1
|
Li K, Fang S, Zhang X, Wei X, Wu P, Zheng R, Liu L, Zhang H. Effects of Environmental Stresses on Synthesis of 2-Phenylethanol and IAA by Enterobacter sp. CGMCC 5087. Microorganisms 2024; 12:663. [PMID: 38674607 PMCID: PMC11052032 DOI: 10.3390/microorganisms12040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
2-Phenylethanol (2-PE) and indole-3-acetic acid (IAA) are important secondary metabolites produced by microorganisms, and their production are closely linked to the growth state of microorganisms and environmental factors. Enterobacter CGMCC 5087 can produce both 2-PE and IAA depending on α-ketoacid decarboxylase KDC4427. This study aimed to investigate the effects of different environment factors including osmotic pressure, temperature, and pH on the synthesis of 2-PE and IAA in Enterobacter sp. CGMCC 5087. The bacteria exhibited an enhanced capacity for 2-PE synthesis while not affecting IAA synthesis under 5% NaCl and pH 4.5 stress conditions. In an environment with pH 9.5, the synthesis capacity of 2-PE remained unchanged while the synthesis capacity of IAA decreased. The synthesis ability of 2-PE was enhanced with an increase in temperature within the range of 25 °C to 37 °C, while the synthesis capacity of IAA was not affected significantly. Additionally, the expression of KDC4427 varied under stress conditions. Under 5% NaCl stress and decreased temperature, expression of the KDC4427 gene was increased. However, altering pH did not result in significant differences in gene expression levels, while elevated temperature caused a decrease in gene expression. Furthermore, molecular docking and molecular dynamics simulations suggested that these conditions may induce fluctuation in the geometry shape of binding cavity, binding energy, and especially the dαC-C- value, which played key roles in affecting the enzyme activity. These results provide insights and strategies for the synthesis of metabolic products 2-PE and IAA in bacterial fermentation, even under unfavorable conditions.
Collapse
Affiliation(s)
- Ke Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (K.L.); (X.W.); (P.W.)
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.F.); (X.Z.); (H.Z.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Senbiao Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.F.); (X.Z.); (H.Z.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiao Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.F.); (X.Z.); (H.Z.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaodi Wei
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (K.L.); (X.W.); (P.W.)
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.F.); (X.Z.); (H.Z.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Pingle Wu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (K.L.); (X.W.); (P.W.)
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.F.); (X.Z.); (H.Z.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Rong Zheng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (K.L.); (X.W.); (P.W.)
| | - Lijuan Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.F.); (X.Z.); (H.Z.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.F.); (X.Z.); (H.Z.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
2
|
Ren H, Zhang F, Zhu X, Lamlom SF, Zhao K, Zhang B, Wang J. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development. Front Microbiol 2023; 14:1233351. [PMID: 37799597 PMCID: PMC10548211 DOI: 10.3389/fmicb.2023.1233351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Rhizosphere microorganisms can effectively promote the stress resistance of plants, and some beneficial rhizosphere microorganisms can significantly promote the growth of crops under salt stress, which has the potential to develop special microbial fertilizers for increasing the yield of saline-alkali land and provides a low-cost and environmentally friendly new strategy for improving the crop yield of saline-alkali cultivated land by using agricultural microbial technology. Methods In May 2022, a field study in a completely randomized block design was conducted at the Heilongjiang Academy of Agricultural Sciences to explore the correlation between plant rhizosphere microorganisms and soybean growth in saline-alkali soil. Two soybean cultivars (Hening 531, a salt-tolerant variety, and 20_1846, a salt-sensitive variety) were planted at two experimental sites [Daqing (normal condition) and Harbin (saline-alkali conditions)], aiming to investigate the performance of soybean in saline-alkali environments. Results Soybeans grown in saline-alkali soil showed substantial reductions in key traits: plant height (25%), pod number (26.6%), seed yield (33%), and 100 seed weight (13%). This underscores the unsuitability of this soil type for soybean cultivation. Additionally, microbial analysis revealed 43 depleted and 56 enriched operational taxonomic units (OTUs) in the saline-alkali soil compared to normal soil. Furthermore, an analysis of ion-associated microbes identified 85 mOTUs with significant correlations with various ions. A co-occurrence network analysis revealed strong relationships between specific mOTUs and ions, such as Proteobacteria with multiple ions. In addition, the study investigated the differences in rhizosphere species between salt-tolerant and salt-sensitive soybean varieties under saline-alkali soil conditions. Redundancy analysis (RDA) indicated that mOTUs in saline-alkali soil were associated with pH and ions, while mOTUs in normal soil were correlated with Ca2+ and K+. Comparative analyses identified significant differences in mOTUs between salt-tolerant and salt-sensitive varieties under both saline-alkali and normal soil conditions. Planctomycetes, Proteobacteria, and Actinobacteria were dominant in the bacterial community of saline-alkali soil, with significant enrichment compared to normal soil. The study explored the functioning of the soybean rhizosphere key microbiome by comparing metagenomic data to four databases related to the carbon, nitrogen, phosphorus, and sulfur cycles. A total of 141 KOs (KEGG orthologues) were identified, with 66 KOs related to the carbon cycle, 16 KOs related to the nitrogen cycle, 48 KOs associated with the phosphorus cycle, and 11 KOs linked to the sulfur cycle. Significant correlations were found between specific mOTUs, functional genes, and phenotypic traits, including per mu yield (PMY), grain weight, and effective pod number per plant. Conclusion Overall, this study provides comprehensive insights into the structure, function, and salt-related species of soil microorganisms in saline-alkali soil and their associations with salt tolerance and soybean phenotype. The identification of key microbial species and functional categories offers valuable information for understanding the mechanisms underlying plant-microbe interactions in challenging soil conditions.
