1
|
Tycko R, Jeon J. Quantification of Rapid Cooling of Glycerol/Water Solutions Based on Photoluminescence from Thioflavin T. J Phys Chem B 2024; 128:12310-12324. [PMID: 39627173 DOI: 10.1021/acs.jpcb.4c07105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Rapid cooling to a solid state allows intermediates in chemical and biomolecular processes that occur in solution near room temperature to be trapped for subsequent measurements by magnetic resonance spectroscopies, electron microscopy, or other techniques. In time-resolved solid state nuclear magnetic resonance and rapid freeze-quench electron paramagnetic resonance studies, solutions are typically frozen by spraying into a cold bath or onto a cold metal surface. Although simulations suggest freezing on millisecond or submillisecond time scales, direct experimental measurements of cooling rates have been elusive. Here, we describe a method for quantification of rapid cooling rates based on measurements of temperature-dependent photoluminescence from thioflavin T (ThT). In our experiments, a jet of ThT solution in glycerol/water, with 10.8 m/s jet velocity and 30 μm diameter, freezes on a cold, rotating copper surface. Images of ThT photoluminescence on the copper surface indicate that the cooling rate of the solution increases linearly with the surface velocity over the 0.45-6.2 m/s range. At surface velocities greater than 3.8 m/s, the time to cool from 300 to 260 K or from 300 to 230 K is less than 100 μs or less than 700 μs. The experimental results do not agree quantitatively with calculations in which a layer of glycerol/water cools by thermal conduction when suddenly brought in contact with a cold copper surface. Discrepancies between experimental results and simplistic calculations illustrate the importance of direct measurements of cooling rates.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jaekyun Jeon
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Institute for Bioscience and Biotechnology Research University of Maryland/National Institute of Standards and Technology, Rockville, Maryland 20850, United States
| |
Collapse
|
2
|
Verwee E, Van de Walle D, De Bruyne M, Mienis E, Sekulic M, Chaerle P, Vyverman W, Foubert I, Dewettinck K. Visualisation of microalgal lipid bodies through electron microscopy. J Microsc 2024; 293:118-131. [PMID: 38149687 DOI: 10.1111/jmi.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
In this study, transmission electron microscopy (TEM) and cryo-scanning electron microscopy (cryo-SEM) were evaluated for their ability to detect lipid bodies in microalgae. To do so, Phaeodactylum tricornutum and Nannochloropsis oculata cells were harvested in both the mid-exponential and early stationary growth phase. Two different cryo-SEM cutting methods were compared: cryo-planing and freeze-fracturing. The results showed that, despite the longer preparation time, TEM visualisation preceded by cryo-immobilisation allows a clear detection of lipid bodies and is preferable to cryo-SEM. Using freeze-fracturing, lipid bodies were rarely detected. This was only feasible if crystalline layers in the internal structure, most likely related to sterol esters or di-saturated triacylglycerols, were revealed. Furthermore, lipid bodies could not be detected using cryo-planing. Cryo-SEM is also not the preferred technique to recognise other organelles besides lipid bodies, yet it did reveal chloroplasts in both species and filament-containing organelles in cryo-planed Nannochloropsis oculata samples.
Collapse
Affiliation(s)
- Ellen Verwee
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Davy Van de Walle
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| | - Michiel De Bruyne
- VIB BioImaging Core VIB, Ghent, Belgium
- VIB Center for Inflammation Research VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Mienis
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mirna Sekulic
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology VIB, Ghent, Belgium
| | - Peter Chaerle
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- Department of Biology, BCCM/DCG Diatoms Collection, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Imogen Foubert
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Sachse M, Fernández-Sánchez SY, Tenorio R, de Castro IF, Risco C. Imaging Bunyavirus Infections by Transmission Electron Microscopy: Conventional Sample Preparation vs High-Pressure Freezing and Freeze-Substitution. Methods Mol Biol 2024; 2824:241-258. [PMID: 39039417 DOI: 10.1007/978-1-0716-3926-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Transmission electron microscopy significantly contributed to unveil the course of virus entry, replication, morphogenesis, and egress. For these studies, the most widely used approach is imaging ultrathin sections of virus-infected cells embedded in a plastic resin that is transparent to electrons. Before infiltration in a resin, cells must be processed to stabilize their components under the observation conditions in an electron microscope, such as high vacuum and irradiation with electrons. For conventional sample preparation, chemical fixation and dehydration are followed by infiltration in the resin and polymerization to produce a hard block that can be sectioned with an ultramicrotome. Another method that provides a superior preservation of cell components is high-pressure freezing (HPF) followed by freeze substitution (FS) before resin infiltration and polymerization. This chapter describes both procedures with cells infected with Bunyamwera virus (BUNV), a well characterized member of the Bunyavirales, and compares the morphological details of different viral structures imaged in the two types of samples. Advantages, disadvantages, and applications of conventional processing and HPF/FS are also presented and discussed.
Collapse
Affiliation(s)
- Martin Sachse
- Centro Nacional de Microbiología/ISCIII, Madrid, Spain.
| | - Sara Y Fernández-Sánchez
- Cell Structure Lab, Centro Nacional de Biotecnología, CNB - CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Raquel Tenorio
- Cell Structure Lab, Centro Nacional de Biotecnología, CNB - CSIC, Campus de Cantoblanco, Madrid, Spain
| | | | - Cristina Risco
- Cell Structure Lab, Centro Nacional de Biotecnología, CNB - CSIC, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
4
|
Mazal H, Wieser FF, Sandoghdar V. Insights into protein structure using cryogenic light microscopy. Biochem Soc Trans 2023; 51:2041-2059. [PMID: 38015555 PMCID: PMC10754291 DOI: 10.1042/bst20221246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence microscopy has witnessed many clever innovations in the last two decades, leading to new methods such as structured illumination and super-resolution microscopies. The attainable resolution in biological samples is, however, ultimately limited by residual motion within the sample or in the microscope setup. Thus, such experiments are typically performed on chemically fixed samples. Cryogenic light microscopy (Cryo-LM) has been investigated as an alternative, drawing on various preservation techniques developed for cryogenic electron microscopy (Cryo-EM). Moreover, this approach offers a powerful platform for correlative microscopy. Another key advantage of Cryo-LM is the strong reduction in photobleaching at low temperatures, facilitating the collection of orders of magnitude more photons from a single fluorophore. This results in much higher localization precision, leading to Angstrom resolution. In this review, we discuss the general development and progress of Cryo-LM with an emphasis on its application in harnessing structural information on proteins and protein complexes.
