1
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
2
|
Wu D, Zhang K, Li CY, Xie GW, Lu MT, Qian Y, Shu YP, Shen Q. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Gene 2023; 889:147808. [PMID: 37722611 DOI: 10.1016/j.gene.2023.147808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.
Collapse
Affiliation(s)
- Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ke Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Chun-Yu Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Guan-Wen Xie
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ming-Ting Lu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yong Qian
- Shanghai Standard Technology Co., Ltd, Building 25, 15 Gudan Road, Pudong, Shanghai 201314, China.
| | - Ya-Ping Shu
- Shanghai Standard Technology Co., Ltd, Building 25, 15 Gudan Road, Pudong, Shanghai 201314, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
3
|
Zhu K, Li N, Zheng X, Sarwar R, Li Y, Cao J, Wang Z, Tan X. Overexpression the BnLACS9 could increase the chlorophyll and oil content in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:3. [PMID: 36609294 PMCID: PMC9825004 DOI: 10.1186/s13068-022-02254-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chlorophyll is a very important pigment involved in photosynthesis, while plant acyl-CoA biosynthesis is derived from plastid-localized fatty acids (FAs). Until now, the regulation of the acyl-CoA pathway for chlorophyll biosynthesis is still unknown. RESULTS Here, we identified a long-chain acyl-CoA synthetase (LACS) gene BnLACS9 from Brassica napus. BnLACS9 complemented a LACS-deficient yeast strain YB525, which indicated that BnLACS9 has the LACS function. BnLACS9 was localized in the chloroplast envelope membrane, while mainly expressed in young leaves and flowers. Overexpression of BnLACS9 in Nicotiana benthamiana resulted in an increase in total CoA and MGDG content. In B. napus with overexpression of BnLACS9, the number of chloroplast grana lamellae and the chlorophyll content, as well as the MGDG and DGDG contents, increased compared to wild type. The net photosynthetic rate, dry weight of the entire plant and oil content of seeds increased significantly, accompanied by an increase in chlorophyll content. Transcriptome analysis revealed that overexpression of BnLACS9 improved the pathway of acyl-CoA biosynthesis and further improved the enzymes in the glycolipid synthesis pathway, while acyl-CoA was the substrate for glycolipid synthesis. The increased glycolipids, especially MGDG and DGDG, accelerated the formation of the chloroplast grana lamellae, which increased the number of chloroplast thylakoid grana lamella and further lead to increased chlorophyll content. CONCLUSIONS In the present study, we demonstrated that BnLACS9 played a crucial role in glycolipids and chlorophyll biosynthesis in B. napus. The results also provide a new direction and theoretical basis for the improvement of the agronomic traits of plants.
Collapse
Affiliation(s)
- Keming Zhu
- grid.440785.a0000 0001 0743 511XSchool of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Nannan Li
- grid.263906.80000 0001 0362 4044Chongqing Key Lab of Bioresource for Energy, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xiangfeng Zheng
- grid.440785.a0000 0001 0743 511XSchool of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rehman Sarwar
- grid.440785.a0000 0001 0743 511XSchool of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yulong Li
- grid.440785.a0000 0001 0743 511XSchool of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- grid.440785.a0000 0001 0743 511XSchool of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- grid.440785.a0000 0001 0743 511XSchool of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoli Tan
- grid.440785.a0000 0001 0743 511XSchool of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Zou J, Dong S, Fang B, Zhao Y, Song G, Xin Y, Huang S, Feng H. BrACOS5 mutations induced male sterility via impeding pollen exine formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:6. [PMID: 36656366 DOI: 10.1007/s00122-023-04291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BrACOS5 mutations led to male sterility of Chinese cabbage verified in three allelic male-sterile mutants. Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major vegetable crops in East Asia, and the utilization of male-sterile line is an important measure for its hybrid seed production. Herein, we isolated three allelic male-sterile mutants, msm1-1, msm1-2 and msm1-3, from an ethyl methane sulfonate (EMS) mutagenized population of Chinese cabbage double-haploid (DH) line 'FT', whose microspores were completely aborted with severely absent exine, and tapetums were abnormally developed. Genetic analyses indicated that the three male-sterile mutants belonged to allelic mutation and were triggered by the same recessive nuclear gene. MutMap-based gene mapping and kompetitive allele-specific PCR (KASP) analysis demonstrated that three different single-nucleotide polymorphisms (SNPs) of BraA09g012710.3C were responsible for the male sterility of msm1-1/2/3, respectively. BraA09g012710.3C is orthologous of Arabidopsis thaliana ACOS5 (AT1G62940), encoding an acyl-CoA synthetase in sporopollenin biosynthesis, and specifically expressed in anther, so we named BraA09g012710.3C as BrACOS5. BrACOS5 localizes to the endoplasmic reticulum (ER). Mutations of BrACOS5 resulted in decreased enzyme activities and altered fatty acid contents in msm1 anthers. As well as the transcript accumulations of putative orthologs involved in sporopollenin biosynthesis were significantly down-regulated excluding BrPKSA. These results provide strong evidence for the integral role of BrACOS5 in conserved sporopollenin biosynthesis pathway and also contribute to uncovering exine development pattern and underlying male sterility mechanism in Chinese cabbage.
Collapse
Affiliation(s)
- Jiaqi Zou
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shiyao Dong
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Bing Fang
- Department of Foreign Language Teaching, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ying Zhao
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Gengxing Song
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yue Xin
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
Zhang M, Gao Y, Yu C, Wang J, Weng K, Li Q, He Y, Guo Z, Zhang H, Huang J, Li L. Transcriptome analysis of malate-induced Schizochytrium sp. FJU-512 reveals a novel pathway for biosynthesis of docosahexaenoic acid with enhanced expression of genes responsible for acetyl-CoA and NADPH accumulation. Front Microbiol 2022; 13:1006138. [PMID: 36299719 PMCID: PMC9589357 DOI: 10.3389/fmicb.2022.1006138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Schizochytrium is one of the few oleaginous microalgae that produce docosahexaenoic acid (DHA)-rich lipids. In this study, global changes in gene expression levels of Schizochytrium sp. FJU-512 cultured with malate in a 15 l-bioreactor was analyzed using comparative transcriptomics. The changes were found mainly in the genes involved in oxidative phosphorylation, β-oxidation, and pentose phosphate pathways. Consequently, the global changes in genes associated with the pathways could lead to an increase in the influx throughputs of pyruvate, branched-chain amino acids, fatty acids, and vitamin B6. Our transcriptome analysis indicated pyruvate dehydrogenase E2 component and acetolactate synthase I/II/III large subunit as major contributors to acetyl-CoA biosynthesis, whereas glucose-6-phosphate dehydrogenase was indicated as the major contributor to the biosynthesis of NADPH. An increase in DHA titer of up to 22% was achieved with the addition of malate to the fed-batch culture of Schizochytrium sp. FJU-512. This study provides an alternate method to enhance DHA production in Schizochytrium sp. FJU-512 through malate induced upregulation of genes responsible for acetyl-CoA and NADPH biosynthesis.
Collapse
Affiliation(s)
- Mingliang Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - YangLe Gao
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Cui Yu
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jun Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Kexin Weng
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Yongjin He
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Huaidong Zhang,
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Li Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Li Li,
| |
Collapse
|
6
|
Xu Y. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga Nannochloropsis oceanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11500-11509. [PMID: 36083864 DOI: 10.1021/acs.jafc.2c05309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oils are among the most important agricultural commodities and have wide applications in food/nutrition, biofuels, and oleochemicals. The oleaginous microalga Nannochloropsis oceanica can produce large amounts of oils and the high-value ω-3 eicosapentaenoic acid, which represents a promising resource for oil production targeting biodiesel, nutraceutical, and aquaculture industries. In recent years, with the availability of omics databases and the development of genetic tools, N. oceanica has been extensively investigated as a model photosynthetic organism for studying lipid metabolism and as a green cellular factory to produce lipids for industrial applications. This review summarizes the current knowledge on the lipid composition and biosynthetic pathways of N. oceanica and reviews the recent advances in metabolic engineering of lipid production in this microalga.