Collapse
Affiliation(s)
- Honglei Ren
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Fengyi Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Xiao Zhu
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Kezhen Zhao
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Bixian Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Jiajun Wang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| |
Collapse
|
3
|
Mandal S, Anand U, López-Bucio J, Radha, Kumar M, Lal MK, Tiwari RK, Dey A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. ENVIRONMENTAL RESEARCH 2023; 233:116357. [PMID: 37295582 DOI: 10.1016/j.envres.2023.116357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India; Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, 411018, India.
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
4
|
Liu T, Wang S, Chen Y, Luo J, Hao B, Zhang Z, Yang B, Guo W. Bio-organic fertilizer promoted phytoremediation using native plant leymus chinensis in heavy Metal(loid)s contaminated saline soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121599. [PMID: 37037280 DOI: 10.1016/j.envpol.2023.121599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/17/2022] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal(loid)s (HMs) contaminated saline soil appeared around the world, however, remediation regarding these collected from field conditions remains unknown. Native plants cultivation and bio-organic fertilizer (BOF) application were two efficient tools for soil amelioration. Herein, a pot experiment was conducted to examine the feasibility of a native plant (Leymus chinensis) for phytoremediation, and investigate the impacts of lignite based bio-organic fertilizer (LBOF) and manure based bio-organic fertilizer (MBOF) on phytoremediation of the soil contaminated by Pb, Cd, As, Zn, Cu, Ca2+, and SO42-. The results demonstrated the effectiveness of L. chinensis and highlighted the positive impacts of BOF according to the improved plant growth, HMs phytostabilization, salt removal, and soil properties. LBOF and MBOF changed soil microbiome to assist phytoremediation in addition to physiological modulation. Having enhanced fungal and bacterial richness respectively, LBOF and MBOF recruited various plant growth promoting rhizobacteria with different functions, and shifted microbial co-occurrence networks and keystone taxa towards these different but beneficial forms. Structural equation models comprehensively reveled the strategy discrepancy of LBOF and MBOF to regulate the plant biomass, HMs uptake, and soil salt. In summary, L. chinensis coupled with BOF, especially LBOF, was a effective strategy to remediate HMs contaminated saline soil.
Collapse
Affiliation(s)
- Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Sensen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yunong Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Yang
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
5
|
Hamidian M, Movahhedi-Dehnavi M, Sayyed RZ, Almalki WH, Gafur A, Fazeli-Nasab B. Co-inoculation of Mycorrhiza and methyl jasmonate regulates morpho-physiological and antioxidant responses of Crocus sativus (Saffron) under salinity stress conditions. Sci Rep 2023; 13:7378. [PMID: 37149662 PMCID: PMC10164175 DOI: 10.1038/s41598-023-34359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023] Open
Abstract
Salinity stress is the second most devastating abiotic factor limiting plant growth and yields. Climate changes have significantly increased salinity levels of soil. Besides improving the physiological responses under stress conditions, jasmonates modulate Mycorrhiza-Plant relationships. The present study aimed to evaluate the effects of methyl jasmonate (MeJ) and Funneliformis mosseae (Arbuscular mycorrhizal (AM) on morphology and improving antioxidant mechanisms in Crocus sativus L. under salinity stress. After inoculation with AM, pre-treated C. sativus corms with MeJ were grown under low, moderate, and severe salinity stress. Intense salinity levels damaged the corm, root, total leaf dry weight, and area. Salinities up to 50 mM increased Proline content and Polyphenol oxidase (PPO) activity, but MeJ increased this trend in proline. Generally, MeJ increased anthocyanins, total soluble sugars, and PPO. Total chlorophyll and superoxide dismutase (SOD) activity increased by salinity. The maximum catalase and SOD activities in + MeJ + AM were 50 and 125 mM, respectively, and the maximum total chlorophyll in -MeJ + AM treatment was 75 mM. Although 20 and 50 mM increased plant growth, using mycorrhiza and jasmonate enhanced this trend. Moreover, these treatments reduced the damage of 75 and 100 mM salinity stress. Using MeJ and AM can improve the growth of saffron under various ranges of salinity stress levels; however, in severe levels like 120 mM, this phytohormone and F. mosseae effects on saffron could be adverse.
Collapse
Affiliation(s)
- Mohammad Hamidian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohsen Movahhedi-Dehnavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Identification of the OsCML4 Gene in Rice Related to Salt Stress Using QTL Analysis. PLANTS 2022; 11:plants11192467. [PMID: 36235331 PMCID: PMC9572784 DOI: 10.3390/plants11192467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Soil salinity is a major abiotic stress that causes disastrous losses in crop yields. To identify favorable alleles that enhance the salinity resistance of rice (Oryza sativa L.) crops, a set of 120 Cheongcheong Nagdong double haploid (CNDH) lines derived from a cross between the Indica variety Cheongcheong and the Japonica variety Nagdong were used. A total of 23 QTLs for 8 different traits related to salinity resistance on chromosomes 1–3 and 5–12 were identified at the seedling stage. A QTL related to the salt injury score (SIS), qSIS-3b, had an LOD score of six within the interval RM3525–RM15904 on chromosome 3, and a phenotypic variation of 31% was further examined for the candidate genes. Among all the CNDH populations, five resistant lines (CNDH 27, CNDH 34-1, CNDH 64, CNDH 78, and CNDH 112), five susceptible lines (CNDH 52-1, CNDH 67, CNDH 69, CNDH 109, and CNDH 110), and the parent lines Cheongcheong and Nagdong were selected for relative gene expression analysis. Among all the genes, two candidate genes were highly upregulated in resistant lines, including the auxin-responsive protein IAA13 (Os03g0742900) and the calmodulin-like protein 4 (Os03g0743500-1). The calmodulin-like protein 4 (Os03g0743500-1) showed a higher expression in all the resistant lines than in the susceptible lines and a high similarity with other species in sequence alignment and phylogenetic tree, and it also showed a protein–protein interaction with other important proteins. The genes identified in our study will provide new genetic resources for improving salt resistance in rice using molecular breeding strategies in the future.