Collapse
Affiliation(s)
- Hisham Mazal
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Chatzimpinou A, Funaya C, Rogers D, O'Connor S, Kapishnikov S, Sheridan P, Fahy K, Weinhardt V. Dehydration as alternative sample preparation for soft X-ray tomography. J Microsc 2023; 291:248-255. [PMID: 37433616 DOI: 10.1111/jmi.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023]
Abstract
Soft X-ray tomography (SXT) is an imaging technique to visualise whole cells without fixation, staining, and sectioning. For SXT imaging, cells are cryopreserved and imaged at cryogenic conditions. Such 'near-to-native' state imaging is in high demand and initiated the development of the laboratory table-top SXT microscope. As many laboratories do not have access to cryogenic equipment, we asked ourselves whether SXT imaging is feasible on dry specimens. This paper shows how the dehydration of cells can be used as an alternative sample preparation to obtain ultrastructure information. We compare different dehydration processes on mouse embryonic fibroblasts in terms of ultrastructural preservation and shrinkage. Based on this analysis, we chose critical point (CPD) dried cells for SXT imaging. In comparison to cryopreserved and air-dried cells, CPD dehydrated cells show high structural integrity although with about 3-7 times higher X-ray absorption for cellular organelles. As the difference in X-ray absorption values between organelles is preserved, 3D anatomy of CPD-dried cells can be segmented and analysed, demonstrating the applicability of CPD-dried sample preparation for SXT imaging. LAY DESCRIPTION: Soft X-ray tomography (SXT) is an imaging technique that allows to see the internal structures of cells without the need for special treatments like fixation or staining. Typically, SXT imaging involves freezing and imaging cells at very low temperatures. However, since many labs lack the necessary equipment, we explored whether SXT imaging could be done on dry samples instead. We compared different dehydration methods and found that critical point drying (CPD) was the most promising for SXT imaging. CPD-dried cells showed high structural integrity, although they absorbed more X-rays than hydrated cells, demonstrating that CPD-dried sample preparation is a viable alternative for SXT imaging.
Collapse
Affiliation(s)
| | - Charlotta Funaya
- Electron Microscopy Core Facility (EMCF), Heidelberg University, Heidelberg, Germany
| | | | | | | | | | | | - Venera Weinhardt
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Merryweather DJ, Weston N, Roe J, Parmenter C, Lewis MP, Roach P. Exploring the microstructure of hydrated collagen hydrogels under scanning electron microscopy. J Microsc 2023; 290:40-52. [PMID: 36718074 DOI: 10.1111/jmi.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Collagen hydrogels are a rapidly expanding platform in bioengineering and soft materials engineering for novel applications focused on medical therapeutics, medical devices and biosensors. Observations linking microstructure to material properties and function enables rational design strategies to control this space. Visualisation of the microscale organisation of these soft hydrated materials presents unique technical challenges due to the relationship between hydration and the molecular organisation of a collagen gel. Scanning electron microscopy is a robust tool widely employed to visualise and explore materials on the microscale. However, investigation of collagen gel microstructure is difficult without imparting structural changes during preparation and/or observation. Electrons are poorly propagated within liquid-phase materials, limiting the ability of electron microscopy to interrogate hydrated gels. Sample preparation techniques to remove water induce artefactual changes in material microstructure particularly in complex materials such as collagen, highlighting a critical need to develop robust material handling protocols for the imaging of collagen hydrogels. Here a collagen hydrogel is fabricated, and the gel state explored under high-vacuum (10-6 Pa) and low-vacuum (80-120 Pa) conditions, and in an environmental SEM chamber. Visualisation of collagen fibres is found to be dependent on the degree of sample hydration, with higher imaging chamber pressures and humidity resulting in decreased feature fidelity. Reduction of imaging chamber pressure is used to induce evaporation of gel water content, revealing collagen fibres of significantly larger diameter than observed in samples dehydrated prior to imaging. Rapid freezing and cryogenic handling of the gel material is found to retain a porous 3D structure following sublimation of the gel water content. Comparative analysis of collagen hydrogel materials demonstrates the care needed when preparing hydrogel samples for electron microscopy.
Collapse
Affiliation(s)
- Daniel J Merryweather
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicola Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Jordan Roe
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK.,Department of Materials, Loughborough University, Leicestershire, UK
| | | | - Mark P Lewis
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| |
Collapse
|
7
|
Varsano N, Wolf SG. Electron microscopy of cellular ultrastructure in three dimensions. Curr Opin Struct Biol 2022; 76:102444. [PMID: 36041268 DOI: 10.1016/j.sbi.2022.102444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
Electron microscopy in three dimensions (3D) of cells and tissues can be essential for understanding the ultrastructural aspects of biological processes. The quest for 3D information reveals challenges at many stages of the workflow, from sample preparation, to imaging, data analysis and segmentation. Here, we outline several available methods, including volume SEM imaging, cryo-TEM and cryo-STEM tomography, each one occupying a different domain in the basic tradeoff between field-of-view and resolution. We discuss the considerations for choosing a suitable method depending on research needs and highlight recent developments that are essential for making 3D volume imaging of cells and tissues a standard tool for cellular and structural biologists.
Collapse
Affiliation(s)
- Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl St., Rehovot 76100, Israel
| | - Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl St., Rehovot 76100, Israel.
| |
Collapse
|
8
|
Ortega-Gonzalez P, Taylor G, Jangra RK, Tenorio R, Fernandez de Castro I, Mainou BA, Orchard RC, Wilen CB, Brigleb PH, Sojati J, Chandran K, Sachse M, Risco C, Dermody TS. Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathog 2022; 18:e1010322. [PMID: 35263388 PMCID: PMC8906592 DOI: 10.1371/journal.ppat.1010322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-β-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Collapse
Affiliation(s)
- Paula Ortega-Gonzalez
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
- PhD Program in Molecular Biosciences, Autonoma de Madrid University, Madrid, Spain
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gwen Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Isabel Fernandez de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Bernardo A. Mainou
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Martin Sachse
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Repsold L, Pool R, Karodia M, Tintinger G, Joubert AM. Ex vivo platelet morphology assessment of chronic myeloid leukemia patients before and after Imatinib treatment. Microsc Res Tech 2022; 85:2222-2233. [PMID: 35174933 DOI: 10.1002/jemt.24079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease and the first line treatment is through the administration of Imatinib, a first generation tyrosine kinase inhibitor. Thrombocytosis and bleeding irregularities are common in CML, however, the morphological variations in CML patients' platelets are not well documented. In this study, ex vivo platelet morphology of control participants, as well as CML patients were assessed before and after Imatinib treatment. The topographical and structural morphology of platelets were determined via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Qualitative data of SEM and TEM revealed that CML patient's platelets were prone to aggregation and coagulation at time of diagnosis; the samples that were not aggregated at time of diagnosis showed typical discoid shaped platelets, which was comparable to control participants' platelets. TEM results of CML patients' platelets at diagnosis showed that internal granular constituents including dense bodies were decreased in comparison to control participants. In all CML patients, platelets appeared activated after 6 months of treatment with Imatinib with membrane structure abnormalities and constituent variations. Research to date has primarily focused on the effects of CML on leukocyte populations, however, the results of the current study implicate the impact of CML pathogenesis on platelets, seemingly as a result of alterations in normal hematopoiesis. In addition, the impact of Imatinib treatment on platelet morphology was also established, indicating an increase in platelet activation. Recognizing and understanding the impact of CML disease progression on platelets is of importance to aid improved patient treatment.
