1
|
Lotz-Jenne C, Lange R, Cren S, Bourquin G, Goglia L, Kimmerlin T, Wicki M, Müller M, Artico N, Ackerknecht S, Pfaff P, Joesch C, Mac Sweeney A. Discovery and binding mode of small molecule inhibitors of the apo form of human TDO2. Sci Rep 2024; 14:27937. [PMID: 39537789 PMCID: PMC11561238 DOI: 10.1038/s41598-024-78981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Tryptophan-2,3-dioxygenase (TDO2) and indoleamine-2,3-dioxygenase (IDO1) are structurally distinct heme enzymes that catalyze the conversion of L-tryptophan to N-formyl-kynurenine, and play important roles in metabolism, inflammation, and tumor immune surveillance. The enzymes can adopt an inactive, heme-free (apo) state or an active, heme-containing (holo) state, with the balance between them varying dynamically according to biological conditions. Inhibitors of holo-TDO2 are known but, despite several advantages of the heme-free state as a drug target, no inhibitors of apo-TDO2 have been reported. We describe the discovery of the first apo-TDO2 binding inhibitors, to our knowledge, and their inhibition of cellular TDO2 activity at low nanomolar concentrations. The crystal structure of a potent, small molecule inhibitor bound to apo-TDO2 reveals its detailed binding interactions within the large, hydrophobic heme binding pocket of the active site.
Collapse
Affiliation(s)
- Carina Lotz-Jenne
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland.
| | - Roland Lange
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Sylvaine Cren
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Geoffroy Bourquin
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Laksmei Goglia
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Thierry Kimmerlin
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Micha Wicki
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Manon Müller
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Nadia Artico
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Sabine Ackerknecht
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Philippe Pfaff
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Christoph Joesch
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Aengus Mac Sweeney
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland.
| |
Collapse
|
2
|
Metzker KLL, Mathias K, Machado RS, Bonfante S, Joaquim L, da Silva MG, Daros GC, Lins EMF, Belle F, Alano CG, Matiola RT, da Silva Lemos I, Danielski LG, Gava FF, de Bitencourt RM, Bobinski F, Streck EL, Reus GZ, Petronilho F. Amelioration of Neurochemical Alteration and Memory and Depressive Behavior in Sepsis by Allopurinol, a Tryptophan 2,3-Dioxygenase Inhibitor. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1499-1515. [PMID: 38712373 DOI: 10.2174/0118715273282363240415045927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND In response to inflammation and other stressors, tryptophan is catalyzed by Tryptophan 2,3-Dioxygenase (TDO), which leads to activation of the kynurenine pathway. Sepsis is a serious condition in which the body responds improperly to an infection, and the brain is the inflammation target in this condition. OBJECTIVE This study aimed to determine if the induction of TDO contributes to the permeability of the Blood-Brain Barrier (BBB), mortality, neuroinflammation, oxidative stress, and mitochondrial dysfunction, besides long-term behavioral alterations in a preclinical model of sepsis. METHODS Male Wistar rats with two months of age were submitted to the sepsis model using Cecal Ligation and Perforation (CLP). The rats received allopurinol (Allo, 20 mg/kg, gavage), a TDO inhibitor, or a vehicle once a day for seven days. RESULTS Sepsis induction increased BBB permeability, IL-6 level, neutrophil infiltrate, nitric oxide formation, and oxidative stress, resulting in energy impairment in 24h after CLP and Allo administration restored these parameters. Regarding memory, Allo restored short-term memory impairment and decreased depressive behavior. However, no change in survival rate was verified. CONCLUSION In summary, TDO inhibition effectively prevented depressive behavior and memory impairment 10 days after CLP by reducing acute BBB permeability, neuroinflammation, oxidative stress, and mitochondrial alteration.