Collapse
|
7
|
Abiala MA, Sahoo L. Bacillus aryabhattai enhanced proline content, stabilized membrane and improved growth of cowpea under NaCl-induced salinity stress. J Appl Microbiol 2022; 133:1520-1533. [PMID: 35686652 DOI: 10.1111/jam.15658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2021] [Revised: 12/12/2021] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
AIMS Salinity stress affects the growth of cowpea particularly at the stages of seed germination and early vegetative growth. This study examined the potential of particular stress-tolerant rhizospheric bacteria to improve the growth of cowpea under conditions of salinity stress. METHODS AND RESULTS Two rhizobacillus genotypes, Bacillus filamentosus-C8 and Bacillus aryabhattai-C29 were evaluated for their potentials to protect cowpea under NaCl-induced salinity stress. At 200 mM of NaCl concentration, control (non-inoculated) cowpea was affected, C8 was not able to significantly (p ≤ 0.05) alleviate the effects of salinity stress on cowpea growth while C29 significantly (p ≤ 0.05) reduced leaf wilting, increased chlorophyll content and improved the growth of cowpea plant under stressed condition. Interestingly, C29 significantly (p ≤ 0.05) induced high proline content and stabilized membrane by loss of electrolytes. CONCLUSION Our results indicate that stabilized membrane and enhanced proline content by Bacillus aryabhattai-C29 supported the growth of cowpea under salinity stress condition. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed that rhizospheric bacteria screened for salinity stress tolerant have potential to be used as an effective bioprotectant for sustainable growth of cowpea under salinity stress condition.
Collapse
Affiliation(s)
- Moses Akindele Abiala
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Ogun State, Nigeria.,Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
8
|
Gul SL, Moon YS, Hamayun M, Khan SA, Iqbal A, Khan MA, Hussain A, Shafique M, Kim YH, Ali S. Porostereum spadiceum-AGH786 Regulates the Growth and Metabolites Production in Triticum aestivum L. Under Salt Stress. Curr Microbiol 2022; 79:159. [PMID: 35416548 DOI: 10.1007/s00284-022-02853-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2021] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
The role of the most fungal endophytes in the host plant growth and production of metabolites under stress conditions is still unknown. Fungal endophytes occur in almost all plants to benefit the host plants exposed to biotic and abiotic stress. In the present work, we investigated salt (NaCl) stress alleviation capability of a fungal endophyte (Porostereum spadiceum-AGH786). The culture filtrate (CF: 1.5 mL.) of P. spadiceum-AGH786 contained IAA (158 µg/ml), SA (29.3 µg/ml), proline (114.6 µg/ml), phenols (167.4 µg/ml), lipids (71.4 µg/ml), sugar (133.2 µg/ml), flavonoids (105.04 µg/ml). Smaller amounts of organic acids, such as butyric acid (5.8 µg/ml), formic acid (2.34 µg/ml), succinic acid (2.02 µg/ml), and quinic acid (2.25 µg/ml) were also found in CF of P. spadiceum-AGH786. Similarly, the CF displayed antioxidant activity in 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Moreover, wheat plants colonized by P. spadiceum-AGH786 showed significantly (P = 0.05) higher polyphenol oxidases activity (2.2 mg/g DW) under normal conditions as compared to the NaCl-treated plants. We also observed that P. spadiceum-AGH786 improved biomass (0.30 g) of wheat plants subjected to 140 mM NaCl stress. The results conclude that the wheat plant colonization by P. spadiceum-AGH786 greatly improved the plant growth under 70 mM and 140 mM NaCl stress. Thus, the biomass of the P. Spadiceum-AGH786 can be used in saline soil to help the host plants.
Collapse
Affiliation(s)
- Syeda Leeda Gul
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan
| | - Yong-Sun Moon
- Department of Horticulture and Life Sciences, Yeungnam University, Gyeongsan-si, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan.
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan
| | - Muhammad Aaqil Khan
- School of Applied Biosciences College of Agriculture and Life-Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan
| | - Maryam Shafique
- Department of Microbiology, Federal Urdu University of Art Science & Technology, Karachi, Pakistan
| | - Yoon-Ha Kim
- School of Applied Biosciences College of Agriculture and Life-Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Sciences, Yeungnam University, Gyeongsan-si, Republic of Korea.
