Zhang J, Akwa Y, el-Etr M, Baulieu EE, Sjövall J. Metabolism of 27-, 25- and 24-hydroxycholesterol in rat glial cells and neurons.
Biochem J 1997;
322 ( Pt 1):175-84. [PMID:
9078259 PMCID:
PMC1218174 DOI:
10.1042/bj3220175]
[Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The metabolism of 27-, 25- and 24-hydroxycholesterol in cultures of rat astrocytes, Schwann cells and neurons was studied. 27- and 25-Hydroxycholesterol, but not 24-hydroxycholesterol, underwent 7 alpha-hydroxylation with subsequent oxidation to 7 alpha-hydroxy-3-oxo-delta 4 steroids in all three cell types. When cells were incubated for 24 h with 0.28 nmol of 27-hydroxycholesterol in 10 ml of medium, the rates of conversion into 7 alpha-hydroxylated metabolites were 0.21, 0.12 and 0.02 nmol/24 h per 10(6) cells in the media of astrocytes, Schwann cells and neurons respectively. The corresponding values for 25-hydroxycholesterol were 0.26, 0.16 and 0.04. A minor fraction of 27-hydroxycholesterol and its 7 alpha-hydroxylated metabolites was oxidized to 3 beta-hydroxy-5-cholestenoic acid. 3 beta, 7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. In addition to the two hydroxycholesterols, other 3 beta-hydroxy-delta 4 steroids, dehydro-epiandrosterone, pregnenolone, 3 beta-hydroxy-5-cholestenoic acid and 3 beta-hydroxy-5-cholenoic acid underwent 7 alpha-hydroxylation. Competitive experiments did not distinguish between the presence of one or several 7 alpha-hydroxylases. In astrocyte incubations, 27-hydroxycholesterol also underwent 25-hydroxylation, and 12% of its metabolites carried a 25-hydroxy group. 25-Hydroxylation of added 24-hydroxycholesterol was also observed in the astrocyte incubations, as was the formation of 7 alpha, 25-dihydroxy-4-cholesten-3-one, 25-hydroxycholesterol and 7 alpha, 25-dihydroxycholesterol from endogenous precursor(s). Our study indicates that side-chain oxygenated cholesterol can undergo metabolic transformations that may be of importance for cholesterol homoeostasis in the brain.
Collapse