Collapse
Affiliation(s)
- Kiuanne Lino Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Elisa Mitkus Flores Lins
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Fernanda Belle
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Carolina Giassi Alano
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaela Tezza Matiola
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela da Silva Lemos
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Emilio Luiz Streck
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Zilli Reus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
3
|
Biswas P, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through control of cell heme allocation by nitric oxide. J Biol Chem 2023; 299:104753. [PMID: 37116709 PMCID: PMC10220489 DOI: 10.1016/j.jbc.2023.104753] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygenase (TDO) catalyze the conversion of L-tryptophan to N-formyl-kynurenine and thus play primary roles in metabolism, inflammation, and tumor immune surveillance. Because their activities depend on their heme contents, which vary in biological settings and go up or down in a dynamic manner, we studied how their heme levels may be impacted by nitric oxide (NO) in mammalian cells. We utilized cells expressing TDO or IDO1 either naturally or via transfection and determined their activities, heme contents, and expression levels as a function of NO exposure. We found NO has a bimodal effect: a narrow range of low NO exposure promoted cells to allocate heme into the heme-free TDO and IDO1 populations and consequently boosted their heme contents and activities 4- to 6-fold, while beyond this range the NO exposure transitioned to have a negative impact on their heme contents and activities. NO did not alter dioxygenase protein expression levels, and its bimodal impact was observed when NO was released by a chemical donor or was generated naturally by immune-stimulated macrophage cells. NO-driven heme allocations to IDO1 and TDO required participation of a GAPDH-heme complex and for IDO1 required chaperone Hsp90 activity. Thus, cells can up- or downregulate their IDO1 and TDO activities through a bimodal control of heme allocation by NO. This mechanism has important biomedical implications and helps explain why the IDO1 and TDO activities in animals go up and down in response to immune stimulation.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Biswas P, Dai Y, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic Biol Med 2022; 180:179-190. [PMID: 35051612 PMCID: PMC11389873 DOI: 10.1016/j.freeradbiomed.2022.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygense (TDO) are heme-containing dioxygenases that catalyze the conversion of tryptophan to N-formyl-kynurenine and thus enable generation of l-kynurenine and related metabolites that govern the immune response and broadly impact human biology. Given that TDO and IDO1 activities are directly proportional to their heme contents, it is important to understand their heme delivery and insertion processes. Early studies established that TDO and IDO1 heme levels are sub-saturating in vivo and subject to change but did not identify the cellular mechanisms that provide their heme or enable dynamic changes in their heme contents. We investigated the potential involvement of GAPDH and chaperone Hsp90, based on our previous studies linking these proteins to intracellular heme allocation. We studied heme delivery and insertion into IDO1 and TDO expressed in both normal and heme-deficient HEK293T cells and into IDO1 naturally expressed in HeLa cells in response to IFN-γ, and also investigated the interactions of TDO and IDO1 with GAPDH and Hsp90 in cells and among their purified forms. We found that GAPDH delivered both mitochondrially-generated and exogenous heme to apo-IDO1 and apo-TDO in cells, potentially through a direct interaction with either enzyme. In contrast, we found Hsp90 interacted with apo-IDO1 but not with apo-TDO, and was only needed to drive heme insertion into apo-IDO1. By uncovering the cellular processes that allocate heme to IDO1 and TDO, our study provides new insight on how their activities and l-kynurenine production may be controlled in health and disease.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
5
|
Chang Y, Han P, Wang Y, Jia C, Zhang B, Zhao Y, Li S, Li S, Wang X, Yang X, Wei W. Tryptophan 2,3-dioxygenase 2 plays a key role in regulating the activation of fibroblast-like synoviocytes in autoimmune arthritis. Br J Pharmacol 2021; 179:3024-3042. [PMID: 34969166 DOI: 10.1111/bph.15787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Abnormal kynurenine (Kyn) metabolism has been closely linked to the pathogenesis of rheumatoid arthritis (RA). The aims of this study were to investigate the role of tryptophan 2,3-dioxygenase 2 (TDO2), a rate-limiting enzyme that converts tryptophan (Trp) to Kyn, in regulating fibroblast-like synoviocyte (FLS)-mediated synovial inflammation in autoimmune arthritis. EXPERIMENTAL APPROACH The expression of TDO2 was determined by immunohistochemistry, confocal laser scanning fluorescence microscopy, imaging flow cytometry, and Western blot. TDO2 activity was tested by high performance liquid chromatography and colorimetric assay. TDO2 small interfering RNA (siRNA) and TDO2 inhibitor 680C91 were used to inhibit TDO2 in AA-FLS function in vitro. A rat model of adjuvant-induced arthritis (AA) was used to evaluate the in vivo effect of allopurinol (ALLO), a TDO2 inhibitor. KEY RESULTS TDO2 expression was strongly increased in synovial tissue and FLS of RA and AA. Immune cells were found to express high amount of TDO2 proteins at the peak stage of AA. Pharmacological inhibition or knockdown of TDO2 in AA-FLS resulted in a reduced proliferation, secretion, migration and invasion. Kyn restored the inhibitory effect of TDO2 inhibition on activation of AA-FLS. ALLO treatment ameliorated the arthritis severity and decreased the activity of TDO2. CONCLUSION AND IMPLICATIONS Our results suggest that elevated TDO2 expression may contribute to synovial inflammation and joint destruction during arthritis. Therefore, targeting TDO2 activity and the Kyn pathway of Trp degradation may represent a potential therapeutic strategy in RA.