| |
Collapse
|
9
|
Ilangumaran G, Subramanian S, Smith DL. Soybean Leaf Proteomic Profile Influenced by Rhizobacteria Under Optimal and Salt Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:809906. [PMID: 35401626 PMCID: PMC8987779 DOI: 10.3389/fpls.2022.809906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Accepted: 02/28/2022] [Indexed: 06/12/2023]
Abstract
Soil salinity is a major abiotic stressor inhibiting plant growth and development by affecting a range of physiological processes. Plant growth promoting rhizobacteria (PGPR) are considered a sustainable option for alleviation of stress and enhancement of plant growth, yet their mode of action is complex and largely unexplored. In this study, an untargeted proteomic approach provided insights into growth and stress response mechanisms elicited in soybean plants by Rhizobium sp. SL42 and Hydrogenophaga sp. SL48 and co-inoculated with Bradyrhizobium japonicum 532C. The plants were grown under optimal and salt-stressed conditions up to their mid-vegetative stage; shoot growth variables were increased in the bacteria-treated plants. Shotgun proteomics of soybean leaf tissue revealed that a number of proteins related to plant growth and stress tolerance were modulated in the bacterial inoculation treatments. Several key proteins involved in major metabolic pathways of photosynthesis, respiration, and photorespiration were upregulated. These include photosystem I psaK, Rubisco subunits, glyceraldehyde-3-phosphate dehydrogenase, succinate dehydrogenase, and glycine decarboxylase. Similarly, stress response proteins such as catalase and glutathione S-transferase (antioxidants), proline-rich precursor protein (osmolyte), and NADP-dependent malic enzyme (linked to ABA signaling) were increased under salt stress. The functions of proteins related to plant growth and stress adaptation led to an expanded understanding of plant-microbe interactions. These findings suggest that the PGPR strains regulated proteome expression in soybean leaves through multiple signaling pathways, thereby inducing salinity tolerance, and improving plant growth in the presence of this abiotic stress challenge. Data are available via ProteomeXchange with identifier PXD025596.
Collapse
Affiliation(s)
| | | | - Donald L Smith
- Department of Plant Science, McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
Gao Y, Han Y, Li X, Li M, Wang C, Li Z, Wang Y, Wang W. A Salt-Tolerant Streptomyces paradoxus D2-8 from Rhizosphere Soil of Phragmites communis Augments Soybean Tolerance to Soda Saline-Alkali Stress. Pol J Microbiol 2022; 71:43-53. [PMID: 35635168 PMCID: PMC9152913 DOI: 10.33073/pjm-2022-006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 01/14/2023] Open
Abstract
Soil salinity and alkalization limit plant growth and agricultural productivity worldwide. The application of salt-tolerant plant growth-promoting rhizobacteria (PGPR) effectively improved plant tolerance to saline-alkali stress. To obtain the beneficial actinomyces resources with salt tolerance, thirteen isolates were isolated from rhizosphere saline and alkaline soil of Phragmites communis. Among these isolates, D2-8 was moderately halophilic to NaCl and showed 120 mmol soda saline-alkali solution tolerance. Moreover, the plant growth-promoting test demonstrated that D2-8 produced siderophore, IAA, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), and organic acids. D2-8 showed 99.4% homology with the type strain Streptomyces paradoxus NBRC 14887T and shared the same branch, and, therefore, it was designated S. paradoxus D2-8. Its genome was sequenced to gain insight into the mechanism of growth-promoting and saline-alkali tolerance of D2-8. IAA and siderophore biosynthesis pathway, genes encoding ACC deaminase, together with six antibiotics biosynthesis gene clusters with antifungal or antibacterial activity, were identified. The compatible solute ectoine biosynthesis gene cluster, production, and uptake of choline and glycine betaine cluster in the D2-8 genome may contribute to the saline-alkali tolerance of the strain. Furthermore, D2-8 significantly promoted the seedling growth even under soda saline-alkali stress, and seed coating with D2-8 isolate increased by 5.88% of the soybean yield in the field. These results imply its significant potential to improve soybean soda saline-alkali tolerance and promote crop health in alkaline soil.
Collapse
Affiliation(s)
- Yamei Gao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yiqiang Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xin Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingyang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunxu Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhiwen Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanjie Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weidong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
11
|
Adhikari A, Khan MA, Imran M, Lee KE, Kang SM, Shin JY, Joo GJ, Khan M, Yun BW, Lee IJ. The Combined Inoculation of Curvularia lunata AR11 and Biochar Stimulates Synthetic Silicon and Potassium Phosphate Use Efficiency, and Mitigates Salt and Drought Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:816858. [PMID: 35310624 PMCID: PMC8928408 DOI: 10.3389/fpls.2022.816858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 06/12/2023]
Abstract
Synthetic chemical fertilizers are a fundamental source of nutrition for agricultural crops; however, their limited availability, low plant uptake, and excessive application have caused severe ecological imbalances. In addition, the gravity of environmental stresses, such as salinity and water stress, has already exceeded the threshold limit. Therefore, the optimization of nutrient efficiency in terms of plant uptake is crucial for sustainable agricultural production. To address these challenges, we isolated the rhizospheric fungus Curvularia lunata ARJ2020 (AR11) and screened the optimum doses of biochar, silicon, and potassium phosphate (K2HPO4), and used them-individually or jointly-to treat rice plants subjected to salt (150 mM) and drought stress (20-40% soil moisture). Bioassay analysis revealed that AR11 is a highly halotolerant and drought-resistant strain with an innate ability to produce gibberellin (GA1, GA3, GA4, and GA7) and organic acids (i.e., acetic, succinic, tartaric, and malic acids). In the plant experiment, the co-application of AR11 + Biochar + Si + K2HPO4 significantly improved rice growth under both salt and drought stresses. The plant growth regulator known as abscisic acid, was significantly reduced in co-application-treated rice plants exposed to both drought and salt stress conditions. These plants showed higher Si (80%), P (69%), and K (85%) contents and a markedly low Na+ ion (208%) concentration. The results were further validated by the higher expression of the Si-carrying gene OsLSi1, the salt-tolerant gene OsHKT2, and the OsGRAS23's drought-tolerant transcriptome. Interestingly, the beneficial effect of AR11 was significantly higher than that of the co-application of Biochar + Si + K2HPO4 under drought. Moreover, the proline content of AR11-treated plants decreased significantly, and an enhancement of plant growth-promoting characteristics was observed. These results suggest that the integrated co-application of biochar, chemical fertilizers, and microbiome could mitigate abiotic stresses, stimulate the bioavailability of essential nutrients, relieve phytotoxicity, and ultimately enhance plant growth.
