1
|
Franz P, Delvaux de Fenffe CM, Fierz B. A Site-Specific Click Chemistry Approach to Di-Ubiquitylate H1 Variants Reveals Position-Dependent Stimulation of the DNA Repair Protein RNF168. Angew Chem Int Ed Engl 2024; 63:e202408435. [PMID: 39377639 DOI: 10.1002/anie.202408435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
Ubiquitylation of histone H2A at lysines 13 and 15 by the E3 ligase RNF168 plays a key role in orchestrating DNA double-strand break (DSB) repair, which is often deregulated in cancer. RNF168 activity is triggered by DSB signaling cascades, reportedly through K63-linked poly-ubiquitylation of linker histone H1. However, direct experimental evidence of this mechanism has been elusive, primarily due to the lack of methods to specifically poly-ubiquitylate H1. Here, we developed a versatile click chemistry approach to covalently link multiple proteins in a site-specific, controlled, and stepwise manner. Applying this method, we synthesized H1 constructs bearing triazole-linked di-ubiquitin on four DNA repair-associated ubiquitylation hotspots (H1KxUb2, at K17, 46, 64 and 96). Integrated into nucleosome arrays, the H1KxUb2 variants stimulated H2A ubiquitylation by RNF168 in a position-dependent manner, with H1K17Ub2 showing the strongest RNF168 activation effect. Moreover, we show that di-ubiquitin binding is the driving force underlying RNF168 recruitment, introducing H1K17Ub2 into living U-2 OS cells. Together, our results support the hypothesis of poly-ubiquitylated H1 guiding RNF168 recruitment to DSB sites. Moreover, we demonstrate how the streamlined synthesis of H1KxUb2 variants enables mechanistic studies into RNF168 regulation, with potential implications for its inhibition in susceptible cancers.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
| | - Charlotte M Delvaux de Fenffe
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
- present address: Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Nederland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Helbling-Leclerc A, Falampin M, Heddar A, Guerrini-Rousseau L, Marchand M, Cavadias I, Auger N, Bressac-de Paillerets B, Brugieres L, Lopez BS, Polak M, Rosselli F, Misrahi M. Biallelic Germline BRCA1 Frameshift Mutations Associated with Isolated Diminished Ovarian Reserve. Int J Mol Sci 2024; 25:12460. [PMID: 39596525 PMCID: PMC11594631 DOI: 10.3390/ijms252212460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The use of next-generation sequencing (NGS) has recently enabled the discovery of genetic causes of primary ovarian insufficiency (POI) with high genetic heterogeneity. In contrast, the causes of diminished ovarian reserve (DOR) remain poorly understood. Here, we identified by NGS and whole exome sequencing (WES) the cause of isolated DOR in a 14-year-old patient. Two frameshift mutations in BRCA1 (NM_007294.4) were found: in exon 8 (c.470_471del; p.Ser157Ter) and in exon 11 (c.791_794del, p.Ser264MetfsTer33). Unexpectedly, the patient presented no signs of Fanconi anemia (FA), i.e., no developmental abnormalities or indications of bone marrow failure. However, high chromosomal fragility was found in the patient's cells, consistent with an FA diagnosis. RT-PCR and Western-blot analysis support the fact that the c. 791_794del BRCA1 allele is transcribed and translated into a shorter protein (del11q), while no expression of the full-length BRCA1 protein was found. DNA damage response (DDR) studies after genotoxic agents demonstrate normal activation of the early stages of the DDR and FANC/BRCA pathway. This is consistent with the maintenance of residual repair activity for the del11q BRCA1 isoform. Our observation is the first implication of bi-allelic BRCA1 mutations in isolated ovarian dysfunction or infertility in humans, without clinical signs of FA, and highlights the importance of BRCA1 in ovarian development and function.
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- Genome Integrity and Cancer, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; (A.H.-L.); (F.R.)
| | - Marie Falampin
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Abdelkader Heddar
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Laboratoire de Référence Pour les Infertilités Génétiques, APHP Hôpitaux Universitaires Paris-Saclay, Faculté de Médecine Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France;
| | - Léa Guerrini-Rousseau
- Département de Cancérologie de L’enfant et de L’adolescent, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.G.-R.); (L.B.)
| | - Maud Marchand
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Iphigenie Cavadias
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Nathalie Auger
- Département de Biologie et de Pathologie Médicales, Gustave Roussy, 94805 Villejuif, France;
| | - Brigitte Bressac-de Paillerets
- Département de Biologie et Pathologies Médicales et U1279 INSERM, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Laurence Brugieres
- Département de Cancérologie de L’enfant et de L’adolescent, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.G.-R.); (L.B.)