Collapse
Affiliation(s)
- Yan Chang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Ping Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Yueye Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Chengyan Jia
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Bingjie Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Yingjie Zhao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Susu Li
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Siyu Li
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Xinwei Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Xuezhi Yang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| |
Collapse
|
6
|
Duhalde Vega M, Aparicio JL, Mandour MF, Retegui LA. The autoimmune response elicited by mouse hepatitis virus (MHV-A59) infection is modulated by liver tryptophan-2,3-dioxygenase (TDO). Immunol Lett 2019; 217:25-30. [PMID: 31726186 DOI: 10.1016/j.imlet.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/03/2019] [Accepted: 11/10/2019] [Indexed: 01/27/2023]
Abstract
In a previous work we demonstrated that inhibition of mouse indoleamine 2,3-dioxygenase (IDO) by methyltryptophan (MT) exacerbated the pathological actions of mouse hepatitis virus (MHV-A59) infection, suggesting that tryptophan (TRP) catabolism was involved in viral effects. Since there is a second enzyme that dioxygenates TRP, tryptophan-2, 3-dioxygenase (TDO), which is mainly located in liver, we decided to study its role in our model of MHV-infection. Results showed that in vivo TDO inhibition by LM10, a derivative of 3-(2-(pyridyl) ethenyl) indole, resulted in a decrease of anti- MHV Ab titers induced by the virus infection. Besides, a reduction of some alarmin release, i.e, uric acid and high-mobility group box1 protein (HMGB1), was observed. Accordingly, since alarmin liberation was related to the expression of autoantibodies (autoAb) to fumarylacetoacetate hydrolase (FAH), these autoAb also diminished. Moreover, PCR results indicated that TDO inhibition did not abolish viral replication. Furthermore, histological liver examination did not reveal strong pathologies, whereas mouse survival was hundred percent in control as well as in MHV-infected mice treated with LM10. Data presented in this work indicate that in spite of the various TDO actions already described, specific TDO blockage could also restrain some MHV actions, mainly suppressing autoimmune reactions. Such results should prompt further experiments with various viruses to confirm the possible use of a TDO inhibitor such as LM-10 to treat either viral infections or even autoimmune diseases triggered by a viral infection.
Collapse
Affiliation(s)
- Maite Duhalde Vega
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - José L Aparicio
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Mohamed F Mandour
- Unit of Experimental Medicine, Christian de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lilia A Retegui
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
7
|
Badawy AAB. Hypothesis: Metabolic targeting of 5-aminolevulinate synthase by tryptophan and inhibitors of heme utilisation by tryptophan 2,3-dioxygenase as potential therapies of acute hepatic porphyrias. Med Hypotheses 2019; 131:109314. [PMID: 31443750 DOI: 10.1016/j.mehy.2019.109314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022]
Abstract
Metabolic targeting of liver 5-aminolevulinate synthase (5-ALAS) by inhibition of heme utilisation by tryptophan (Trp) 2,3-dioxygenase (TDO) or the use of tryptophan is proposed as a therapy of acute hepatic porphyrias. 5-ALAS, the rate-limiting enzyme of heme biosynthesis, is under negative feedback control by a small regulatory heme pool in the hepatic cytosol. Acute porphyric attacks, precipitated by fasting, certain hormones and some drugs, involve induction of 5-ALAS secondarily to depletion of the above pool, and the resultant elevation of 5-ALA levels initiates the abdominal and neurological symptoms of attacks. By utilising the regulatory heme, cytosolic TDO undermines the feedback control, thus allowing 5-ALAS induction to occur, e.g. upon glucocorticoid induction of TDO during fasting (starvation) and exogenous glucocorticoid administration. Currently, glucose therapy is the preferred strategy for reversing moderate attacks induced by fasting (calorie restriction), with more severe attacks being treated by intravenous heme preparations. Reversal of fasting-induced attacks by glucose is explained by the previously demonstrated reversal of increased heme utilisation by TDO. Inhibitors of this utilisation are therefore potential therapeutic targets in acute attacks and also for maintenance of a symptomless state. Existing TDO inhibitors other than glucose include allopurinol, nicotinamide and recently developed potent inhibitors such as LM10 used in cancer therapy. Based on studies in rats, the hypothesis predicts that the safety or otherwise of drugs in the hepatic porphyrias is determined by their ability to inhibit TDO utilisation of heme under basal conditions or after glucocorticoid induction or heme activation of TDO, in parallel with reciprocal changes in 5-ALAS induction. Tryptophan is also proposed as a potential therapy of acute attacks either alone or as an adjunct to the recently proposed 5-ALAS1 gene silencing. Trp increases heme biosynthesis by enhancing 5-ALA dehydratase activity and, based on a Trp-5-ALA model presented herein, Trp offers several advantages over heme therapy, namely rapid conversion of 5-ALA into heme, a greatly enhanced heme availability, a near complete inhibition of 5-ALAS induction, assumed rapid clearance of 5-ALA and hence accelerated resolution of symptoms of attacks, and finally provision of the neuroprotective metabolite kynurenic acid to neutralise the neurological symptoms. The hypothesis also addresses heme regulation in species lacking the TDO free apoenzyme and its glucocorticoid induction mechanism and proposes detailed assessment of heme biosynthesis in these species. Detailed proposals for testing the hypothesis are presented.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, UK.