Collapse
Affiliation(s)
- Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Zhang H, Zhang S, Li M, Wang J, Wu T. The PoLACS4 Gene May Participate in Drought Stress Resistance in Tree Peony (Paeonia ostii ‘Feng Dan Bai’). Genes (Basel) 2022; 13:genes13091591. [PMID: 36140759 PMCID: PMC9498442 DOI: 10.3390/genes13091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
The tree peony (Paeonia ostii ‘Feng Dan Bai’) has excellent drought tolerance. Although it has already been reported that the cuticle is an essential barrier against drought stress, the critical genes for cuticle resistance to drought remain unclear. However, the long-chain acyl-CoA synthetases (LACS) family of genes may be significant for the synthesis of cuticle wax. To test whether the LACS gene family is involved in cuticle response to drought stress in tree peony, we measure the thickness of cuticle stems and leaves alongside LACS enzyme activity. It is found that the cuticle thickens and the LACS enzyme increases with the maturation of stems and leaves, and there is a positive correlation between them. The LACS enzyme increases within 12 h under drought stress induced by polyethylene glycol (PEG). The transcriptome sequencing result (BioProject accession number PRJNA317164) is searched for, and a LACS gene with high expression is cloned. This gene has high homology and similarity with LACS4 from Arabidopsis thaliana. The gene is named PoLACS4. It is show to be highly expressed in mature leaves and peaks within 1 h under drought and salt stresses. All these results suggest that the LACS family of genes may be involved in cuticle response to drought stress and that PoLACS4 is a crucial gene which responds rapidly to drought in the tree peony.
Collapse
Affiliation(s)
- Hongye Zhang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Shan Zhang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Meng Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Juan Wang
- Institute of Ecological Development, Southwest Forestry University, Kunming 650224, China
| | - Tian Wu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
- Correspondence:
| |
Collapse
|
8
|
Yuan Y, Liu C, Zhao G, Gong X, Dang K, Yang Q, Feng B. Transcriptome analysis reveals the mechanism associated with dynamic changes in fatty acid and phytosterol content in foxtail millet (Setaria italica) during seed development. Food Res Int 2021; 145:110429. [PMID: 34112429 DOI: 10.1016/j.foodres.2021.110429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Foxtail millet (Setaria italica) is an excellent source of beneficial natural fatty acids and phytosterols. However, the mechanisms underlying the dynamic changes of fatty acids and phytosterols during seed development are unknown. In this study, a comprehensive dynamic change analysis of the bioactive compounds during seed development was conducted in two cultivars with different crude fat content (high-fat, JG 35 [5.40%]; and low-fat, JG 39 [2.90%]). GC-FID/MS analysis showed that the proportion of unsaturated fatty acids (UFAs) were higher than the saturated fatty acids (SFAs). UFA content first increased, then decreased during seed development, while SFA content showed the opposite trend. Oil contents continuously increased with seed development, especially at the S2 stage. Phytosterol contents initially increased, then decreased with seed development. Transcriptome analysis revealed that 152 genes were associated with fatty acid metabolism and phytosterol biosynthesis, of which 46 and 62 were related to UFA and phytosterol biosynthesis, respectively. Furthermore, the key genes involved in fatty acid synthesis (ACCase and FATA/B), triacylglycerol biosynthesis (LACS, GPAT, and DGAT), and phytosterols synthesis (CAS1, STM1, EGR6, and DWF1) were overexpressed. This led to maximum UFA, oil, and phytosterol accumulation in JG 35 at the S2 stage. This study reveals the mechanism behind the dynamic changes of fatty acid and phytosterol contents in foxtail millet during seed development.