Collapse
Affiliation(s)
- Lisa Repsold
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Roger Pool
- Department of Haematology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Mohammed Karodia
- Department of Haematology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gregory Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
10
|
Parlanti P, Cappello V. Microscopes, tools, probes, and protocols: A guide in the route of correlative microscopy for biomedical investigation. Micron 2021; 152:103182. [PMID: 34801960 DOI: 10.1016/j.micron.2021.103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
Collapse
Affiliation(s)
- Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| |
Collapse
|
11
|
Akisaka T. Platinum replicas of broken-open osteoclasts imaged by transmission electron microscopy. J Oral Biosci 2021; 63:307-318. [PMID: 34628004 DOI: 10.1016/j.job.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Preserving the cellular structure at the highest possible resolution is a prerequisite for morphological studies to deepen our understanding of cellular functions. A revival of interest in rapid-freezing methods combined with breaking-open techniques has taken place with the development of effective and informative approaches in platinum replica electron microscopy, thus providing new approaches to address unresolved issues in cell biology. HIGHLIGHT The images produced with platinum replicas revealed 3D structures of the cell interior: (1) cell membranes associated with highly organized cytoskeletons, including podosomes or geodomes, (2) heterogeneous clathrin assemblies and membrane skeletons on the inner side of the membrane, and (3) organization of the cytoskeleton after detergent extraction. CONCLUSION In this review, I will focus on the platinum replica method after brokenopen cells have been broken open with mechanical shearing or detergent extraction. Often forgotten nowadays is the use of platinum replicas with stereomicroscopic observations for transmission electron microscopy study; these "old-fashioned" imaging techniques, combined with the breaking-open technique represent a highly informative approach to deepen our understanding of the organization of the cell interior. These are still being pursued to answer outstanding biological questions.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Eltareb A, Lopez GE, Giovambattista N. The role of high-density and low-density amorphous ice on biomolecules at cryogenic temperatures: a case study with polyalanine. Phys Chem Chem Phys 2021; 23:19402-19414. [PMID: 34494044 PMCID: PMC8491127 DOI: 10.1039/d1cp02734d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental techniques, such as cryo-electron microscopy, require biological samples to be recovered at cryogenic temperatures (T ≈ 100 K) with water being in an amorphous ice state. However, (bulk) water can exist in two amorphous ices at P < 1 GPa, low-density amorphous (LDA) ice at low pressures and high-density amorphous ice (HDA) at high pressures; HDA is ≈20-25% denser than LDA. While fast/plunge cooling at 1 bar brings the sample into LDA, high-pressure cooling (HPC), at sufficiently high pressure, produces HDA. HDA can also be produced by isothermal compression of LDA at cryogenic temperatures. Here, we perform classical molecular dynamics simulations to study the effects of LDA, HDA, and the LDA-HDA transformation on the structure and hydration of a small peptide, polyalanine. We follow thermodynamic paths corresponding to (i) fast/plunge cooling at 1 bar, (ii) HPC at P = 400 MPa, and (iii) compression/decompression cycles at T = 80 K. While process (i) produced LDA in the system, path (iii) produces HDA. Interestingly, the amorphous ice produced in process (ii) is an intermediate amorphous ice (IA) with properties that fall in-between those of LDA and HDA. Remarkably, the structural changes in polyalanine are negligible at all conditions studied (0-2000 MPa, 80-300 K) even when water changes among the low and high-density liquid states as well as the amorphous solids LDA, IA, and HDA. The similarities and differences in the hydration of polyalanine vitrified in LDA, IA, and HDA are described. Since the studied thermodynamic paths are suitable for the cryopreservation of biomolecules, we also study the structure and hydration of polyalanine along isobaric and isochoric heating paths, which can be followed experimentally for the recovery of cryopreserved samples. Upon heating, the structure of polyalanine remains practically unchanged. We conclude with a brief discussion of the practical advantages of (a) using HDA and IA as a cryoprotectant environment (as opposed to LDA), and (b) the use of isochoric heating as a recovery process (as opposed to isobaric heating).
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
13
|
Grados-Torrez RE, López-Iglesias C, Ferrer JC, Campos N. Loose Morphology and High Dynamism of OSER Structures Induced by the Membrane Domain of HMG-CoA Reductase. Int J Mol Sci 2021; 22:ijms22179132. [PMID: 34502042 PMCID: PMC8430881 DOI: 10.3390/ijms22179132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The membrane domain of eukaryotic HMG-CoA reductase (HMGR) has the conserved capacity to induce endoplasmic reticulum (ER) proliferation and membrane association into Organized Smooth Endoplasmic Reticulum (OSER) structures. These formations develop in response to overexpression of particular proteins, but also occur naturally in cells of the three eukaryotic kingdoms. Here, we characterize OSER structures induced by the membrane domain of Arabidopsis HMGR (1S domain). Immunochemical confocal and electron microscopy studies demonstrate that the 1S:GFP chimera co-localizes with high levels of endogenous HMGR in several ER compartments, such as the ER network, the nuclear envelope, the outer and internal membranes of HMGR vesicles and the OSER structures, which we name ER-HMGR domains. After high-pressure freezing, ER-HMGR domains show typical crystalloid, whorled and lamellar ultrastructural patterns, but with wide heterogeneous luminal spaces, indicating that the native OSER is looser and more flexible than previously reported. The formation of ER-HMGR domains is reversible. OSER structures grow by incorporation of ER membranes on their periphery and progressive compaction to the inside. The ER-HMGR domains are highly dynamic in their formation versus their disassembly, their variable spherical-ovoid shape, their fluctuating borders and their rapid intracellular movement, indicating that they are not mere ER membrane aggregates, but active components of the eukaryotic cell.
Collapse
Affiliation(s)
- Ricardo Enrique Grados-Torrez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Department of Molecular Genetics, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
| | - Carmen López-Iglesias
- Scientific and Technological Centers, University of Barcelona, 08028 Barcelona, Spain;
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joan Carles Ferrer
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Narciso Campos
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Department of Molecular Genetics, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
14
|
Han Z, Porter AE. In situ Electron Microscopy of Complex Biological and Nanoscale Systems: Challenges and Opportunities. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.606253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In situ imaging for direct visualization is important for physical and biological sciences. Research endeavors into elucidating dynamic biological and nanoscale phenomena frequently necessitate in situ and time-resolved imaging. In situ liquid cell electron microscopy (LC-EM) can overcome certain limitations of conventional electron microscopies and offer great promise. This review aims to examine the status-quo and practical challenges of in situ LC-EM and its applications, and to offer insights into a novel correlative technique termed microfluidic liquid cell electron microscopy. We conclude by suggesting a few research ideas adopting microfluidic LC-EM for in situ imaging of biological and nanoscale systems.
Collapse
|
15
|
Ahmed I, Akram Z, Sahar MSU, Iqbal HMN, Landsberg MJ, Munn AL. WITHDRAWN: Structural studies of vitrified biological proteins and macromolecules - A review on the microimaging aspects of cryo-electron microscopy. Int J Biol Macromol 2020:S0141-8130(20)33915-5. [PMID: 32710963 DOI: 10.1016/j.ijbiomac.2020.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - M Sana Ullah Sahar
- School of Engineering, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
16
|
Kucinski TM, Ott EJE, Freedman MA. Flash Freeze Flow Tube to Vitrify Aerosol Particles at Fixed Relative Humidity Values. Anal Chem 2020; 92:5207-5213. [DOI: 10.1021/acs.analchem.9b05757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Theresa M. Kucinski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Emily-Jean E. Ott
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
17
|
de Vito G, Parlanti P, Cecchi R, Luin S, Cappello V, Tonazzini I, Piazza V. Effects of fixatives on myelin molecular order probed with RP-CARS microscopy. APPLIED OPTICS 2020; 59:1756-1762. [PMID: 32225682 DOI: 10.1364/ao.384662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/13/2020] [Indexed: 05/28/2023]
Abstract
When live imaging is not feasible, sample fixation allows preserving the ultrastructure of biological samples for subsequent microscopy analysis. This process could be performed with various methods, each one affecting differently the biological structure of the sample. While these alterations were well-characterized using traditional microscopy, little information is available about the effects of the fixatives on the spatial molecular orientation of the biological tissue. We tackled this issue by employing rotating-polarization coherent anti-Stokes Raman scattering (RP-CARS) microscopy to study the effects of different fixatives on the myelin sub-micrometric molecular order and micrometric morphology. RP-CARS is a novel technique derived from CARS microscopy that allows probing spatial orientation of molecular bonds while maintaining the intrinsic chemical selectivity of CARS microscopy. By characterizing the effects of the fixation procedures, the present work represents a useful guide for the choice of the best fixation technique(s), in particular for polarization-resolved CARS microscopy. Finally, we show that the combination of paraformaldehyde and glutaraldehyde can be effectively employed as a fixative for RP-CARS microscopy, as long as the effects on the molecular spatial distribution, here characterized, are taken into account.