| |
Collapse
|
8
|
Badawy AAB. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019; 9:10.32527/2019/101415. [PMID: 31105983 PMCID: PMC6520243 DOI: 10.32527/2019/101415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several pathways, resulting in production of many biologically active metabolites which exert profound effects on physiological processes. The disturbance in Trp metabolism and disposition in many disease states provides a basis for exploring multiple targets for pharmaco-therapeutic interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront of immunological research and immunotherapy. In this review, I shall consider mammalian Trp metabolism in health and disease and outline the intervention targets. It is hoped that this account will provide a stimulus for pharmacologists and others to conduct further studies in this rich area of biomedical research and therapeutics.
Collapse
|
9
|
Jaffé E, Obregón F, Rebrig C, Lima L. Plasma Amino Acids in Children under Two Years of Age with Severe Undernutrition. Increase of Taurine in Kwashiorkor. Nutr Neurosci 2016; 1:243-50. [DOI: 10.1080/1028415x.1998.11747234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
O'Farrell K, Harkin A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology 2015; 112:307-323. [PMID: 26690895 DOI: 10.1016/j.neuropharm.2015.12.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023]
Abstract
The kynurenine pathway (KP), which is activated in times of stress and infection has been implicated in the pathophysiology of neurodegenerative and psychiatric disorders. Activation of this tryptophan metabolising pathway results in the production of neuroactive metabolites which have the potential to interfere with normal neuronal functioning which may contribute to altered neuronal transmission and the emergence of symptoms of these brain disorders. This review investigates the involvement of the KP in a range of neurological disorders, examining recent in vitro, in vivo and clinical discoveries highlights evidence to indicate that the KP is a potential therapeutic target in both neurodegenerative and stress-related neuropsychiatric disorders. Furthermore, this review identifies gaps in our knowledge with regard to this field which are yet to be examined to lead to a more comprehensive understanding of the role of KP activation in brain health and disease. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Katherine O'Farrell
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
11
|
Inhibition of stress-induced hepatic tryptophan 2,3-dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour. Int J Neuropsychopharmacol 2014; 17:917-28. [PMID: 24472498 DOI: 10.1017/s1461145713001673] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The role of hepatic tryptophan 2,3 dioxygenase (TDO) was assessed in the provocation of stress-induced depression-related behaviour in the rat. TDO drives tryptophan metabolism via the kynurenine pathway (KP) and leads to the production of neuroactive metabolites including kynurenine. A single 2 h period of restraint stress in adult male Sprague-Dawley rats provoked an increase in circulating concentrations of the glucocorticoid corticosterone and induction of hepatic TDO expression and activity. Repeated exposure to stress (10 d of 2 h restraint each day) provoked an increase in immobility in the forced swimming test (FST) indicative of depression-related behaviour. Immobility was accompanied by an increase in the circulating corticosterone concentrations, expression and activity of hepatic TDO and increase in the expression of TDO in the cerebral cortex. Increased TDO activity was associated with raised circulating kynurenine concentrations and a reduction in circulating tryptophan concentrations indicative of KP activation. Co-treatment with the TDO inhibitor allopurinol (20 mg/kg, i.p.), attenuated the chronic stress-related increase in immobility in the FST and the accompanying increase in circulating kynurenine concentrations. These findings indicate that stress-induced corticosterone and consequent activation of hepatic TDO, tryptophan metabolism and production of kynurenine provoke a depression-related behavioural phenotype. Inhibition of stress-related hepatic TDO activity promotes antidepressant activity. TDO may therefore represent a promising target for the treatment of depression associated with stress-related disorders in which there is evidence for KP activation.