| | - Bernard S. Lopez
- Faculte de Medecine, INSERM 1016, UMR 80104 CNRS, Institut Cochin, Université de Paris-Cité, 24 Rue du Faubourg ST Jacques, 75014 Paris, France;
| | - Michel Polak
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
- Faculté de Santé, Université de Paris, 75006 Paris, France
- Groupement de Coopération Sanitaire-GCS SeqOIA, Référent Clinicien Préindication Insuffisance Ovarienne Primitive and Plan France Médecine Génomique 2025, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Filippo Rosselli
- Genome Integrity and Cancer, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; (A.H.-L.); (F.R.)
| | - Micheline Misrahi
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Laboratoire de Référence Pour les Infertilités Génétiques, APHP Hôpitaux Universitaires Paris-Saclay, Faculté de Médecine Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France;
| |
Collapse
|
3
|
Zhang X, Tao X, Zhou Y, Shi G, Wang T. Comprehensive Analysis of the Significance of Breast Cancer Gene 1 (BRCA-1) in Bladder Cancer. Cancer Manag Res 2024; 16:1305-1319. [PMID: 39372705 PMCID: PMC11451393 DOI: 10.2147/cmar.s467817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
Background Bladder carcinoma (BLCA) is characterized by high morbidity, mortality, and treatment costs. Breast cancer gene 1 (BRCA1), a tumor suppressor gene, inhibits the development of malignant tumors. However, research on the significance of BRCA1 in BLCA is limited. This study aims to explore the importance of BRCA1 in BLCA using bioinformatic methods and immunohistochemistry. Methods Gene expression, clinical, and survival data were collected from the TCGA databases through the UCSC Xena platform (http://xena.ucsc.edu/). The TPM data from the TCGA and GETEx databases were integrated using the GEPIA database (http://GEPIA.cancer-pku.cn). The study then explored the differential expression, survival prognosis, functional enrichment, and immune cell infiltration analyses of BRCA1 in BLCA. A PPI network of BRCA1 was constructed using the STRING database, and a BRCA1-associated gene-gene interaction network was generated using the GeneMANIA database. Immunohistochemistry (IHC) assays were performed to verify the expression levels of BRCA1 in bladder tumour tissues and adjacent normal tissues. Results BRCA1 is associated with BLCA. Differential analysis indicated that BRCA1 acts as a risk factor for BLCA but does not show significant expression differences across genders, stages, tumor stages, lymph node stages, or metastasis stages. Additionally, staging was based on the eighth edition of the American Joint Committee on Cancer (AJCC) for BLCA. Co-expression network and Gene Set Enrichment Analysis (GESA) confirmed that BRCA1 is involved in various BLCA pathways. Furthermore, BRCA1 expression was also linked to immune cell infiltration. However, survival prognosis analysis revealed no significant correlation between the prognosis of BLCA and BRCA1. Conclusion We demonstrated that BRCA1 is a prospective predicted and immunological biomarker in BLCA, offering new avenues for potential therapies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Internal Medicine-Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaoxuan Tao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Yuxin Zhou
- Department of Internal Medicine-Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Guangyue Shi
- Department of Internal Medicine-Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Tianjiao Wang
- Department of Internal Medicine-Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Fitzgerald O, Wu B, Wang M, Maqbool R, Li W, Zhao W. Protocol for evaluating the E3 ligase activity of BRCA1-BARD1 and its variants by nucleosomal histone ubiquitylation. STAR Protoc 2024; 5:103294. [PMID: 39243377 PMCID: PMC11408276 DOI: 10.1016/j.xpro.2024.103294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
The tumor suppressor breast cancer 1 (BRCA1) complexed with BRCA1-associated RING domain 1 (BARD1), a RING-type E3 ligase, facilitates the attachment of ubiquitin onto the substrate protein. Here, we present a protocol for evaluating the E3 ligase activity of BRCA1-BARD1 and its variants by nucleosomal histone ubiquitylation. We describe steps for isolating 147 bp Widom 601 DNA and assembling nucleosome core particles (NCPs). We then detail procedures for the in vitro ubiquitylation of nucleosome histone H2A by BRCA1-BARD1 and its variants. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- O'Taveon Fitzgerald
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rouf Maqbool
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