Collapse
|
18
|
Guo J, Larabell CA. Soft X-ray tomography: virtual sculptures from cell cultures. Curr Opin Struct Biol 2019; 58:324-332. [PMID: 31495562 PMCID: PMC6791522 DOI: 10.1016/j.sbi.2019.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Cellular complexity is represented best in high-spatial resolution, three-dimensional (3D) reconstructions. Soft X-ray tomography (SXT) generates detailed volumetric reconstructions of cells preserved in a near-to-native, frozen-hydrated state. SXT is broadly applicable and can image specimens ranging from bacteria to large mammalian cells. As a reference, we summarize light and electron microscopic methods. We then present an overview of SXT and discuss its role in cellular imaging. We detail the methods used to image biological specimens and present recent highlights that illustrate the capabilities of the technique. We conclude by discussing correlative imaging, specifically the combination of SXT and fluorescence microscopy performed on the same specimen. This correlated approach combines the structural morphology of a cell with its physiological characteristics to build a deeply informative composite view.
Collapse
Affiliation(s)
- Jessica Guo
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Carolyn A Larabell
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
19
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
20
|
Zuber B, Lučić V. Molecular architecture of the presynaptic terminal. Curr Opin Struct Biol 2019; 54:129-138. [PMID: 30925443 DOI: 10.1016/j.sbi.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
Abstract
Neurotransmitter release at the presynaptic terminal is one of the fundamental processes in neuronal communication. It is a complex process comprising signaling pathways that exert a precise spatio-temporal coordination to prepare and bring synaptic vesicles to exocytosis. While many molecular components involved have been identified, their direct observation at different stages of the neurotransmitter release is lacking. Three-dimensional imaging by electron tomography provided remarkable views of the synaptic vesicles and the cytomatrix. Imaging fully hydrated, vitrified samples allowed a direct visualization, precise localization and a quantitative characterization of pleomorphic synaptic vesicle-bound complexes in situ, as well as the elucidation of their function in the neurotransmitter release.
Collapse
Affiliation(s)
- Benoît Zuber
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladan Lučić
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
21
|
Tenorio R, Fernández de Castro I, Knowlton JJ, Zamora PF, Sutherland DM, Risco C, Dermody TS. Function, Architecture, and Biogenesis of Reovirus Replication Neoorganelles. Viruses 2019; 11:v11030288. [PMID: 30901959 PMCID: PMC6466366 DOI: 10.3390/v11030288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Most viruses that replicate in the cytoplasm of host cells form neoorganelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Reoviruses are common pathogens of mammals that have been linked to celiac disease and show promise for oncolytic applications. These viruses form nonenveloped, double-shelled virions that contain ten segments of double-stranded RNA. Replication organelles in reovirus-infected cells are nucleated by viral nonstructural proteins µNS and σNS. Both proteins partition the endoplasmic reticulum to form the matrix of these structures. The resultant membranous webs likely serve to anchor viral RNA⁻protein complexes for the replication of the reovirus genome and the assembly of progeny virions. Ongoing studies of reovirus replication organelles will advance our knowledge about the strategies used by viruses to commandeer host biosynthetic pathways and may expose new targets for therapeutic intervention against diverse families of pathogenic viruses.
Collapse
Affiliation(s)
- Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Jonathan J Knowlton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Paula F Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
22
|
Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1312-1319. [PMID: 30426455 DOI: 10.1007/s11427-018-9380-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 11/27/2022]
Abstract
Remarkable progress in correlative light and electron cryo-microscopy (cryo-CLEM) has been made in the past decade. A crucial component for cryo-CLEM is a dedicated cryo-fluorescence microscope (cryo-FM). Here, we describe an ultra-stable super-resolution cryo-FM that exhibits excellent thermal and mechanical stability. The temperature fluctuations in 10 h are less than 0.06 K, and the mechanical drift over 5 h is less than 200 nm in three dimensions. We have demonstrated the super-resolution imaging capability of this system (average single molecule localization accuracy of ∼13.0 nm). The results suggest that our system is particularly suitable for long-term observations, such as single molecule localization microscopy (SMLM) and cryogenic super-resolution correlative light and electron microscopy (csCLEM).
Collapse
|
23
|
Abstract
Like most viruses that replicate in the cytoplasm, mammalian reoviruses assemble membranous neo-organelles called inclusions that serve as sites of viral genome replication and particle morphogenesis. Viral inclusion formation is essential for viral infection, but how these organelles form is not well understood. We investigated the biogenesis of reovirus inclusions. Correlative light and electron microscopy showed that endoplasmic reticulum (ER) membranes are in contact with nascent inclusions, which form by collections of membranous tubules and vesicles as revealed by electron tomography. ER markers and newly synthesized viral RNA are detected in inclusion internal membranes. Live-cell imaging showed that early in infection, the ER is transformed into thin cisternae that fragment into small tubules and vesicles. We discovered that ER tubulation and vesiculation are mediated by the reovirus σNS and μNS proteins, respectively. Our results enhance an understanding of how viruses remodel cellular compartments to build functional replication organelles. Viruses modify cellular structures to build replication organelles. These organelles serve as sites of viral genome replication and particle morphogenesis and are essential for viral infection. However, how these organelles are constructed is not well understood. We found that the replication organelles of mammalian reoviruses are formed by collections of membranous tubules and vesicles derived from extensive remodeling of the peripheral endoplasmic reticulum (ER). We also observed that ER tubulation and vesiculation are triggered by the reovirus σNS and μNS proteins, respectively. Our results enhance an understanding of how viruses remodel cellular compartments to build functional replication organelles and provide functions for two enigmatic reovirus replication proteins. Most importantly, this research uncovers a new mechanism by which viruses form factories for particle assembly.