Collapse
|
12
|
Lima L, Jaffé E. Plasma concentration of taurine is higher in malnourished than control children: differences between kwashiorkor and marasmus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 442:487-94. [PMID: 9635065 DOI: 10.1007/978-1-4899-0117-0_58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma free amino acids were determined in the plasma of severely malnourished children under two years of age. A total of thirty-one patients and eleven controls were evaluated: seventeen cases of kwashiorkor, eight cases of marasmus, and six cases of marasmic-kwashiorkor. Fasting plasma samples were taken in the morning on the day of admission. Fasting plasma samples were also taken from nine patients at discharge after two months in the hospital where they received a balanced diet as treatment. A partial reversal of the signs of malnutrition was observed at discharge. In the whole group of patients ad admission, lower concentrations of tyrosine, methionine, tryptophan, and leucine and higher concentrations of aspartate, glutamate, and taurine were observed compared to controls. Taurine continued to be elevated in the malnourished group at the time of discharge. Marasmic children, as compared to controls, had high aspartate and low tryptophan levels, but taurine levels were not significantly different from controls. Kwashiorkor patients had low tyrosine, methionine, tryptophan, and lysine, and significantly higher taurine plasma levels. The elevated concentration of taurine might be the result of a redistribution of this amino acid to provide specific tissues with the required amount for development.
Collapse
Affiliation(s)
- L Lima
- Laboratorio de Neuroquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | |
Collapse
|
13
|
Celier C, Cresteil T. Control of cytochromes P450 expression in Gunn rat liver: implication of the intracellular heme pool. Arch Biochem Biophys 1991; 290:407-10. [PMID: 1929408 DOI: 10.1016/0003-9861(91)90559-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The absence of changes in the overall hepatic cytochrome P450 content after administration of 3-methylcholanthrene (MC) to congenitally jaundiced Gunn rats is believed to be related to a limited heme availability in this strain of rat. The amount of available heme, estimated by tryptophan pyrrolase activity, shows a substantial decrease in control Gunn versus control Wistar rats. This reduction is moderately enhanced by MC treatment in Gunn rats but is abolished after phenobarbital administration. Heme oxygenase activity is diminished in Gunn rats and consequently is not responsible for the decrease in the hepatic heme availability. These data point out that the depletion of the intracellular heme can lead to a limitation in the synthesis of cytochrome P450 isoenzymes in the MC-induced Gunn rat.
Collapse
|
14
|
Badawy AA, Morgan CJ, Davis NR. Effects of acute ethanol administration on rat liver 5-aminolaevulinate synthase activity. Biochem J 1989; 262:491-6. [PMID: 2803265 PMCID: PMC1133295 DOI: 10.1042/bj2620491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Liver 5-aminolaevulinate (ALA) synthase activity of 24 h-starved rats is maximally increased at 4 h after intraperitoneal administration of a 1.6 g/kg body wt. dose of ethanol. Larger doses cause a dose-dependent decrease in the extent of this stimulation, exhibiting a reciprocal relationship with an elevation of hepatic haem concentration, as suggested by the simultaneous increase in the haem saturation of tryptophan pyrrolase. 2. ALA synthase induction by ethanol is abolished if the above increase in pyrrolase saturation with haem is enhanced by theophylline, but is potentiated when the increase in the haem saturation is inhibited by anti-lipolytic agents. 3. ALA synthase induction by ethanol is also inhibited by inhibitors of alcohol dehydrogenase and aldehyde dehydrogenase. Acetaldehyde and acetate are, however, not responsible; they both decrease ALA synthase activity and increase the haem saturation of tryptophan pyrrolase. These latter effects of acetaldehyde are not mediated by acetate. 4. ALA synthase activity is also stimulated by succinate, which, however, also increases the haem saturation of tryptophan pyrrolase. 5. Ethanol does not influence the rate of ALA synthase degradation. 6. It is suggested that ethanol increases rat liver ALA synthase activity as a result of its own metabolism by the alcohol dehydrogenase-dependent pathway by a mechanism not involving decreased degradation of the former enzyme or the participation of the metabolites acetaldehyde and acetate.
Collapse
Affiliation(s)
- A A Badawy
- South Glamorgan Health Authority, Biomedical Research Laboratory, Whitchurch Hospital, Cardiff, Wales, U.K
| | | | | |
Collapse
|
15
|
Abstract
The effect of a single dose of benzene (0.5 ml/kg body wt i.p.) on the heme saturation of tryptophan pyrrolase activity in liver was examined. There was a significant decrease in the heme saturation of hepatic tryptophan pyrrolase, suggesting depletion of "regulatory heme". After benzene administration there was significant increase in delta-aminolevulinate (ALA) synthetase activity (approx. 2-fold) while delta-aminolevulinate dehydratase activity was significantly decreased, however, ferrochelatase and heme oxygenase activities were unaltered. Administration of tryptophan to benzene pretreated rats showed a reversal of benzene effects on heme synthesizing enzymes: there is an increase in the heme saturation of tryptophan pyrrolase and decrease in delta-aminolevulinate synthetase. However, there was no significant alteration in the activity of delta-aminolevulinate dehydratase.