Zhang X, Zhu T, Li X, Zhao H, Lin S, Huang J, Yang B, Guo X. DNA damage-induced proteasome phosphorylation controls substrate recognition and facilitates DNA repair. Proc Natl Acad Sci U S A 2024; 121:e2321204121. [PMID: 39172782 PMCID: PMC11363268 DOI: 10.1073/pnas.2321204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Upon DNA damage, numerous proteins are targeted for ubiquitin-dependent proteasomal degradation, which is an integral part of the DNA repair program. Although details of the ubiquitination processes have been intensively studied, little is known about whether and how the 26S proteasome is regulated in the DNA damage response (DDR). Here, we show that human Rpn10/PSMD4, one of the three ubiquitin receptors of the 26S proteasome, is rapidly phosphorylated in response to different types of DNA damage. The phosphorylation occurs at Rpn10-Ser266 within a conserved SQ motif recognized by ATM/ATR/DNA-PK. Blockade of S266 phosphorylation attenuates homologous recombination-mediated DNA repair and sensitizes cells to genotoxic insults. In vitro and in cellulo experiments indicate that phosphorylation of S266, located in the flexible linker between the two ubiquitin-interacting motifs (UIMs) of Rpn10, alters the configuration of UIMs, and actually reduces ubiquitin chain (substrate) binding. As a result, essential DDR proteins such as BRCA1 are spared from premature degradation and allowed sufficient time to engage in DNA repair, a scenario supported by proximity labeling and quantitative proteomic studies. These findings reveal an inherent self-limiting mechanism of the proteasome that, by controlling substrate recognition through Rpn10 phosphorylation, fine-tunes protein degradation for optimal responses under stress.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Tianyi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Hongxia Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
6
|
Taha MS, Ahmadian MR. Nucleophosmin: A Nucleolar Phosphoprotein Orchestrating Cellular Stress Responses. Cells 2024; 13:1266. [PMID: 39120297 PMCID: PMC11312075 DOI: 10.3390/cells13151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nucleophosmin (NPM1) is a key nucleolar protein released from the nucleolus in response to stress stimuli. NPM1 functions as a stress regulator with nucleic acid and protein chaperone activities, rapidly shuttling between the nucleus and cytoplasm. NPM1 is ubiquitously expressed in tissues and can be found in the nucleolus, nucleoplasm, cytoplasm, and extracellular environment. It plays a central role in various biological processes such as ribosome biogenesis, cell cycle regulation, cell proliferation, DNA damage repair, and apoptosis. In addition, it is highly expressed in cancer cells and solid tumors, and its mutation is a major cause of acute myeloid leukemia (AML). This review focuses on NPM1's structural features, functional diversity, subcellular distribution, and role in stress modulation.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Sahu M, Rani N, Kumar P. Simulation and Computational Study of RING Domain Mutants of BRCA1 and Ube2k in AD/PD Pathophysiology. Mol Biotechnol 2024; 66:1095-1115. [PMID: 38172369 DOI: 10.1007/s12033-023-01006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Lysine-based post-translational modification (PTM) such as acylation, acetylation, deamination, methylation, SUMOylation, and ubiquitination has proven to be a major regulator of gene expression, chromatin structure, protein stability, protein-protein interaction, protein degradation, and cellular localization. However, besides all the PTMs, ubiquitination stands as the second most common PTM after phosphorylation that is involved in the etiology of neurodegenerative diseases (NDDs) namely, Alzheimer's disease (AD) and Parkinson's disease (PD). NDDs are characterized by the accumulation of misfolded protein aggregates in the brain that lead to disease-related gene mutation and irregular protein homeostasis. The ubiquitin-proteasome system (UPS) is in charge of degrading these misfolded proteins, which involve an interplay of E1, E2, E3, and deubiquitinase enzymes. Impaired UPS has been commonly observed in NDDs and E3 ligases are the key members of the UPS, thus, dysfunction of the same can accelerate the neurodegeneration process. Therefore, the aim of this study is firstly, to find E3 ligases that are common in both AD and PD through data mining. Secondly, to study the impact of mutation on its structure and function. The study deciphered 74 E3 ligases that were common in both AD and PD. Later, 10 hub genes were calculated of which protein-protein interaction, pathway enrichment, lysine site prediction, domain, and motif analysis were performed. The results predicted BRCA1, PML, and TRIM33 as the top three putative lysine-modified E3 ligases involved in AD and PD pathogenesis. However, based on structural characterization, BRCA1 was taken further to study RING domain mutation that inferred K32Y, K32L, K32C, K45V, K45Y, and K45G as potential mutants that alter the structural and functional ability of BRCA1 to interact with Ube2k, E2-conjugating enzyme. The most probable mutant observed after molecular dynamics simulation of 50 ns is K32L. Therefore, our study concludes BRCA1, a potential E3 ligase common in AD and PD, and RING domain mutation at sites K32 and K45 possibly disturbs its interaction with its E2, Ube2k.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
8
|
Kasturirangan S, Nancarrow DJ, Shah A, Lagisetty KH, Lawrence TS, Beer DG, Ray D. Isoform alterations in the ubiquitination machinery impacting gastrointestinal malignancies. Cell Death Dis 2024; 15:194. [PMID: 38453895 PMCID: PMC10920915 DOI: 10.1038/s41419-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.