Collapse
|
24
|
Porcaro F, Roudeau S, Carmona A, Ortega R. Advances in element speciation analysis of biomedical samples using synchrotron-based techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Suhard D, Tessier C, Manens L, Rebière F, Tack K, Agarande M, Guéguen Y. Intracellular uranium distribution: Comparison of cryogenic fixation versus chemical fixation methods for SIMS analysis. Microsc Res Tech 2018; 81:855-864. [PMID: 29737608 PMCID: PMC6221105 DOI: 10.1002/jemt.23047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Localization of uranium within cells is mandatory for the comprehension of its cellular mechanism of toxicity. Secondary Ion Mass Spectrometry (SIMS) has recently shown its interest to detect and localize uranium at very low levels within the cells. This technique requires a specific sample preparation similar to the one used for Transmission Electronic Microscopy, achieved by implementing different chemical treatments to preserve as much as possible the living configuration uranium distribution into the observed sample. This study aims to compare the bioaccumulation sites of uranium within liver or kidney cells after chemical fixation and cryomethods preparations of the samples: SIMS analysis of theses samples show the localization of uranium soluble forms in the cell cytoplasm and nucleus with a more homogenous distribution when using cryopreparation probably due to the diffusible portion of uranium inside the cytoplasm.
Collapse
Affiliation(s)
- D Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - C Tessier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - L Manens
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - F Rebière
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - K Tack
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - M Agarande
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SAME, Le Vésinet, France
| | - Y Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| |
Collapse
|
26
|
Abstract
Viruses are molecular machines sustained through a life cycle that requires replication within host cells. Throughout the infectious cycle, viral and cellular components interact to advance the multistep process required to produce progeny virions. Despite progress made in understanding the virus-host protein interactome, much remains to be discovered about the cellular factors that function during infection, especially those operating at terminal steps in replication. In an RNA interference screen, we identified the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC; also called CCT for chaperonin containing TCP-1) as a cellular factor required for late events in the replication of mammalian reovirus. We discovered that TRiC functions in reovirus replication through a mechanism that involves folding the viral σ3 major outer-capsid protein into a form capable of assembling onto virus particles. TRiC also complexes with homologous capsid proteins of closely related viruses. Our data define a critical function for TRiC in the viral assembly process and raise the possibility that this mechanism is conserved in related non-enveloped viruses. These results also provide insight into TRiC protein substrates and establish a rationale for the development of small-molecule inhibitors of TRiC as potential antiviral therapeutics.
Collapse
|
27
|
Reifarth M, Hoeppener S, Schubert US. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy-Polymer-Based Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29325211 DOI: 10.1002/adma.201703704] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate mechanisms of nanoparticle (NP)-cell interactions, a detailed knowledge about membrane-particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor-made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode-of-action of tailor-made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low-contrast materials in electron microscopy, i.e., polymeric and polymer-modified nanoparticles, are highlighted.
Collapse
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
28
|
Tao CL, Liu YT, Sun R, Zhang B, Qi L, Shivakoti S, Tian CL, Zhang P, Lau PM, Zhou ZH, Bi GQ. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy. J Neurosci 2018; 38:1493-1510. [PMID: 29311144 PMCID: PMC5815350 DOI: 10.1523/jneurosci.1548-17.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 11/21/2022] Open
Abstract
As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25-60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions.SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows that inhibitory synapses contain uniform thin sheet-like postsynaptic densities (PSDs), while excitatory synapses contain previously known mesh-like PSDs. We discovered "discus-shaped" ellipsoidal synaptic vesicles, and their distributions along with regular spherical vesicles in synaptic types are characterized. High-resolution tomograms further allowed identification of putative neurotransmitter receptors and their heterogeneous interaction with synaptic scaffolding proteins. The specificity and resolution of our approach enables precise in situ analysis of ultrastructural organization underlying distinct synaptic functions.
Collapse
Affiliation(s)
- Chang-Lu Tao
- National Laboratory for Physical Sciences at the Microscale
- School of Life Sciences
| | - Yun-Tao Liu
- National Laboratory for Physical Sciences at the Microscale
- School of Life Sciences
| | - Rong Sun
- National Laboratory for Physical Sciences at the Microscale
| | - Bin Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Lei Qi
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Sakar Shivakoti
- National Laboratory for Physical Sciences at the Microscale
- School of Life Sciences
| | - Chong-Li Tian
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX37BN, United Kingdom
| | - Pak-Ming Lau
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Z Hong Zhou
- National Laboratory for Physical Sciences at the Microscale,
- School of Life Sciences
- The California NanoSystems Institute, and
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095
| | - Guo-Qiang Bi
- National Laboratory for Physical Sciences at the Microscale,
- School of Life Sciences
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
He X, Guo F, Liu B. Oolong tea and LR-White resin: a new method of plant sample preparation for transmission electron microscopy. J Microsc 2018; 270:244-251. [PMID: 29334400 DOI: 10.1111/jmi.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/22/2017] [Accepted: 12/17/2017] [Indexed: 11/27/2022]
Abstract
Simplifying sample processing, shortening the sample preparation time, and adjusting procedures to suitable for new health and safety regulations, these issues are the current challenges which electron microscopic examinations need to face. In order to resolve these problems, new plant tissue sample processing protocols for transmission electron microscopy should be developed. In the present study, we chose the LR-White resin-assisted processing protocol for the ultrastructural observation of different types of plant tissues. Moreover, we explored Oolong tea extract (OTE) as a substitute for UA in staining ultrathin sections of plant samples. The results revealed that there was no significant difference between the OTE double staining method and the traditional double staining method. Furthermore, in some organelles, such as mitochondria in root cells of tomatoes and chloroplast in leaf cells of watermelons, the OTE double staining method achieved little better results than the traditional double staining method. Therefore, OTE demonstrated good potentials in replacing UA as a counterstain on ultrathin sections. In addition, sample preparation time was significantly shortened and simplified using LR-White resin. This novel protocol reduced the time for preparing plant samples, and hazardous reagents in traditional method (acetone and UA) were also replaced by less toxic ones (ethanol and OTE).
Collapse
Affiliation(s)
- Xiaohua He
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuzhen Guo
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. PROTOPLASMA 2017; 254:1323-1340. [PMID: 27677801 DOI: 10.1007/s00709-016-1024-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/08/2016] [Indexed: 05/22/2023]
Abstract
Vacuole is a multifunctional compartment central to a large number of functions (storage, catabolism, maintenance of the cell homeostasis) in oxygenic phototrophs including microalgae. Still, microalgal cell vacuole is much less studied than that of higher plants although knowledge of the vacuolar structure and function is essential for understanding physiology of nutrition and stress tolerance of microalgae. Here, we combined the advanced analytical and conventional transmission electron microscopy methods to obtain semi-quantitative, spatially resolved at the subcellular level information on elemental composition of the cell vacuoles in several free-living and symbiotic chlorophytes. We obtained a detailed record of the changes in cell and vacuolar ultrastructure in response to environmental stimuli under diverse conditions. We suggested that the vacuolar inclusions could be divided into responsible for storage of phosphorus (mainly in form of polyphosphate) and those accommodating non-protein nitrogen (presumably polyamine) reserves, respectively.The ultrastructural findings, together with the data on elemental composition of different cell compartments, allowed us to speculate on the role of the vacuolar membrane in the biosynthesis and sequestration of polyphosphate. We also describe the ultrastructural evidence of possible involvement of the tonoplast in the membrane lipid turnover and exchange of energy and metabolites between chloroplasts and mitochondria. These processes might play a significant role in acclimation in different stresses including nitrogen starvation and extremely high level of CO2 and might also be of importance for microalgal biotechnology. Advantages and limitations of application of analytical electron microscopy to biosamples such as microalgal cells are discussed.
Collapse
Affiliation(s)
| | | | - Alexei Solovchenko
- Lomonosov Moscow State University, Moscow, Russia.