Collapse
Affiliation(s)
- S M Siddiqui
- Industrial Toxicology Research Centre, Lucknow, India
| | | | | |
Collapse
|
16
|
Badawy AA, Morgan CJ, Davis NR. Effects of the haem precursor 5-aminolaevulinate on tryptophan metabolism and disposition in the rat. Biochem J 1987; 248:293-5. [PMID: 3435445 PMCID: PMC1148535 DOI: 10.1042/bj2480293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
5-Aminolaevulinate administration to rats inhibits cerebral 5-hydroxytryptamine synthesis by decreasing tryptophan availability to the brain secondarily to activation of hepatic tryptophan pyrrolase. The results show that tryptophan metabolism and disposition can be influenced by changes in liver haem concentration, and are discussed briefly in relation to mood disorders in the hepatic porphyrias.
Collapse
Affiliation(s)
- A A Badawy
- South Glamorgan Health Authority, Biomedical Research Laboratory, Whitchurch Hospital, Cardiff, Wales, U.K
| | | | | |
Collapse
|
17
|
Abstract
At saturating concentrations of tryptophan, the activity of tryptophan 2,3-dioxygenase was the same in isolated liver cells and in extracts with added haematin. Intraperitoneal injection of haematin did not increase tryptophan oxidation in livers subsequently perfused in situ. Preincubation of liver cells with physiological concentrations of tryptophan caused maximal saturation of tryptophan 2,3-dioxygenase with haem in liver cells. In cell-free extracts tryptophan 2,3-dioxygenase exhibited complex kinetics with haem. The results have important implications for the understanding of the role of haem in tryptophan metabolism.
Collapse
|
18
|
Shanker J, Datta K. Affinity purification and properties of rat liver mitochondrial L-alanine:4,5-dioxovalerate transaminase and its inhibition by hemin. Arch Biochem Biophys 1986; 248:652-7. [PMID: 3740843 DOI: 10.1016/0003-9861(86)90520-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study describes a new rapid procedure for purification of L-alanine:4,5-dioxovalerate transaminase from rat liver mitochondria which was purified 243-fold with a 32% yield to apparent homogeneity. The purification procedure involved protamine sulfate treatment, followed by phenyl-Sepharose CL-4B column chromatography and alanine-Sepharose 4B affinity chromatography. The Km values for L-alanine and 4,5-dioxovalerate were 3.3 and 0.28 mM, respectively. The enzyme-bound pyridoxal phosphate content was estimated to be two molecules per enzyme molecule. The purified enzyme was inhibited by the reaction product pyruvic acid, substrate analog, methylglyoxal, and sulfhydryl inhibitors. Excess concentrations of 4,5-dioxovalerate was also found to inhibit the enzyme and our experiments failed to demonstrate reversibility of the reaction. Only hemin among the intermediate compounds of heme metabolism tested was shown to be an inhibitor of purified alanine:4,5-dioxovalerate transaminase. Hemin was further shown as an uncompetitive inhibitor of both alanine and dioxovalerate.
Collapse
|
19
|
Shanker J, Datta K. Evidence of hemin as an end product inhibitor of L-alanine: 4,5-dioxovalerate transaminase in rat liver mitochondria. FEBS Lett 1985; 189:129-32. [PMID: 4029395 DOI: 10.1016/0014-5793(85)80856-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study describes the in vitro and in vivo effect of hemin on L-alanine:4,5-dioxovalerate transaminase activity. Hemin was shown to be an inhibitor of the purified enzyme and this inhibition was proportional to the concentration of hemin. The examined kinetic data with hemin showed uncompetitive inhibition for both alanine and 4,5-dioxovalerate. An apparent Ki of 30 and 42 microM for hemin were obtained with both alanine and 4,5-dioxovalerate, respectively. Moreover, the enzyme activity in liver was considerably decreased after the intravenous hemin administration and such an inhibition is dose and time dependent. Furthermore, maximum inhibition of the enzyme was observed 30 min after hemin injection and 60% enzyme inhibition was achieved with a dose of 1.2 mg/kg body wt of rat. Thus is suggests the important role of this enzyme on heme biosynthesis.