Collapse
Affiliation(s)
- Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ko-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jin Y. Shin
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, New York City, NY, United States
| | - Gil-Jae Joo
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Murtaza Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
12
|
Mishra P, Mishra J, Arora NK. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiol Res 2021; 252:126861. [PMID: 34521049 DOI: 10.1016/j.micres.2021.126861] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
Soil salinity has emerged as a great threat to the agricultural ecosystems throughout the globe. Many continents of the globe are affected by salinity and crop productivity is severely affected. Anthropogenic activities leading to the degradation of agricultural land have also accelerated the rate of salinization in arid and semi-arid regions. Several approaches are being evaluated for remediating saline soil and restoring their productivity. Amongst these, utilization of plant growth promoting bacteria (PGPB) has been marked as a promising tool. This greener approach is suitable for simultaneous reclamation of saline soil and improving the productivity. Salt-tolerant PGPB utilize numerous mechanisms that affect physiological, biochemical, and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection from free radicals by the formation of free radicals scavenging enzymes, oxidative stress responses and maintenance of growth parameters by the synthesis of phytohormones and other metabolites. As salt-tolerant PGPB elicit better plant survival under salinity, they are the potential candidates for enhancing agricultural productivity. The present review focuses on the various mechanisms used by PGPB to improve plant health under salinity. Recent developments and prospects to facilitate better understanding on the functioning of PGPB for ameliorating salt stress in plants are emphasized.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
13
|
Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Food waste is a common global threat to the environment, agriculture, and society. In the present study, we used 30% food waste, mixed with 70% bio-fertilizers, and evaluated their ability to affect the growth of Chinese cabbage. The experiment was conducted using different concentrations of food waste to investigate their effect on Chinese cabbage growth, chlorophyll content, and mineral content. Leaf length, root length, and fresh and dry weight were significantly increased in plants treated with control fertilizer (CF) and fertilizer mixed with food waste (MF). However, high concentrations of food waste decreased the growth and biomass of Chinese cabbage due to salt content. Furthermore, higher chlorophyll content, transpiration efficiency, and photosynthetic rate were observed in CF- and MF-treated plants, while higher chlorophyll fluorescence was observed in the MF × 2 and MF × 6 treatments. Inductively coupled plasm mass spectrometry (ICP-MS) results showed an increase in potassium (K), calcium (Ca), phosphorous (P), and magnesium (Mg) contents in the MF and MF × 2 treatments, while higher sodium (Na) content was observed in the MF × 4 and MF × 6 treatments due to the high salt content found in food waste. The analysis of abscisic acid (ABA) showed that increasing amounts of food waste increase the endogenous ABA content, compromising the survival of plants. In conclusion, optimal amounts of food waste—up to MF and MF × 2—increase plant growth and provide an ecofriendly approach to be employed in the agriculture production system.
Collapse
|
14
|
Khan MA, Hamayun M, Asaf S, Khan M, Yun BW, Kang SM, Lee IJ. Rhizospheric Bacillus spp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2021; 12:665590. [PMID: 34177981 PMCID: PMC8226221 DOI: 10.3389/fpls.2021.665590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 05/27/2023]
Abstract
Salinity has drastically reduced crop yields and harmed the global agricultural industry. We isolated 55 bacterial strains from plants inhabiting the coastal sand dunes of Pohang, Korea. A screening bioassay showed that 14 of the bacterial isolates secreted indole-3-acetic acid (IAA), 12 isolates were capable of exopolysaccharide (EPS) production and phosphate solubilization, and 10 isolates secreted siderophores. Based on our preliminary screening, 11 bacterial isolates were tested for salinity tolerance on Luria-Bertani (LB) media supplemented with 0, 50, 100, and 150 mM of NaCl. Three bacterial isolates, ALT11, ALT12, and ALT30, had the best tolerance against elevated NaCl levels and were selected for further study. Inoculation of the selected bacterial isolates significantly enhanced rice growth attributes, viz., shoot length (22.8-42.2%), root length (28.18-59%), fresh biomass (44.7-66.41%), dry biomass (85-90%), chlorophyll content (18.30-36.15%), Chl a (29.02-60.87%), Chl b (30.86-64.51%), and carotenoid content (26.86-70%), under elevated salt stress of 70 and 140 mM. Furthermore, a decrease in the endogenous abscisic acid (ABA) content (27.9-23%) and endogenous salicylic acid (SA) levels (11.70-69.19%) was observed in inoculated plants. Antioxidant analysis revealed an increase in total protein (TP) levels (42.57-68.26%), whereas it revealed a decrease in polyphenol peroxidase (PPO) (24.63-34.57%), glutathione (GSH) (25.53-24.91%), SOA (13.88-18.67%), and LPO levels (15.96-26.06%) of bacterial-inoculated plants. Moreover, an increase in catalase (CAT) (26-33.04%), peroxidase (POD) (59.55-78%), superoxide dismutase (SOD) (13.58-27.77%), and ascorbic peroxidase (APX) (5.76-22.74%) activity was observed. Additionally, inductively coupled plasma mass spectrometry (ICP-MS) analysis showed a decline in Na+ content (24.11 and 30.60%) and an increase in K+ (23.14 and 15.45%) and Mg+ (2.82 and 18.74%) under elevated salt stress. OsNHX1 gene expression was downregulated (0.3 and 4.1-folds), whereas the gene expression of OsPIN1A, OsCATA, and OsAPX1 was upregulated by a 7-17-fold in bacterial-inoculated rice plants. It was concluded that the selected bacterial isolates, ALT11, ALT12, and ALT30, mitigated the adverse effects of salt stress on rice growth and can be used as climate smart agricultural tools in ecofriendly agricultural practices.