Collapse
Affiliation(s)
| | - Derek J Nancarrow
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayush Shah
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kiran H Lagisetty
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Beer
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipankar Ray
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Burdett H, Foglizzo M, Musgrove LJ, Kumar D, Clifford G, Campbell L, Heath GR, Zeqiraj E, Wilson M. BRCA1-BARD1 combines multiple chromatin recognition modules to bridge nascent nucleosomes. Nucleic Acids Res 2023; 51:11080-11103. [PMID: 37823591 PMCID: PMC10639053 DOI: 10.1093/nar/gkad793] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Chromatin association of the BRCA1-BARD1 heterodimer is critical to promote homologous recombination repair of DNA double-strand breaks (DSBs) in S/G2. How the BRCA1-BARD1 complex interacts with chromatin that contains both damage induced histone H2A ubiquitin and inhibitory H4K20 methylation is not fully understood. We characterised BRCA1-BARD1 binding and enzymatic activity to an array of mono- and di-nucleosome substrates using biochemical, structural and single molecule imaging approaches. We found that the BRCA1-BARD1 complex preferentially interacts and modifies di-nucleosomes over mono-nucleosomes, allowing integration of H2A Lys-15 ubiquitylation signals with other chromatin modifications and features. Using high speed- atomic force microscopy (HS-AFM) to monitor how the BRCA1-BARD1 complex recognises chromatin in real time, we saw a highly dynamic complex that bridges two nucleosomes and associates with the DNA linker region. Bridging is aided by multivalent cross-nucleosome interactions that enhance BRCA1-BARD1 E3 ubiquitin ligase catalytic activity. Multivalent interactions across nucleosomes explain how BRCA1-BARD1 can recognise chromatin that retains partial di-methylation at H4 Lys-20 (H4K20me2), a parental histone mark that blocks BRCA1-BARD1 interaction with nucleosomes, to promote its enzymatic and DNA repair activities.
Collapse
Affiliation(s)
- Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laura J Musgrove
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dhananjay Kumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lisa J Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George R Heath
- Astbury Centre for Structural Molecular Biology, School of Physics & Astronomy and Biomedical Sciences, Faculty of Engineering & Physical Sciences and Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
10
|
Wang M, Li W, Tomimatsu N, Yu CH, Ji JH, Alejo S, Witus SR, Alimbetov D, Fitzgerald O, Wu B, Wang Q, Huang Y, Gan Y, Dong F, Kwon Y, Sareddy GR, Curiel TJ, Habib AA, Hromas R, Dos Santos Passos C, Yao T, Ivanov DN, Brzovic PS, Burma S, Klevit RE, Zhao W. Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Mol Cell 2023; 83:3679-3691.e8. [PMID: 37797621 PMCID: PMC10591799 DOI: 10.1016/j.molcel.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Salvador Alejo
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dauren Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - O'Taveon Fitzgerald
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qijing Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yaqi Gan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Felix Dong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gangadhara R Sareddy
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tyler J Curiel
- Geisel School of Medicine at Dartmouth and Department of Medicine, Dartmouth Health, Lebanon, NH 03765, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Hromas
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Carolina Dos Santos Passos
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Nepomuceno TC, Foo TK, Richardson ME, Ranola JMO, Weyandt J, Varga MJ, Alarcon A, Gutierrez D, von Wachenfeldt A, Eriksson D, Kim R, Armel S, Iversen E, Couch FJ, Borg Å, Xia B, Carvalho MA, Monteiro ANA. BRCA1 frameshift variants leading to extended incorrect protein C termini. HGG ADVANCES 2023; 4:100240. [PMID: 37718511 PMCID: PMC10558845 DOI: 10.1016/j.xhgg.2023.100240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Carriers of BRCA1 germline pathogenic variants are at substantially higher risk of developing breast and ovarian cancer than the general population. Accurate identification of at-risk individuals is crucial for risk stratification and the implementation of targeted preventive and therapeutic interventions. Despite significant progress in variant classification efforts, a sizable portion of reported BRCA1 variants remain as variants of uncertain clinical significance (VUSs). Variants leading to premature protein termination and loss of essential functional domains are typically classified as pathogenic. However, the impact of frameshift variants that result in an extended incorrect terminus is not clear. Using validated functional assays, we conducted a systematic functional assessment of 17 previously reported BRCA1 extended incorrect terminus variants (EITs) and concluded that 16 constitute loss-of-function variants. This suggests that most EITs are likely to be pathogenic. However, one variant, c.5578dup, displayed a protein expression level, affinity to known binding partners, and activity in transcription and homologous recombination assays comparable to the wild-type BRCA1 protein. Twenty-three additional carriers of c.5578dup were identified at a US clinical diagnostic lab and assessed using a family history likelihood model providing, in combination with the functional data, a likely benign interpretation. These results, consistent with family history data in the current study and available data from ClinVar, indicate that most, but not all, BRCA1 variants leading to an extended incorrect terminus constitute loss-of-function variants and underscore the need for comprehensive assessment of individual variants.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | | | - Amaya Alarcon
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Diana Gutierrez
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Daniel Eriksson
- Department of Clinical Genetics, Akademiska Sjukhuset, Uppsala, Sweden
| | - Raymond Kim
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Susan Armel
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | | | | | - Åke Borg
- University of Lund, 221 00 Lund, Sweden
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro 20270-021, Brazil.