Collapse
|
20
|
Deloria L, Abbott V, Gooderham N, Mannering GJ. Induction of xanthine oxidase and depression of cytochrome P-450 by interferon inducers: genetic difference in the responses of mice. Biochem Biophys Res Commun 1985; 131:109-14. [PMID: 2412551 DOI: 10.1016/0006-291x(85)91777-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interferon and interferon inducing agents depress hepatic cytochrome P-450 systems. They also induce hepatic xanthine oxidase activity. It has been suggested that free radicals produced by xanthine oxidase may cause the loss of P-450. High titers of serum interferon are induced by poly IC (poly riboinosinic acid.polyribocytidylic acid) in both C57Bl/6J and C3H/HeJ mice; Newcastle disease virus (NDV) induces a high titer of interferon in C57Bl/6J mice but not in C3H/HeJ mice. The induction of xanthine oxidase activity by NDV in C3H/HeJ mice was less than half that seen in C57Bl/6J mice, thus demonstrating a relationship between the induction of xanthine oxidase, the depression of P-450 and a genetically determined difference in responsiveness of mice to interferon inducers.
Collapse
|
21
|
Rizzardini M, Ferraroli A, Dal Fiume D, Cantoni L. Cyclophosphamide-impaired regulation of hepatic heme metabolism. ACTA ACUST UNITED AC 1984; 40:1390-2. [PMID: 6548974 DOI: 10.1007/bf01951905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In male rats hepatic cytochromes b5 and P-450 were reduced at different times after treatment with cyclophosphamide (CP) (200 mg/kg i.p. for 3 days). In contrast, microsomal heme did not change until 48 h after the last dose of CP, leading to accumulation of heme in a 'non-cytochromal' form. Parallel to the above changes the heme metabolism showed derangement: delta-aminolaevulinate synthase, the rate-limiting enzyme in heme synthesis, was depressed and heme oxygenase, the enzyme which catalyzes the oxidative degradation of heme, was increased.
Collapse
|
22
|
Schoenfeld N, Wysenbeek AJ, Greenblat Y, Epstein O, Atsmon A, Tschudy DP. The effects of metalloporphyrins, porphyrins and metals on the activity of delta-aminolevulinic acid synthase in monolayers of chick embryo liver cells. Biochem Pharmacol 1984; 33:2783-8. [PMID: 6466385 DOI: 10.1016/0006-2952(84)90696-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effect of various metals, porphyrins and metalloporphyrins on the activity of delta-aminolevulinate synthase (ALAS) was measured in monolayers of chick embryo liver cells in order to determine whether the metal moiety of heme or heme itself is the regulator of ALAS activity. Iron, magnesium, zinc, copper, manganese and nickel did not decrease ALAS activity in non-induced and in cells induced by allyl-isopropylacetamide (AIA). Cobalt decreased both non-induced and induced activity. Porphyrins inhibited ALAS, apparently only after having been converted into metalloporphyrins. Almost all the metalloporphyrins examined decreased ALAS activity. None of the substances, at the concentrations used, was toxic to the cells. These observations indicate that probably heme and not iron is the regulator of ALAS activity in monolayers of chick embryo liver cells.
Collapse
|
23
|
Salter M, Stanley JC, Fisher MJ, Pogson CI. The influence of starvation and tryptophan administration on the metabolism of phenylalanine, tyrosine and tryptophan in isolated rat liver cells. Biochem J 1984; 221:431-8. [PMID: 6477476 PMCID: PMC1144055 DOI: 10.1042/bj2210431] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Liver cells from fed Sprague-Dawley rats metabolized phenylalanine, tyrosine and tryptophan at rates consistent with the known kinetic properties of the first enzymes of each pathway. Starvation of rats for 48 h did not increase the maximal activities of phenylalanine hydroxylase, tryptophan 2,3-dioxygenase and tyrosine aminotransferase in liver cell extracts, when results were expressed in terms of cellular DNA. Catabolic flux through the first two enzymes was unchanged; that through the aminotransferase was elevated relatively to enzyme activity. This is interpreted in terms of changes in the concentrations of 2-oxoglutarate and glutamate. Cells from tryptophan-treated animals exhibited significant increases in the catabolism of tyrosine and tryptophan, but not of phenylalanine. The activities of tyrosine aminotransferase and tryptophan 2,3-dioxygenase were also increased, although the changes in flux and enzyme activity did not correspond exactly. These results are discussed with reference to the control of aromatic amino acid catabolism in liver; the role of substrate concentration is emphasized.