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology, Moscow State University, Leninskie Gori 1/12, 119234, GSP-1 Moscow, Russia.
| | - Olga Baulina
- Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexandra Ivanova
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Vladimir Polshakov
- Faculty of fundamental medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences / Plant Sciences (IBG-2), Forschungszentrum Jülich, Jülich, Germany
| | | |
Collapse
|
31
|
The sleeping beauty kissed awake: new methods in electron microscopy to study cellular membranes. Biochem J 2017; 474:1041-1053. [DOI: 10.1042/bcj20160990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023]
Abstract
Electron microscopy (EM) for biological samples, developed in the 1940–1950s, changed our conception about the architecture of eukaryotic cells. It was followed by a period where EM applied to cell biology had seemingly fallen asleep, even though new methods with important implications for modern EM were developed. Among these was the discovery that samples can be preserved by chemical fixation and most importantly by rapid freezing without the formation of crystalline ice, giving birth to the world of cryo-EM. The past 15–20 years are hallmarked by a tremendous interest in EM, driven by important technological advances. Cryo-EM, in particular, is now capable of revealing structures of proteins at a near-atomic resolution owing to improved sample preparation methods, microscopes and cameras. In this review, we focus on the challenges associated with the imaging of membranes by EM and give examples from the field of host–pathogen interactions, in particular of virus-infected cells. Despite the advantages of imaging membranes under native conditions in cryo-EM, conventional EM will remain an important complementary method, in particular if large volumes need to be imaged.
Collapse
|
32
|
Yusuf M, Zhang F, Chen B, Bhartiya A, Cunnea K, Wagner U, Cacho-Nerin F, Schwenke J, Robinson IK. Procedures for cryogenic X-ray ptychographic imaging of biological samples. IUCRJ 2017; 4:147-151. [PMID: 28250953 PMCID: PMC5330525 DOI: 10.1107/s2052252516020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/16/2016] [Indexed: 05/15/2023]
Abstract
Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.
Collapse
Affiliation(s)
- M. Yusuf
- London Centre for Nanotechnology, University College London, London, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, England
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, England
| | - F. Zhang
- London Centre for Nanotechnology, University College London, London, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, England
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - B. Chen
- London Centre for Nanotechnology, University College London, London, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, England
| | - A. Bhartiya
- London Centre for Nanotechnology, University College London, London, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, England
| | - K. Cunnea
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, England
| | - U. Wagner
- Diamond Light Source, Didcot, Oxfordshire, England
| | | | - J. Schwenke
- London Centre for Nanotechnology, University College London, London, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, England
| | - I. K. Robinson
- London Centre for Nanotechnology, University College London, London, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, England
- Condensed Matter Physics and Materials Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
33
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
34
|
Claeys M, Yushin VV, Leunissen JL, Claeys J, Bert W. Self-Pressurised Rapid Freezing (SPRF): an easy-to-use and low-cost alternative cryo-fixation method for nematodes. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Self-Pressurised Rapid Freezing (SPRF), an easy-to-use and low-cost alternative cryo-fixation method, was evaluated based on a comparative analysis of the ultrastructure of spermatozoa of the nematodes Acrobeles complexus and Caenorhabditis elegans. Sealed copper tubes, packed with active nematodes in water, were plunged into nitrogen slush, a semi-solid form of nitrogen. The water inside the capillary copper tube expands upon cooling due to the formation of hexagonal ice, thereby generating high pressure intrinsically for cryo-fixation of the sample. For sperm cells cryo-fixed by SPRF, the preservation of the ultrastructure was comparable to that achieved with high pressure freezing. This was evidenced by the clear details in mitochondria, membranous organelles and cytoskeleton in the pseudopod. It was demonstrated that SPRF fixation did not destroy antigenicity, based on the results of the immunolocalisation of the major sperm protein in both species. In conclusion, SPRF is a low-cost alternative cryo-fixation method for nematodes.
Collapse
Affiliation(s)
- Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Belgium
| | - Vladimir V. Yushin
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
- Far Eastern Federal University, Vladivostok 690950, Russia
| | | | - Jef Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Belgium
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Belgium
| |
Collapse
|
35
|
Casanova G, Nolin F, Wortham L, Ploton D, Banchet V, Michel J. Shrinkage of freeze-dried cryosections of cells: Investigations by EFTEM and cryo-CLEM. Micron 2016; 88:77-83. [PMID: 27428286 DOI: 10.1016/j.micron.2016.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 11/18/2022]
Abstract
Freeze-drying of cryosections of cells or tissues is considered to be the most efficient preparation for microanalysis purpose related to transmission electron microscopy. It allows the measurements of ions and water contents at the ultrastructural level. However an important drawback is associated to freeze-drying: the shrinkage of the cryosections. The aim of this paper is the investigation of this phenomenon by means of three different methods applied to both hydrated and dehydrated cryosections: direct distance measurements on fiducial points, thickness measurements by energy filtered transmission microscopy (EFTEM) and cryo-correlative light electron microscopy (cryo-CLEM). Measurements in our experimental conditions reveal a lateral shrinkage around 10% but the most important result concerns the lack of differential shrinkage between most of the cellular compartments.
Collapse
Affiliation(s)
- G Casanova
- Laboratoire de Recherche en Nanosciences, EA4682, Université de Reims Champagne Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France
| | - F Nolin
- Laboratoire de Recherche en Nanosciences, EA4682, Université de Reims Champagne Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France
| | - L Wortham
- Laboratoire de Recherche en Nanosciences, EA4682, Université de Reims Champagne Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France
| | - D Ploton
- CNRS UMR 7369, Université de Reims Champagne Ardenne, Reims, France
| | - V Banchet
- Laboratoire de Recherche en Nanosciences, EA4682, Université de Reims Champagne Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France
| | - J Michel
- Laboratoire de Recherche en Nanosciences, EA4682, Université de Reims Champagne Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France.
| |
Collapse
|
36
|
Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:77-84. [PMID: 27210305 PMCID: PMC4959512 DOI: 10.1016/j.pbiomolbio.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The field of cardiovascular research has benefitted from rapid developments in imaging technology over the last few decades. Accordingly, an ever growing number of large, multidimensional data sets have begun to appear, often challenging existing pre-conceptions about structure and function of biological systems. For tissue and cell structure imaging, the move from 2D section-based microscopy to true 3D data collection has been a major driver of new insight. In the sub-cellular domain, electron tomography is a powerful technique for exploration of cellular structures in 3D with unparalleled fidelity at nanometer resolution. Electron tomography is particularly advantageous for studying highly compartmentalised cells such as cardiomyocytes, where elaborate sub-cellular structures play crucial roles in electrophysiology and mechanics. Although the anatomy of specific ultra-structures, such as dyadic couplons, has been extensively explored using 2D electron microscopy of thin sections, we still lack accurate, quantitative knowledge of true individual shape, volume and surface area of sub-cellular domains, as well as their 3D spatial interrelations; let alone of how these are reshaped during the cycle of contraction and relaxation. Here we discuss and illustrate the utility of ET for identification, visualisation, and analysis of 3D cardiomyocyte ultrastructures such as the T-tubular system, sarcoplasmic reticulum, mitochondria and microtubules.