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Cui G, Botuyan MV, Drané P, Hu Q, Bragantini B, Thompson JR, Schuller DJ, Detappe A, Perfetti MT, James LI, Frye SV, Chowdhury D, Mer G. An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering. Nat Commun 2023; 14:6091. [PMID: 37773238 PMCID: PMC10541411 DOI: 10.1038/s41467-023-41821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1-autoinhibited for chromatin binding-that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Benoît Bragantini
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - David J Schuller
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | | | - Michael T Perfetti
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Zhong AX, Chen Y, Chen PL. BRCA1 the Versatile Defender: Molecular to Environmental Perspectives. Int J Mol Sci 2023; 24:14276. [PMID: 37762577 PMCID: PMC10532398 DOI: 10.3390/ijms241814276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The evolving history of BRCA1 research demonstrates the profound interconnectedness of a single protein within the web of crucial functions in human cells. Mutations in BRCA1, a tumor suppressor gene, have been linked to heightened breast and ovarian cancer risks. However, despite decades of extensive research, the mechanisms underlying BRCA1's contribution to tissue-specific tumor development remain elusive. Nevertheless, much of the BRCA1 protein's structure, function, and interactions has been elucidated. Individual regions of BRCA1 interact with numerous proteins to play roles in ubiquitination, transcription, cell checkpoints, and DNA damage repair. At a cellular scale, these BRCA1 functions coordinate tumor suppression, R-loop prevention, and cellular differentiation, all of which may contribute to BRCA1's role in cancer tissue specificity. As research on BRCA1 and breast cancer continues to evolve, it will become increasingly evident that modern materials such as Bisphenol A should be examined for their relationship with DNA stability, cancer incidence, and chemotherapy. Overall, this review offers a comprehensive understanding of BRCA1's many roles at a molecular, cellular, organismal, and environmental scale. We hope that the knowledge gathered here highlights both the necessity of BRCA1 research and the potential for novel strategies to prevent and treat cancer in individuals carrying BRCA1 mutations.
Collapse
Affiliation(s)
- Amy X. Zhong
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Irvine, CA 92697, USA;
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Witus SR, Tuttle LM, Li W, Zelter A, Wang M, Kermoade KE, Wilburn DB, Davis TN, Brzovic PS, Zhao W, Klevit RE. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. EMBO J 2023; 42:e113565. [PMID: 37305927 PMCID: PMC10390874 DOI: 10.15252/embj.2023113565] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.
Collapse
Affiliation(s)
- Samuel R Witus
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Lisa M Tuttle
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Wenjing Li
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Alex Zelter
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Meiling Wang
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | | | - Damien B Wilburn
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOHUSA
| | - Trisha N Davis
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Peter S Brzovic
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Weixing Zhao
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Rachel E Klevit
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
15
|
Gasser SM. Transient chromatin compaction in fork restart. Nat Cell Biol 2023:10.1038/s41556-023-01181-1. [PMID: 37414848 DOI: 10.1038/s41556-023-01181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Affiliation(s)
- Susan M Gasser
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, Lausanne, Switzerland.
