1
|
Forbes M, Kempa R, Mastrobuoni G, Rayman L, Pietzke M, Bayram S, Arlt B, Spruessel A, Deubzer HE, Kempa S. L-Glyceraldehyde Inhibits Neuroblastoma Cell Growth via a Multi-Modal Mechanism on Metabolism and Signaling. Cancers (Basel) 2024; 16:1664. [PMID: 38730615 PMCID: PMC11083149 DOI: 10.3390/cancers16091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Glyceraldehyde (GA) is a three-carbon monosaccharide that can be present in cells as a by-product of fructose metabolism. Bruno Mendel and Otto Warburg showed that the application of GA to cancer cells inhibits glycolysis and their growth. However, the molecular mechanism by which this occurred was not clarified. We describe a novel multi-modal mechanism by which the L-isomer of GA (L-GA) inhibits neuroblastoma cell growth. L-GA induces significant changes in the metabolic profile, promotes oxidative stress and hinders nucleotide biosynthesis. GC-MS and 13C-labeling was employed to measure the flow of carbon through glycolytic intermediates under L-GA treatment. It was found that L-GA is a potent inhibitor of glycolysis due to its proposed targeting of NAD(H)-dependent reactions. This results in growth inhibition, apoptosis and a redox crisis in neuroblastoma cells. It was confirmed that the redox mechanisms were modulated via L-GA by proteomic analysis. Analysis of nucleotide pools in L-GA-treated cells depicted a previously unreported observation, in which nucleotide biosynthesis is significantly inhibited. The inhibitory action of L-GA was partially relieved with the co-application of the antioxidant N-acetyl-cysteine. We present novel evidence for a simple sugar that inhibits cancer cell proliferation via dysregulating its fragile homeostatic environment.
Collapse
Affiliation(s)
- Martin Forbes
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Richard Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Guido Mastrobuoni
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Liam Rayman
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Matthias Pietzke
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Mass Spectrometry Facility, MaxPlanck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Safak Bayram
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Birte Arlt
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Annika Spruessel
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Invalidenstr. 80, 10115 Berlin, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC), Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Stefan Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| |
Collapse
|
2
|
Piccirillo S, Preziuso A, Cerqueni G, Serfilippi T, Terenzi V, Vinciguerra A, Amoroso S, Lariccia V, Magi S. A strategic tool to improve the study of molecular determinants of Alzheimer's disease: The role of glyceraldehyde. Biochem Pharmacol 2023; 218:115869. [PMID: 37871878 DOI: 10.1016/j.bcp.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive neurodegeneration leading to severe cognitive, memory, and behavioral impairments. The onset of AD involves a complex interplay among various factors, including age, genetics, chronic inflammation, and impaired energy metabolism. Despite significant efforts, there are currently no effective therapies capable of modifying the course of AD, likely owing to an excessive focus on the amyloid hypothesis and a limited consideration of other intracellular pathways. In the present review, we emphasize the emerging concept of AD as a metabolic disease, where alterations in energy metabolism play a critical role in its development and progression. Notably, glucose metabolism impairment is associated with mitochondrial dysfunction, oxidative stress, Ca2+ dyshomeostasis, and protein misfolding, forming interconnected processes that perpetuate a detrimental self-feeding loop sustaining AD progression. Advanced glycation end products (AGEs), neurotoxic compounds that accumulate in AD, are considered an important consequence of glucose metabolism disruption, and glyceraldehyde (GA), a glycolytic intermediate, is a key contributor to AGEs formation in both neurons and astrocytes. Exploring the impact of GA-induced glucose metabolism impairment opens up exciting possibilities for creating an easy-to-handle in vitro model that recapitulates the early stage of the disease. This model holds great potential for advancing the development of novel therapeutics targeting various intracellular pathways implicated in AD pathogenesis. In conclusion, looking beyond the conventional amyloid hypothesis could lead researchers to discover promising targets for intervention, offering the possibility of addressing the existing medical gaps in AD treatment.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Valentina Terenzi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| |
Collapse
|
3
|
Koriyama Y, Furukawa A, Muramatsu M, Takino JI, Takeuchi M. Glyceraldehyde caused Alzheimer's disease-like alterations in diagnostic marker levels in SH-SY5Y human neuroblastoma cells. Sci Rep 2015; 5:13313. [PMID: 26304819 PMCID: PMC4548441 DOI: 10.1038/srep13313] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023] Open
Abstract