Collapse
|
37
|
Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses. MINERALS 2016. [DOI: 10.3390/min6010010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Bert W, Slos D, Leroux O, Claeys M. Cryo-fixation and associated developments in transmission electron microscopy: a cool future for nematology. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00002943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
At present, the importance of sample preparation equipment for electron microscopy represents the driving force behind major breakthroughs in microscopy and cell biology. In this paper we present an introduction to the most commonly used cryo-fixation techniques, with special attention paid towards high-pressure freezing followed by freeze substitution. Techniques associated with cryo-fixation, such as immunolocalisation, cryo-sectioning, and correlative light and electron microscopy, are also highlighted. For studies that do not require high resolution, high quality results, or the immediate arrest of certain processes, conventional methods will provide answers to many questions. For some applications, such as immunocytochemistry, three-dimensional reconstruction of serial sections or electron tomography, improved preservation of the ultrastructure is required. This review of nematode cryo-fixation highlights that cryo-fixation not only results in a superior preservation of fine structural details, but also underlines the fact that some observations based on results solely obtained through conventional fixation approaches were either incorrect, or otherwise had severe limitations. Although the use of cryo-fixation has hitherto been largely restricted to model organisms, the advantages of cryo-fixation are sufficiently self-evident that we must conclude that the cryo-fixation method is highly likely to become the standard for nematode fixation in the near future.
Collapse
Affiliation(s)
- Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dieter Slos
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Olivier Leroux
- Pteridology Research Group, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
39
|
Liu B, Xue Y, Zhao W, Chen Y, Fan C, Gu L, Zhang Y, Zhang X, Sun L, Huang X, Ding W, Sun F, Ji W, Xu T. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci Rep 2015; 5:13017. [PMID: 26462878 PMCID: PMC4604464 DOI: 10.1038/srep13017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
We demonstrate the use of cryogenic super-resolution correlative light and electron microscopy (csCLEM) to precisely determine the spatial relationship between proteins and their native cellular structures. Several fluorescent proteins (FPs) were found to be photoswitchable and emitted far more photons under our cryogenic imaging condition, resulting in higher localization precision which is comparable to ambient super-resolution imaging. Vitrified specimens were prepared by high pressure freezing and cryo-sectioning to maintain a near-native state with better fluorescence preservation. A 2-3-fold improvement of resolution over the recent reports was achieved due to the photon budget performance of screening out Dronpa and optimized imaging conditions, even with thin sections which is at a disadvantage when calculate the structure resolution from label density. We extended csCLEM to mammalian cells by introducing cryo-sectioning and observed good correlation of a mitochondrial protein with the mitochondrial outer membrane at nanometer resolution in three dimensions.
Collapse
Affiliation(s)
- Bei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Fan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lusheng Gu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yongdeng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaojun Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
40
|
Nikolova LS, Metzstein MM. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment. Development 2015; 142:3964-73. [PMID: 26428009 DOI: 10.1242/dev.127902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Cellular tubes have diverse morphologies, including multicellular, unicellular and subcellular architectures. Subcellular tubes are found prominently within the vertebrate vasculature, the insect breathing system and the nematode excretory apparatus, but how such tubes form is poorly understood. To characterize the cellular mechanisms of subcellular tube formation, we have refined methods of high pressure freezing/freeze substitution to prepare Drosophila larvae for transmission electron microscopic (TEM) analysis. Using our methods, we have found that subcellular tube formation may proceed through a previously undescribed multimembrane intermediate composed of vesicles bound within a novel subcellular compartment. We have also developed correlative light/TEM procedures to identify labeled cells in TEM-fixed larval samples. Using this technique, we have found that Vacuolar ATPase (V-ATPase) and the V-ATPase regulator Rabconnectin-3 are required for subcellular tube formation, probably in a step resolving the intermediate compartment into a mature lumen. In general, our ultrastructural analysis methods could be useful for a wide range of cellular investigations in Drosophila larvae.
Collapse
Affiliation(s)
- Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
41
|
Aslanidi KB. Spectral measurements of the functional heterogeneity of cells and their organelles. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Goode AE, Porter AE, Ryan MP, McComb DW. Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. NANOSCALE 2015; 7:1534-1548. [PMID: 25532909 DOI: 10.1039/c4nr05922k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two powerful and complementary techniques for chemical characterisation of nanoscale systems are electron energy-loss spectroscopy in the scanning transmission electron microscope, and X-ray absorption spectroscopy in the scanning transmission X-ray microscope. A correlative approach to spectro-microscopy may not only bridge the gaps in spatial and spectral resolution which exist between the two instruments, but also offer unique opportunities for nanoscale characterisation. This review will discuss the similarities of the two spectroscopy techniques and the state of the art for each microscope. Case studies have been selected to illustrate the benefits and limitations of correlative electron and X-ray microscopy techniques. In situ techniques and radiation damage are also discussed.
Collapse
Affiliation(s)
- Angela E Goode
- Department of Materials, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
43
|
Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One 2015; 10:e0116896. [PMID: 25581302 PMCID: PMC4291224 DOI: 10.1371/journal.pone.0116896] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
Outer-inner membrane vesicles (O-IMVs) were recently described as a new type of membrane vesicle secreted by the Antarctic bacterium Shewanella vesiculosa M7T. Their formation is characterized by the protrusion of both outer and plasma membranes, which pulls cytoplasmic components into the vesicles. To demonstrate that this is not a singular phenomenon in a bacterium occurring in an extreme environment, the identification of O-IMVs in pathogenic bacteria was undertaken. With this aim, a structural study by Transmission Electron Microscopy (TEM) and Cryo-transmission electron microscopy (Cryo-TEM) was carried out, confirming that O-IMVs are also secreted by Gram-negative pathogenic bacteria such as Neisseria gonorrhoeae, Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii AB41, in which they represent between 0.23% and 1.2% of total vesicles produced. DNA and ATP, which are components solely found in the cell cytoplasm, were identified within membrane vesicles of these strains. The presence of DNA inside the O-IMVs produced by N. gonorrhoeae was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. A proteomic analysis of N. gonorrhoeae-derived membrane vesicles identified proteins from the cytoplasm and plasma membrane. This confirmation of O-IMV extends the hitherto uniform definition of membrane vesicles in Gram-negative bacteria and explains the presence of components in membrane vesicles such as DNA, cytoplasmic and inner membrane proteins, as well as ATP, detected for the first time. The production of these O-IMVs by pathogenic Gram-negative bacteria opens up new areas of study related to their involvement in lateral gene transfer, the transfer of cytoplasmic proteins, as well as the functionality and role of ATP detected in these new vesicles.
Collapse
Affiliation(s)
- Carla Pérez-Cruz
- Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Lidia Delgado
- Crio-Microscòpia Electrònica, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Carmen López-Iglesias
- Crio-Microscòpia Electrònica, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Elena Mercade
- Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
44
|
Huber MC, Schreiber A, von Olshausen P, Varga BR, Kretz O, Joch B, Barnert S, Schubert R, Eimer S, Kele P, Schiller SM. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. NATURE MATERIALS 2015; 14:125-32. [PMID: 25362355 DOI: 10.1038/nmat4118] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/22/2014] [Indexed: 05/24/2023]
Abstract
Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.