Collapse
Affiliation(s)
- Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Chunjuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Guan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiangwei Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Ke Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Zhao H, Kosma DK, Lü S. Functional Role of Long-Chain Acyl-CoA Synthetases in Plant Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:640996. [PMID: 33828572 PMCID: PMC8019973 DOI: 10.3389/fpls.2021.640996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Fatty acids (FAs) play vital roles in plants as components of lipid membranes that demarcate cells and organelles, as sources of stored energy in the form of neutral lipids, and as signaling molecules that elicit plant responses to adverse conditions. The activation of FAs through the formation of acyl-CoA intermediates by acyl-CoA synthetase (ACS) family enzymes is required for their synthesis and degradation. Long-chain ACSs (LACSs) represent a small subgroup of ACS enzymes that specifically convert long-chain or very-long-chain FAs into corresponding thioesters for multiple lipid-associated processes. Alteration of LACS activity often results in pleiotropic phenotypes such as male sterility, organ fusion, aberrant cuticular structure, delayed seed germination, altered seed oil content, and plant capacity to respond to various environmental stresses. This review provides a comprehensive analysis of LACS family enzymes including substrate specificity, tissue-specific expression patterns, and distinct subcellular localization highlighting their specific roles in lipid synthesis and degradation, the effects of altered LACS activity on plant development, the relationship between LACS activity and stress resistance, and the regulation of LACS activity. Finally, we pose several major questions to be addressed, which would advance our current understanding of LACS function in plants.
Collapse
Affiliation(s)
- Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Dylan K. Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- *Correspondence: Shiyou Lü,
| |
Collapse
|
10
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
11
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Qian Y, Lu C, Liu J, Song W, Chen X, Luo Q, Liu L, Wu J. Engineering protonation conformation of
l
‐aspartate‐α‐decarboxylase to relieve mechanism‐based inactivation. Biotechnol Bioeng 2020; 117:1607-1614. [DOI: 10.1002/bit.27316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Yuanyuan Qian
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Cui Lu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- School of Pharmaceutical ScienceJiangnan University Wuxi China
| | - Jia Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Wei Song
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- School of Pharmaceutical ScienceJiangnan University Wuxi China
| | - Xiulai Chen
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Qiuling Luo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Liming Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| | - Jing Wu
- School of Pharmaceutical ScienceJiangnan University Wuxi China
| |
Collapse
|
13
|
Kalinger RS, Pulsifer IP, Hepworth SR, Rowland O. Fatty Acyl Synthetases and Thioesterases in Plant Lipid Metabolism: Diverse Functions and Biotechnological Applications. Lipids 2020; 55:435-455. [PMID: 32074392 DOI: 10.1002/lipd.12226] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
Plants use fatty acids to synthesize acyl lipids for many different cellular, physiological, and defensive roles. These roles include the synthesis of essential membrane, storage, or surface lipids, as well as the production of various fatty acid-derived metabolites used for signaling or defense. Fatty acids are activated for metabolic processing via a thioester linkage to either coenzyme A or acyl carrier protein. Acyl synthetases metabolically activate fatty acids to their thioester forms, and acyl thioesterases deactivate fatty acyl thioesters to free fatty acids by hydrolysis. These two enzyme classes therefore play critical roles in lipid metabolism. This review highlights the surprisingly complex and varying roles of fatty acyl synthetases in plant lipid metabolism, including roles in the intracellular trafficking of fatty acids. This review also surveys the many specialized fatty acyl thioesterases characterized to date in plants, which produce a great diversity of fatty acid products in a tissue-specific manner. While some acyl thioesterases produce fatty acids that clearly play roles in plant-insect or plant-microbial interactions, most plant acyl thioesterases have yet to be fully characterized both in terms of their substrate specificities and their functions. The biotechnological applications of plant acyl thioesterases and synthetases are also discussed, as there is significant interest in these enzymes as catalysts for the sustainable production of fatty acids and their derivatives for industrial uses.
Collapse
Affiliation(s)
- Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Ian P Pulsifer
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Shelley R Hepworth
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|