| |
Collapse
|
16
|
Thapa I, Vahrenkamp R, Witus SR, Lightle C, Falkenberg O, Sellin Jeffries M, Klevit R, Stewart MD. Conservation of transcriptional regulation by BRCA1 and BARD1 in Caenorhabditis elegans. Nucleic Acids Res 2023; 51:2108-2116. [PMID: 36250637 PMCID: PMC10018340 DOI: 10.1093/nar/gkac877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 01/27/2023] Open
Abstract
The tumor-suppressor proteins BRCA1 and BARD1 function as an E3 ubiquitin ligase to facilitate transcriptional repression and DNA damage repair. This is mediated in-part through its ability to mono-ubiquitylate histone H2A in nucleosomes. Studies in Caenorhabditis elegans have been used to elucidate numerous functions of BRCA1 and BARD1; however, it has not been established that the C. elegans orthologs, BRC-1 and BRD-1, retain all the functions of their human counterparts. Here we explore the conservation of enzymatic activity toward nucleosomes which leads to repression of estrogen-metabolizing cytochrome P450 (cyp) genes in humans. Biochemical assays establish that BRC-1 and BRD-1 contribute to ubiquitylation of histone H2A in the nucleosome. Mutational analysis shows that while BRC-1 likely binds the nucleosome using a conserved interface, BRD-1 and BARD1 have evolved different modes of binding, resulting in a difference in the placement of ubiquitin on H2A. Gene expression analysis reveals that in spite of this difference, BRC-1 and BRD-1 also contribute to cyp gene repression in C. elegans. Establishing conservation of these functions in C. elegans allows for use of this powerful model organism to address remaining questions regarding regulation of gene expression by BRCA1 and BARD1.
Collapse
Affiliation(s)
| | | | - Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caitlin Lightle
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Owen Falkenberg
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
17
|
Job F, Mai C, Villavicencio-Lorini P, Herfurth J, Neuhaus H, Hoffmann K, Pfirrmann T, Hollemann T. OTUD3: A Lys6 and Lys63 specific deubiquitinase in early vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194901. [PMID: 36503125 DOI: 10.1016/j.bbagrm.2022.194901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Ubiquitination and deubiquitylation regulate essential cellular processes and involve hundreds of sequentially acting enzymes, many of which are barely understood. OTUD3 is an evolutionarily highly conserved deubiquitinase involved in many aspects of cellular homeostasis. However, its biochemical properties and physiological role during development are poorly understood. Here, we report on the expression of OTUD3 in human tissue samples where it appears prominently in those of neuronal origin. In cells, OTUD3 is present in the cytoplasm where it can bind to microtubules. Interestingly, we found that OTUD3 cleaves preferentially at K6 and K63, i.e., poly-ubiquitin linkages that are not primarily involved in protein degradation. We employed Xenopus embryos to study the consequences of suppressing otud3 function during early neural development. We found that Otud3 deficiency led to impaired formation of cranial and particularly of cranial neural crest-derived structures as well as movement defects. Thus, OTUD3 appears as a neuronally enriched deubiquitinase that is involved in the proper development of the neural system.
Collapse
Affiliation(s)
- Florian Job
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Carolin Mai
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | | | - Juliane Herfurth
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Herbert Neuhaus
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Katrin Hoffmann
- Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany.
| |
Collapse
|
18
|
Kiewhuo K, Priyadarsinee L, Sarma H, Sastry GN. Molecular dynamics simulations reveal the effect of mutations in the RING domains of BRCA1-BARD1 complex and its relevance to the prognosis of breast cancer. J Biomol Struct Dyn 2023; 41:12734-12752. [PMID: 36775657 DOI: 10.1080/07391102.2023.2175383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023]
Abstract
The N-terminal RING-RING domain of BRCA1-BARD1 is an E3 ubiquitin ligase complex that plays a critical role in tumor suppression through DNA double stranded repair mechanism. Mutations in the BRCA1-BARD1 heterodimer RING domains were found to have an association with breast and ovarian cancer by a way of hampering the E3 ubiquitin ligase activity. Herein, the molecular mechanism of interaction, conformational change due to the specific mutations on the BRCA1-BARD1 complex at atomic level has been examined by employing molecular modeling techniques. Sixteen mutations have been selected for the study. Molecular dynamics simulation results reveal that the mutant complexes have more local perturbation with a high residual fluctuation in the zinc binding sites and central helix. A few of the BRCA1 (V11A, I21V, I42V, R71G, I31M and L51W) mutants have been experimentally identified that do not impair E3 ligase activity, display an enhanced number of H-bonds and non-bonded contacts at the interacting interface as revealed by MD simulation. The mutation of BRCA1 (C61G, C64Y, C39Y and C24R) and BARD1 (C53W, C71Y and C83R) zinc binding residues displayed a smaller number of significant H-bonds, other interactions and also loss of some of the hotspot residues. Additionally, most of the mutant complexes display relatively lower electrostatic energy, H-bonding and total stabilizing energy as compared to wild-type. The current study attempts to unravel the role of BRCA1-BARD1 mutations and delineates the structural and conformational dynamics in the progression of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kikrusenuo Kiewhuo
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
19
|
Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother 2023; 158:114090. [PMID: 36493696 DOI: 10.1016/j.biopha.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.