Collapse
Affiliation(s)
- Matthias C Huber
- 1] Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31 D-79104 Freiburg, Germany [2] Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25 D-79104 Freiburg, Germany [3] Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19 D-79104 Freiburg, Germany [4] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany
| | - Andreas Schreiber
- 1] Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31 D-79104 Freiburg, Germany [2] Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25 D-79104 Freiburg, Germany [3] Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19 D-79104 Freiburg, Germany [4] Faculty of Biology, University of Freiburg, Schänzlestrasse 1 D-79085 Freiburg, Germany
| | - Philipp von Olshausen
- 1] Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 102 D-79110 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany
| | - Balázs R Varga
- Chemical Biology Research Group, Hungarian Academy of Sciences, CNS, IOC, Magyar tudósok krt. 2 H-1117 Budapest, Hungary
| | - Oliver Kretz
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany
| | - Barbara Joch
- Institute for Neuroanatomy University of Freiburg, Albertstr. 17 D-79104 Freiburg, Germany
| | - Sabine Barnert
- 1] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany [2] Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Hermann-Herder-Str. 9 D-79104 Freiburg, Germany
| | - Rolf Schubert
- 1] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany [3] Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Hermann-Herder-Str. 9 D-79104 Freiburg, Germany
| | - Stefan Eimer
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany
| | - Péter Kele
- Chemical Biology Research Group, Hungarian Academy of Sciences, CNS, IOC, Magyar tudósok krt. 2 H-1117 Budapest, Hungary
| | - Stefan M Schiller
- 1] Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31 D-79104 Freiburg, Germany [2] Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25 D-79104 Freiburg, Germany [3] Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19 D-79104 Freiburg, Germany [4] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany [5] Faculty of Biology, University of Freiburg, Schänzlestrasse 1 D-79085 Freiburg, Germany [6] BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany [7] IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103 D-79110 Freiburg, Germany [8] Center for Biosystems Analysis (ZBSA), University of Freiburg, Habsburger Str. 49 D-79104 Freiburg, Germany
| |
Collapse
|
45
|
Helvig S, D. M. Azmi I, M. Moghimi S, Yaghmur A. Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
46
|
Mejia YX, Feindt H, Zhang D, Steltenkamp S, Burg TP. Microfluidic cryofixation for correlative microscopy. LAB ON A CHIP 2014; 14:3281-3284. [PMID: 25007311 DOI: 10.1039/c4lc00333k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cryofixation yields outstanding ultrastructural preservation of cells for electron microscopy, but current methods disrupt live cell imaging. Here we demonstrate a microfluidic approach that enables cryofixation to be performed directly in the light microscope with millisecond time resolution and at atmospheric pressure. This will provide a link between imaging/stimulation of live cells and post-fixation optical, electron, or X-ray microscopy.
Collapse
Affiliation(s)
- Yara X Mejia
- Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| | | | | | | | | |
Collapse
|
47
|
Risco C, de Castro IF, Sanz-Sánchez L, Narayan K, Grandinetti G, Subramaniam S. Three-Dimensional Imaging of Viral Infections. Annu Rev Virol 2014; 1:453-73. [PMID: 26958730 DOI: 10.1146/annurev-virology-031413-085351] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) imaging technologies are beginning to have significant impact in the field of virology, as they are helping us understand how viruses take control of cells. In this article we review several methodologies for 3D imaging of cells and show how these technologies are contributing to the study of viral infections and the characterization of specialized structures formed in virus-infected cells. We include 3D reconstruction by transmission electron microscopy (TEM) using serial sections, electron tomography, and focused ion beam scanning electron microscopy (FIB-SEM). We summarize from these methods selected contributions to our understanding of viral entry, replication, morphogenesis, egress and propagation, and changes in the spatial architecture of virus-infected cells. In combination with live-cell imaging, correlative microscopy, and new techniques for molecular mapping in situ, the availability of these methods for 3D imaging is expected to provide deeper insights into understanding the structural and dynamic aspects of viral infection.
Collapse
Affiliation(s)
- Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | | | - Laura Sanz-Sánchez
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | - Kedar Narayan
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Giovanna Grandinetti
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| |
Collapse
|
48
|
Kaufmann R, Schellenberger P, Seiradake E, Dobbie IM, Jones EY, Davis I, Hagen C, Grünewald K. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. NANO LETTERS 2014; 14:4171-5. [PMID: 24884378 PMCID: PMC4092024 DOI: 10.1021/nl501870p] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 05/08/2023]
Abstract
We introduce a super-resolution technique for fluorescence cryo-microscopy based on photoswitching of standard genetically encoded fluorescent marker proteins in intact mammalian cells at low temperature (81 K). Given the limit imposed by the lack of cryo-immersion objectives, current applications of fluorescence cryo-microscopy to biological specimens achieve resolutions between 400-500 nm only. We demonstrate that the single molecule characteristics of reversible photobleaching of mEGFP and mVenus at liquid nitrogen temperature are suitable for the basic concept of single molecule localization microscopy. This enabled us to perform super-resolution imaging of vitrified biological samples and to visualize structures in unperturbed fast frozen cells for the first time with a structural resolution of ∼125 nm (average single molecule localization accuracy ∼40 nm), corresponding to a 3-5 fold resolution improvement.
Collapse
Affiliation(s)
- Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Pascale Schellenberger
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Elena Seiradake
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian M. Dobbie
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ilan Davis
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christoph Hagen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of
Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Kaufmann R, Hagen C, Grünewald K. Fluorescence cryo-microscopy: current challenges and prospects. Curr Opin Chem Biol 2014; 20:86-91. [PMID: 24951858 PMCID: PMC4094034 DOI: 10.1016/j.cbpa.2014.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 11/25/2022]
Abstract
CryoFM allows imaging of vitrified biological samples with fluorescence microscopy. There are significant challenges to achieve high-resolution cryoFM imaging. Fluorophore characteristics at low temperature offer additional advantages. Cryo super-resolution fluorescence imaging will give dramatic resolution improvement.
Studying biological structures with fine details does not only require a microscope with high resolution, but also a sample preparation process that preserves the structures in a near-native state. Live-cell imaging is restricted mostly to the field of light microscopy. For studies requiring much higher resolution, fast freezing techniques (vitrification) are successfully used to immobilize the sample in a near-native state for imaging with electron and X-ray cryo-microscopy. Fluorescence cryo-microscopy combines imaging of vitrified samples with the advantages of fluorescence labeling of biological structures. Technical considerations as well as the behavior of fluorophores at low temperatures have to be taken into account for developing or adapting super-resolution methods under cryo conditions to exploit the full potential of this technique.
Collapse
Affiliation(s)
- Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Christoph Hagen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
50
|
McDonald KL. Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. PROTOPLASMA 2014; 251:429-448. [PMID: 24258967 DOI: 10.1007/s00709-013-0575-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
This article presents the best current practices for preparation of biological samples for examination as thin sections in an electron microscope. The historical development of fixation, dehydration, and embedding procedures for biological materials are reviewed for both conventional and low temperature methods. Conventional procedures for processing cells and tissues are usually done over days and often produce distortions, extractions, and other artifacts that are not acceptable for today's structural biology standards. High-pressure freezing and freeze substitution can minimize some of these artifacts. New methods that reduce the times for freeze substitution and resin embedding to a few hours are discussed as well as a new rapid room temperature method for preparing cells for on-section immunolabeling without the use of aldehyde fixatives.
Collapse
Affiliation(s)
- Kent L McDonald
- Electron Microscope Laboratory, University of California, 26 Giannini Hall, Berkeley, CA, 94720, USA,
| |
Collapse
|