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Murtaza Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
15
|
Khan MA, Sahile AA, Jan R, Asaf S, Hamayun M, Imran M, Adhikari A, Kang SM, Kim KM, Lee IJ. Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC PLANT BIOLOGY 2021; 21:176. [PMID: 33845762 PMCID: PMC8040224 DOI: 10.1186/s12870-021-02937-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Salinity is a major threat to the agriculture industry due to the negative impact of salinity stress on crop productivity. In the present study, we isolated rhizobacteria and evaluated their capacities to promote crop growth under salt stress conditions. RESULTS We isolated rhizospheric bacteria from sand dune flora of Pohang beach, Korea, and screened them for plant growth-promoting (PGP) traits. Among 55 bacterial isolates, 14 produced indole-3-acetic acid (IAA), 10 produced siderophores, and 12 produced extracellular polymeric and phosphate solubilization. Based on these PGP traits, we selected 11 isolates to assess for salinity tolerance. Among them, ALT29 and ALT43 showed the highest tolerance to salinity stress. Next, we tested the culture filtrate of isolates ALT29 and ALT43 for IAA and organic acids to confirm the presence of these PGP products. To investigate the effects of ALT29 and ALT43 on salt tolerance in soybean, we grew seedlings in 0 mM, 80 mM, 160 mM, and 240 mM NaCl treatments, inoculating half with the bacterial isolates. Inoculation with ALT29 and ALT43 significantly increased shoot length (13%), root length (21%), shoot fresh and dry weight (44 and 35%), root fresh and dry weight (9%), chlorophyll content (16-24%), Chl a (8-43%), Chl b (13-46%), and carotenoid (14-39%) content of soybean grown under salt stress. Inoculation with ALT29 and ALT43 also significantly decreased endogenous ABA levels (0.77-fold) and increased endogenous SA contents (6-16%), increased total protein (10-20%) and glutathione contents, and reduced lipid peroxidation (0.8-5-fold), superoxide anion (21-68%), peroxidase (12.14-17.97%), and polyphenol oxidase (11.76-27.06%) contents in soybean under salinity stress. In addition, soybean treated with ALT29 and ALT43 exhibited higher K+ uptake (9.34-67.03%) and reduced Na+ content (2-4.5-fold). Genes involved in salt tolerance, GmFLD19 and GmNARK, were upregulated under NaCl stress; however, significant decreases in GmFLD19 (3-12-fold) and GmNARK (1.8-3.7-fold) expression were observed in bacterial inoculated plants. CONCLUSION In conclusion, bacterial isolates ALT29 and ALT43 can mitigate salinity stress and increase plant growth, providing an eco-friendly approach for addressing saline conditions in agricultural production systems.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Atlaw Anbelu Sahile
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Plants Research center, University of Nizwa, 616, Nizwa, Oman
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
16
|
Ilangumaran G, Schwinghamer TD, Smith DL. Rhizobacteria From Root Nodules of an Indigenous Legume Enhance Salinity Stress Tolerance in Soybean. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.617978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Soybean is the most widely grown legume worldwide, but it is a glycophyte and salinity stress can decrease its yield potential up to 50%. Plant growth promoting rhizobacteria (PGPR) are known to enhance growth and induce tolerance to abiotic stresses including salinity. The aim of this study was to isolate such PGPR from the root nodules of Amphicarpaea bracteata, a North American relative of soybean. Isolated strains were identified, and 15 strains were screened for potential utilization as PGPR of soybean through a series of greenhouse trials. Four isolates that greatly improved shoot and root growth were further selected and screened under a range of salt concentrations. Two of the most promising strains, Rhizobium sp. SL42 and Hydrogenophaga sp. SL48 were ascertained to exert the greatest beneficial effects on soybean growth and salinity tolerance. They were co-inoculated with Bradyrhizobium japonicum 532C (Bj) and the plants were grown up to the harvest stage. The treatment of Bj+SL42 resulted in higher shoot biomass than the control, 18% at the vegetative stage, 16% at flowering, 7.5% at pod-filling, and 4.6% at harvest and seed weight was increased by 4.3% under salt stress (ECe = 7.4 ds/m). Grain yield was raised under optimal conditions by 7.4 and 8.1% with treatments Bj+SL48 and Bj+SL42+SL48, respectively. Nitrogen assimilation and shoot K+/Na+ ratio were also higher in the co-inoculation treatments. This study suggested that inoculation with bacteria from an indigenous legume can induce stress tolerance, improve growth and yield to support sustainability, and encourage ecological adaptability of soybean.
