervanadate-induced phosphorylation. A phospho-mimicking mutant (Y156E) of syntaxin 17 showed reduced interaction with COPI vesicles. These results suggest that tyrosine phosphorylation of syntaxin 17 is likely to have a role in regulating syntaxin 17 dependent membrane trafficking in the early secretory pathway.
Collapse
Affiliation(s)
- Madhavi Muppirala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | | | |
Collapse
|
38
|
Vaibhava V, Nagabhushana A, Chalasani MLS, Sudhakar C, Kumari A, Swarup G. Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17. J Cell Sci 2012; 125:5026-39. [PMID: 22854040 DOI: 10.1242/jcs.102327] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases regulate various membrane trafficking pathways but the mechanisms by which GTPase-activating proteins recognise specific Rabs are not clear. Rab8 is involved in controlling several trafficking processes, including the trafficking of transferrin receptor from the early endosome to the recycling endosome. Here, we provide evidence to show that TBC1D17, a Rab GTPase-activating protein, through its catalytic activity, regulates Rab8-mediated endocytic trafficking of transferrin receptor. Optineurin, a Rab8-binding effector protein, mediates the interaction and colocalisation of TBC1D17 with Rab8. A non-catalytic region of TBC1D17 is required for direct interaction with optineurin. Co-expression of Rab8, but not other Rabs tested, rescues the inhibition of transferrin receptor trafficking by TBC1D17. The activated GTP-bound form of Rab8 is localised to the tubules emanating from the endocytic recycling compartment. Through its catalytic activity, TBC1D17 inhibits recruitment of Rab8 to the tubules and reduces colocalisation of transferrin receptor and Rab8. Knockdown of optineurin or TBC1D17 results in enhanced recruitment of Rab8 to the tubules. A glaucoma-associated mutant of optineurin, E50K, causes enhanced inhibition of Rab8 by TBC1D17, resulting in defective endocytic recycling of transferrin receptor. Our results show that TBC1D17, through its interaction with optineurin, regulates Rab8-mediated endocytic recycling of transferrin receptor and recruitment of Rab8 to the endocytic recycling tubules. We describe a mechanism of regulating a Rab GTPase by an effector protein (optineurin) that acts as an adaptor to bring together a Rab (Rab8) and its GTPase-activating protein (TBC1D17).
Collapse
Affiliation(s)
- Vipul Vaibhava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|