Collapse
Affiliation(s)
- Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
20
|
Caleca L, Radice P. Refinement of the assignment to the ACMG/AMP BS3 and PS3 criteria of eight BRCA1 variants of uncertain significance by integrating available functional data with protein interaction assays. Front Oncol 2023; 13:1146604. [PMID: 37168384 PMCID: PMC10164951 DOI: 10.3389/fonc.2023.1146604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
The clinical screening of cancer predisposition genes has led to the identification of a large number of variants of uncertain significance (VUS). Multifactorial likelihood models that predict the odds ratio for VUS in favor or against cancer causality, have been developed, but their use is limited by the amount of necessary data, which are difficult to obtain for rare variants. The guidelines for variant interpretation of the American College of Medical Genetics and Genomics along with the Association for Molecular Pathology (ACMG/AMP) state that "well-established" functional studies provide strong support of a pathogenic or benign impact (criteria PS3 and BS3, respectively) and can be used as evidence type to reach a final classification. Moreover, the Clinical Genome Resource Sequence Variant Interpretation Working Group developed rule specifications to refine the PS3/BS3 criteria. Recently, Lira PC et al. developed the "Hi Set" approach that generated PS3/BS3 codes for over two-thousands BRCA1 VUS. While highly successful, this approach did not discriminate a group of variants with conflicting evidences. Here, we aimed to implement the outcomes of the "Hi-set" approach applying Green Fluorescent Protein (GFP)-reassembly assays, assessing the effect of variants in the RING and BRCT domains of BRCA1 on the binding of these domains with the UbcH5a or ABRAXAS proteins, respectively. The analyses of 26 clinically classified variants, including 13 tested in our previous study, showed 100% sensitivity and specificity in identifying pathogenic and benign variants for both the RING/UbcH5a and the BRCTs/ABRAXAS interactions. We derived the strength of evidences generated by the GFP-reassembly assays corresponding to moderate for both PS3 and BS3 criteria assessment. The GFP-reassembly assays were applied to the functional characterization of 8 discordant variants from the study by Lyra et al. The outcomes of these analyses, combined with those reported in the "Hi Set" study, allowed the assignment of ACMG/AMP criteria in favor or against pathogenicity for all 8 examined variants. The above findings were validated with a semi-quantitative Mammalian Two-Hybrid approach, and totally concordant results were observed. Our data contributes in shedding light on the functional significance of BRCA1 VUS and on their clinical interpretation within the ACMG/AMP framework.
Collapse
|
21
|
Li Q, Kaur A, Okada K, McKenney RJ, Engebrecht J. Differential requirement for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in the Caenorhabditis elegans germ line. PLoS Genet 2023; 19:e1010457. [PMID: 36716349 PMCID: PMC9910797 DOI: 10.1371/journal.pgen.1010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
The tumor suppressor BRCA1-BARD1 complex regulates many cellular processes; of critical importance to its tumor suppressor function is its role in genome integrity. Although RING E3 ubiquitin ligase activity is the only known enzymatic activity of the complex, the in vivo requirement for BRCA1-BARD1 E3 ubiquitin ligase activity has been controversial. Here we probe the role of BRCA1-BARD1 E3 ubiquitin ligase activity in vivo using C. elegans. Genetic, cell biological, and biochemical analyses of mutants defective for E3 ligase activity suggest there is both E3 ligase-dependent and independent functions of the complex in the context of DNA damage repair and meiosis. We show that E3 ligase activity is important for nuclear accumulation of the complex and specifically to concentrate at meiotic recombination sites but not at DNA damage sites in proliferating germ cells. While BRCA1 alone is capable of monoubiquitylation, BARD1 is required with BRCA1 to promote polyubiquitylation. We find that the requirement for E3 ligase activity and BARD1 in DNA damage signaling and repair can be partially alleviated by driving the nuclear accumulation and self-association of BRCA1. Our data suggest that in addition to E3 ligase activity, BRCA1 may serve a structural role for DNA damage signaling and repair while BARD1 plays an accessory role to enhance BRCA1 function.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| |
Collapse
|
22
|
Epimutations and Their Effect on Chromatin Organization: Exciting Avenues for Cancer Treatment. Cancers (Basel) 2022; 15:cancers15010215. [PMID: 36612210 PMCID: PMC9818548 DOI: 10.3390/cancers15010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The three-dimensional architecture of genomes is complex. It is organized as fibers, loops, and domains that form high-order structures. By using different chromosome conformation techniques, the complex relationship between transcription and genome organization in the three-dimensional organization of genomes has been deciphered. Epigenetic changes, such as DNA methylation and histone modification, are the hallmark of cancers. Tumor initiation, progression, and metastasis are linked to these epigenetic modifications. Epigenetic inhibitors can reverse these altered modifications. A number of epigenetic inhibitors have been approved by FDA that target DNA methylation and histone modification. This review discusses the techniques involved in studying the three-dimensional organization of genomes, DNA methylation and histone modification, epigenetic deregulation in cancer, and epigenetic therapies targeting the tumor.