Collapse
|
17
|
Zhang Y, Zhang W, Cao Q, Zheng X, Yang J, Xue T, Sun W, Du X, Wang L, Wang J, Zhao F, Xiang F, Li S. WinRoots: A High-Throughput Cultivation and Phenotyping System for Plant Phenomics Studies Under Soil Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:794020. [PMID: 35154184 PMCID: PMC8832124 DOI: 10.3389/fpls.2021.794020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 05/12/2023]
Abstract
Soil stress, such as salinity, is a primary cause of global crop yield reduction. Existing crop phenotyping platforms cannot fully meet the specific needs of phenomics studies of plant response to soil stress in terms of throughput, environmental controllability, or root phenotypic acquisition. Here, we report the WinRoots, a low-cost and high-throughput plant soil cultivation and phenotyping system that can provide uniform, controlled soil stress conditions and accurately quantify the whole-plant phenome, including roots. Using soybean seedlings exposed to salt stress as an example, we demonstrate the uniformity and controllability of the soil environment in this system. A high-throughput multiple-phenotypic assay among 178 soybean cultivars reveals that the cotyledon character can serve as a non-destructive indicator of the whole-seedling salt tolerance. Our results demonstrate that WinRoots is an effective tool for high-throughput plant cultivation and soil stress phenomics studies.
Collapse
Affiliation(s)
- Yangyang Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wenjing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Qicong Cao
- Weifang Academy of Agriculture Sciences, Weifang, China
| | - Xiaojian Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jingting Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Tong Xue
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wenhao Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xinrui Du
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lili Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jing Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Fengying Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Shuo Li,
| |
Collapse
|
18
|
Kim YN, Khan MA, Kang SM, Hamayun M, Lee IJ. Enhancement of Drought-Stress Tolerance of Brassica oleracea var. italica L. by Newly Isolated Variovorax sp. YNA59. J Microbiol Biotechnol 2020; 30:1500-1509. [PMID: 32807757 PMCID: PMC9728237 DOI: 10.4014/jmb.2006.06010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Drought is a major abiotic factor and has drastically reduced crop yield globally, thus damaging the agricultural industry. Drought stress decreases crop productivity by negatively affecting crop morphological, physiological, and biochemical factors. The use of drought tolerant bacteria improves agricultural productivity by counteracting the negative effects of drought stress on crops. In this study, we isolated bacteria from the rhizosphere of broccoli field located in Daehaw-myeon, Republic of Korea. Sixty bacterial isolates were screened for their growth-promoting capacity, in vitro abscisic acid (ABA), and sugar production activities. Among these, bacterial isolates YNA59 was selected based on their plant growth-promoting bacteria traits, ABA, and sugar production activities. Isolate YNA59 highly tolerated oxidative stress, including hydrogen peroxide (H2O2) and produces superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities in the culture broth. YNA59 treatment on broccoli significantly enhanced plant growth attributes, chlorophyll content, and moisture content under drought stress conditions. Under drought stress, the endogenous levels of ABA, jasmonic acid (JA), and salicylic acid (SA) increased; however, inoculation of YNA59 markedly reduced ABA (877 ± 22 ng/g) and JA (169.36 ± 20.74 ng/g) content, while it enhanced SA levels (176.55 ± 9.58 ng/g). Antioxidant analysis showed that the bacterial isolate YNA59 inoculated into broccoli plants contained significantly higher levels of SOD, CAT, and APX, with a decrease in GPX levels. The bacterial isolate YNA59 was therefore identified as Variovorax sp. YNA59. Our current findings suggest that newly isolated drought tolerant rhizospheric Variovorax sp. YNA59 is a useful stress-evading rhizobacterium that improved droughtstress tolerance of broccoli and could be used as a bio-fertilizer under drought conditions.
Collapse
Affiliation(s)
- Yu-Na Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea,Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-950-5708 Fax: +82-53-953-6880 E-mail:
| |
Collapse
|
19
|
Kaushal M. Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants. Front Microbiol 2020; 11:1518. [PMID: 32982994 PMCID: PMC7479176 DOI: 10.3389/fmicb.2020.01518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Salt stress threatens the achievement of sustainable global food security goals by inducing secondary stresses, such as osmotic, ionic, and oxidative stress, that are detrimental to plant growth and productivity. Various studies have reported the beneficial roles of microbes in ameliorating salt stress in plants. This review emphasizes salt tolerance and endurance mechanisms (STEM) in microbially inoculated (MI) plants that ensure plant growth and survival. Well-established STEM have been documented in MI plants and include conglomeration of osmolytes, antioxidant barricading, recuperating nutritional status, and ionic homeostasis. This is achieved via involvement of P solubilization, siderophore production, nitrogen fixation, selective ion absorption, volatile organic compound production, exopolysaccharide production, modifications to plant physiological processes (photosynthesis, transpiration, and stomatal conductance), and molecular alterations to alter various biochemical and physiological processes. Salt tolerance and endurance mechanism in MI plants ensures plant growth by improving nutrient uptake and maintaining ionic homeostasis, promoting superior water use efficiency and osmoprotection, enhancing photosynthetic efficiency, preserving cell ultrastructure, and reinforcing antioxidant metabolism. Molecular research in MI plants under salt stress conditions has found variations in the expression profiles of genes such as HKT1, NHX, and SOS1 (ion transporters), PIPs and TIPs (aquaporins), RBCS, RBCL (RuBisCo subunits), Lipoxygenase2 [jasmonic acid (JA) signaling], ABA (abscisic acid)-responsive gene, and APX, CAT, and POD (involved in antioxidant defense). Proteomic analysis in arbuscular mycorrhizal fungi-inoculated plants revealed upregulated expression of signal transduction proteins, including Ca2+ transporter ATPase, calcium-dependent protein kinase, calmodulin, and energy-related proteins (NADH dehydrogenase, iron-sulfur protein NADH dehydrogenase, cytochrome C oxidase, and ATP synthase). Future research should focus on the role of stress hormones, such as JA, salicylic acid, and brassinosteroids, in salt-stressed MI plants and how MI affects the cell wall, secondary metabolism, and signal transduction in host plants.