Clinical evidence has implicated diabetes mellitus as one of the risk factors for the development and progression of Alzheimer’s disease (AD). However, the neurotoxic pathway activated due to abnormalities in glucose metabolism has not yet been identified in AD. In order to investigate the relationship between impaired cerebral glucose metabolism and the pathophysiology of AD, SH-SY5Y human neuroblastoma cells were exposed to glyceraldehyde (GA), an inhibitor of glycolysis. GA induced the production of GA-derived advanced glycation end-products (GA-AGEs) and cell apoptosis, glycolytic inhibition, decreases in the medium concentrations of diagnostic markers of AD, such as amyloid β 1-42 (Aβ42), and increases in tau phosphorylation. These results suggest that the production of GA-AGEs and/or inhibition of glycolysis induce AD-like alterations, and this model may be useful for examining the pathophysiology of AD.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Ayako Furukawa
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Michiru Muramatsu
- Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa, Ishikawa, 920-1181, Japan
| | - Jun-ichi Takino
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| |
Collapse
|
4
|
BALAZS R. The point of the aerobic inhibition of glycolytic activity associated with brain mitochondria. Biochem J 1998; 72:561-74. [PMID: 13796107 PMCID: PMC1196976 DOI: 10.1042/bj0720561] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. DIABETES/METABOLISM REVIEWS 1986; 2:163-214. [PMID: 2943567 DOI: 10.1002/dmr.5610020301] [Citation(s) in RCA: 371] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Mayo JW, Anderson RL. Basis for the mutational acquisition of the ability of Aerobacter aerogenes to grow on L-mannose. J Bacteriol 1969; 100:948-55. [PMID: 5354955 PMCID: PMC250179 DOI: 10.1128/jb.100.2.948-955.1969] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Growth of Aerobacter aerogenes PRL-R3 on the unnatural hexose l-mannose as a sole carbon source is dependent upon the selection of a mutant. Growth of the mutant on l-mannose did not require the synthesis of novel enzymes for the degradation of l-mannose, since enzymes of the l-rhamnose degradative pathway could serve this function. However, unlike most other apparent gain mutations that have been described, the mutant was not constitutive for the degradative enzymes; isomerase, kinase, and aldolase activities functional in the degradation of both l-mannose and l-rhamnose were induced by either of these hexoses in the wild type as well as in the mutant. The fact that the wild type could metabolize l-mannose also ruled out the possibility that the cells were not permeable to l-mannose. Growth of the wild type on nutrient broth was severely inhibited by l-mannose coincident with the onset of l-mannose metabolism. A similar inhibition of growth of the mutant was overcome in about 2 hr. Both strains utilized l-rhamnose and l-mannose sequentially in a mineral medium containing both of these hexoses; at the onset of l-mannose metabolism, growth of the wild type, but not of the mutant, was inhibited. Thus, wild-type A. aerogenes cannot grow on l-mannose because of the toxicity of l-mannose or its metabolites. A mutation which overcomes the toxicity enables the organism to utilize l-mannose as a sole source of carbon and energy for growth.
Collapse
|
7
|
Abstract
1. The metabolism of d-glyceraldehyde by the lens was examined. 2. When low concentrations of d-[U-(14)C]glyceraldehyde were incubated with lens extracts there was no incorporation of the label into protein; more than two-thirds of the labelled metabolites consisted of glyceric acid and glycerol, their relative proportions depending on the species. Lactic acid, a phosphate, glutathione-glyceraldehyde compounds and a neutral compound were also formed. 3. When high concentrations of d-[U-(14)C]glyceraldehyde were incubated with lens, extensive incorporation of the label into protein occurred and the protein became yellow-brown. This coloured protein did not exhibit the fluorescent properties shown by the brown proteins of human cataractous senile lens, or of naphthaquinone-treated lens. 4. Evidence that d-glyceraldehyde is formed by the lens was sought but not found.
Collapse
|
8
|
Riddick JH, Bressler R. The effect of glyceraldehyde on glucose metabolism in ehrlich ascites tumor cells. Biochem Pharmacol 1967; 16:239-48. [PMID: 4382115 DOI: 10.1016/0006-2952(67)90026-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Bennett LR, Connon FE. Comparative effects of DL-glyceraldehyde, 6-mercaptopurine, methotrexate and 5-fluorouracil on the Ehrlich ascites carcinoma in vivo. Int J Cancer 1966; 1:291-5. [PMID: 5944067 DOI: 10.1002/ijc.2910010308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
VIAL JD, ORREGO H. Action of 2,4-dinitrophenol and iodoacetate on the ultrastructure of the oxyntic cells. Exp Cell Res 1963; 30:232-5. [PMID: 13997003 DOI: 10.1016/0014-4827(63)90231-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
MOHME-LUNDHOLM E. The Association between the Relaxing and the Lactic-Acid Stimulating Effects of Adrenaline in Smooth Muscle. ACTA ACUST UNITED AC 1960; 48:268-75. [PMID: 14423273 DOI: 10.1111/j.1748-1716.1960.tb01861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
|
13
|
BURTON RM, SAN PIETRO A, KAPLAN NO. Preparation of pyridine nucleotide analogs by the carbonyl addition reaction. Arch Biochem Biophys 1957; 70:87-106. [PMID: 13445245 DOI: 10.1016/0003-9861(57)90083-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
|
15
|
|
16
|
|
17
|
|