Collapse
|
23
|
Zhang X, Yang Y, Li D, Wu Z, Liu H, Zhao Z, Zhu H, Xie F, Li X. MOF negatively regulates estrogen receptor α signaling via CUL4B-mediated protein degradation in breast cancer. Front Oncol 2022; 12:868866. [PMID: 36212422 PMCID: PMC9539768 DOI: 10.3389/fonc.2022.868866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Estrogen receptor α (ERα) is the dominant tumorigenesis driver in breast cancer (BC), and ERα-positive BC (ERα+ BC) accounts for more than two-thirds of BC cases. MOF (males absent on the first) is a highly conserved histone acetyltransferase that acetylates lysine 16 of histone H4 (H4K16) and several non-histone proteins. Unbalanced expression of MOF has been identified, and high MOF expression predicted a favorable prognosis in BC. However, the association of MOF with ERα and the regulatory mechanisms of MOF in ERα signaling remain elusive. Our study revealed that the expression of MOF is negatively correlated with that of ERα in BC. In ERα+ BC cells, MOF overexpression downregulated the protein abundance of ERα in both cytoplasm and nucleus, thus attenuating ERα-mediated transactivation as well as cellular proliferation and in vivo tumorigenicity of BC cells. MOF promoted ERα protein degradation through CUL4B-mediated ubiquitin–proteasome pathway and induced HSP90 hyperacetylation that led to the loss of chaperone protection of HSP90 to ERα. We also revealed that suppression of MOF restored ERα expression and increased the sensitivity of ERα-negative BC cells to tamoxifen treatment. These results provide a new insight into the tumor-suppressive role of MOF in BC via negatively regulating ERα action, suggesting that MOF might be a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yang Yang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Zhen Wu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ziyan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongying Zhu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Xiangzhi Li,
| |
Collapse
|
24
|
Chen JJ, Stermer D, Tanny JC. Decoding histone ubiquitylation. Front Cell Dev Biol 2022; 10:968398. [PMID: 36105353 PMCID: PMC9464978 DOI: 10.3389/fcell.2022.968398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Histone ubiquitylation is a critical part of both active and repressed transcriptional states, and lies at the heart of DNA damage repair signaling. The histone residues targeted for ubiquitylation are often highly conserved through evolution, and extensive functional studies of the enzymes that catalyze the ubiquitylation and de-ubiquitylation of histones have revealed key roles linked to cell growth and division, development, and disease in model systems ranging from yeast to human cells. Nonetheless, the downstream consequences of these modifications have only recently begun to be appreciated on a molecular level. Here we review the structure and function of proteins that act as effectors or “readers” of histone ubiquitylation. We highlight lessons learned about how ubiquitin recognition lends specificity and function to intermolecular interactions in the context of transcription and DNA repair, as well as what this might mean for how we think about histone modifications more broadly.
Collapse
|
25
|
Li Q, Kaur A, Mallory B, Hariri S, Engebrecht J. Inducible degradation of dosage compensation protein DPY-27 facilitates isolation of Caenorhabditis elegans males for molecular and biochemical analyses. G3 (BETHESDA, MD.) 2022; 12:jkac085. [PMID: 35404452 PMCID: PMC9073673 DOI: 10.1093/g3journal/jkac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 04/22/2023]
Abstract
Biological sex affects numerous aspects of biology, yet how sex influences different biological processes have not been extensively studied at the molecular level. Caenorhabditis elegans, with both hermaphrodites (functionally females as adults) and males, is an excellent system to uncover how sex influences physiology. Here, we describe a method to isolate large quantities of C. elegans males by conditionally degrading DPY-27, a component of the dosage compensation complex essential for hermaphrodite, but not male, development. We show that germ cells from males isolated following DPY-27 degradation undergo meiosis and spermiogenesis like wild type and these males are competent to mate and sire viable offspring. We further demonstrate the efficacy of this system by analyzing gene expression and performing affinity pull-downs from male worm extracts.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Benjamin Mallory
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Sara Hariri
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
26
|
Witus SR, Zhao W, Brzovic PS, Klevit RE. BRCA1/BARD1 is a nucleosome reader and writer. Trends Biochem Sci 2022; 47:582-595. [DOI: 10.1016/j.tibs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
|
27
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
28
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|