Collapse
Affiliation(s)
- Manoj Kaushal
- Plant Production and Plant Health, International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| |
Collapse
|
20
|
Adhikari A, Khan MA, Lee KE, Kang SM, Dhungana SK, Bhusal N, Lee IJ. The Halotolerant Rhizobacterium- Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean ( Glycine max L.). Microorganisms 2020; 8:microorganisms8091256. [PMID: 32825007 PMCID: PMC7570339 DOI: 10.3390/microorganisms8091256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/20/2023] Open
Abstract
Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress through inoculation using the rhizospheric strain—Pseudomonas koreensis MU2. The screening analysis of MU2 showed its high salt-tolerant potential, which solubilizes both silicate and phosphate. The isolate, MU2 produced gibberellic acid (GA1, GA3) and organic acids (malic acid, citric acid, acetic acid, and tartaric acid) in pure culture under both normal and salt-stressed conditions. The combined application of MU2, silicon, and phosphorus significantly improved silicon and phosphorus uptake, reduced Na+ ion influx by 70%, and enhanced K+ uptake by 46% in the shoots of soybean plants grown under salt-stress conditions. MU2 inoculation upregulated the salt-resistant genes GmST1, GmSALT3, and GmAKT2, which significantly reduced the endogenous hormones abscisic acid and jasmonic acid while, it enhanced the salicylic acid content of soybean. In addition, MU2 inoculation strengthened the host’s antioxidant system through the reduction of lipid peroxidation and proline while, it enhanced the reduced glutathione content. Moreover, MU2 inoculation promoted root and shoot length, plant biomass, and the chlorophyll content of soybean plants. These findings suggest that MU2 could be a potential biofertilizer catalyst for the amplification of the use efficiency of silicon and phosphorus fertilizers to mitigate salt stress.
Collapse
Affiliation(s)
- Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (A.A.); (M.A.K.); (K.-E.L.); (S.-M.K.)
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (A.A.); (M.A.K.); (K.-E.L.); (S.-M.K.)
| | - Ko-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (A.A.); (M.A.K.); (K.-E.L.); (S.-M.K.)
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (A.A.); (M.A.K.); (K.-E.L.); (S.-M.K.)
| | - Sanjeev Kumar Dhungana
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea;
| | - Narayan Bhusal
- Department of Forest Sciences, Seoul National University, Seoul 08826, Korea;
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (A.A.); (M.A.K.); (K.-E.L.); (S.-M.K.)
- Correspondence: ; Tel.: +82-53-950-5708
| |
Collapse
|
21
|
Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS One 2020; 15:e0232228. [PMID: 32353077 PMCID: PMC7192560 DOI: 10.1371/journal.pone.0232228] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Plants Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Plants Research Center, University of Nizwa, Nizwa, Oman
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
22
|
Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9530963. [PMID: 31886270 PMCID: PMC6925695 DOI: 10.1155/2019/9530963] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Salinity is one of the major abiotic constraints that hinder health and quality of crops. Conversely, halotolerant plant growth-promoting rhizospheric (PGPR) bacteria are considered biologically safe for alleviating salinity stress. RESULTS We isolated halotolerant PGPR strains from the rhizospheric soil of Artemisia princeps, Chenopodium ficifolium, Echinochloa crus-galli, and Oenothera biennis plants; overall, 126 strains were isolated. The plant growth-promoting traits of these isolates were studied by inoculating them with the soil used to grow soybean plants under normal and salt stress (NaCl; 200 mM) conditions. The isolates identified as positive for growth-promoting activities were subjected to molecular identification. Out of 126 isolates, five strains-Arthrobacter woluwensis (AK1), Microbacterium oxydans (AK2), Arthrobacter aurescens (AK3), Bacillus megaterium (AK4), and Bacillus aryabhattai (AK5)-were identified to be highly tolerant to salt stress and demonstrated several plant growth-promoting traits like increased production of indole-3-acetic acid (IAA), gibberellin (GA), and siderophores and increased phosphate solubilization. These strains were inoculated in the soil of soybean plants grown under salt stress (NaCl; 200 mM) and various physiological and morphological parameters of plants were studied. The results showed that the microbial inoculation elevated the antioxidant (SOD and GSH) level and K+ uptake and reduced the Na+ ion concentration. Moreover, inoculation of these microbes significantly lowered the ABA level and increased plant growth attributes and chlorophyll content in soybean plants under 200 mM NaCl stress. The salt-tolerant gene GmST1 was highly expressed with the highest expression of 42.85% in AK1-treated plants, whereas the lowest expression observed was 13.46% in AK5-treated plants. Similarly, expression of the IAA regulating gene GmLAX3 was highly depleted in salt-stressed plants by 38.92%, which was upregulated from 11.26% to 43.13% upon inoculation with the microorganism. CONCLUSION Our results showed that the salt stress-resistant microorganism used in these experiments could be a potential biofertilizer to mitigate the detrimental effects of salt stress in plants via regulation of phytohormones and gene expression.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajid Ali
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|