Collapse
|
24
|
Abstract
Various endogenous and exogenous chemicals, such as hormones, drugs, and carcinogens and other environmental pollutants are enzymatically converted to polar metabolites as a result of their oxidative metabolism by the mixed-function oxidase system. This enzyme complex constitutes the major detoxifying system of man and utilizes the hemoprotein--cytochrome P-450--as the terminal oxidase. Recent studies with trace metals have revealed the potent ability of these elements to alter the synthesis and to enhance the degradation of heme moiety of cytochrome P-450. An important consequence of these metal actions is to greatly impair the ability of cells to oxidatively metabolize chemicals because of the heme dependence of this metabolic process. In this report the effects of exposure to trace metals on drug oxidations is reviewed within the framework of metal alterations of heme metabolism, including both its synthesis and degradation, since these newly discovered properties of metals have made it possible to define a major dimension of metal toxicity in terms of a unified cellular mechanism of action.
Collapse
|
25
|
Ades IZ, Harpe KG, Stevens TM. Biogenesis of mitochondrial proteins. Regulation of production of delta-aminolaevulinate synthase by haemin in embryonic-chick liver. Biochem J 1983; 214:967-74. [PMID: 6626167 PMCID: PMC1152339 DOI: 10.1042/bj2140967] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of haemin on the biogenesis of delta-aminolaevulinate synthase (ALA synthase) was investigated in primary cultures of embryonic-chick liver. The activity of the enzyme and the amount of the enzyme detected by 'immune-blotting' were determined in hepatocytes incubated with the porphyrogenic agent allylisopropylacetamide. The results of these studies indicated that the loss in ALA synthase activity in cells incubated in the presence of haemin (10 microM) was roughly proportional to a loss in the immune-reactive mass of the enzyme. Haemin was as effective as cycloheximide in causing depletion of ALA synthase in hepatocytes. We had previously established that haemin blocked the maturation of the precursor of ALA synthase [Ades (1983) Biochem. Biophys. Res. Commun. 110, 42-47]. From results reported in the present paper on analyses of immune-precipitated ALA synthase after pulse-labelling with [35S]methionine in the presence and in the absence of haemin, we determined that the inhibition of processing of pre-ALA synthase in cells by haemin was concentration-dependent. A concentration of 2 microM in the culture medium blocked the processing of pre-ALA synthase by 50% in hepatocytes. We also determined that, after inhibition of its maturation by haemin, pre-ALA synthase turned-over with a half-time of 30 min; on the other hand, mature ALA synthase turned-over with a half-time of 120 min.
Collapse
|
26
|
Kikuchi G, Yoshida T. Function and induction of the microsomal heme oxygenase. Mol Cell Biochem 1983; 53-54:163-83. [PMID: 6353193 DOI: 10.1007/bf00225252] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
|
28
|
Badawy AA, Morgan CJ. Tryptophan and tryptophan pyrrolase in haem regulation. The role of lipolysis and direct displacement of serum-protein-bound tryptophan in the opposite effects of administration of endotoxin, morphine, palmitate, salicylate and theophylline on rat liver 5-aminolaevulinate synthase activity and the haem saturation of tryptophan pyrrolase. Biochem J 1982; 206:451-60. [PMID: 7150256 PMCID: PMC1158610 DOI: 10.1042/bj2060451] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. The increase in the haem saturation of rat liver tryptophan pyrrolase caused by tryptophan administration was previously shown to be associated with a decrease in 5-aminolaevulinate synthase activity. 2. It is now shown that similar reciprocal effects are caused by palmitate and salicylate, both of which increase tryptophan availability to the liver by direct displacement of the serum-protein-bound amino acid. 3. The reciprocal effects on the former two parameters caused by endotoxin and morphine are associated with an increase in liver tryptophan concentration produced by a lipolysis-dependent, non-esterified fatty acid-mediated, displacement of the serum-protein-bound amino acid. 4. All these changes and those caused by another lipolytic agent, theophylline, are prevented by the beta-adrenoceptor-blocking agent propranolol and by the opiate-receptor antagonist naloxone, whose anti-lipolytic nature is demonstrated. 5. High correlation coefficients have been obtained for one or more pairs of the following parameters: serum non-esterified fatty acid concentration, free serum tryptophan concentration, liver tryptophan concentration, liver 5-aminolaevulinate synthase activity, liver holo-(tryptophan pyrrolase) activity and the haem saturation of liver tryptophan pyrrolase. 6. It is suggested that liver tryptophan concentration may play an important role in the regulation of 5-aminolaevulinate synthase synthesis, and that the latter may be subject to control by changes in lipid metabolism and may be influenced by pharmacological agents that affect tryptophan disposition. 7. Preliminary evidence suggests that tryptophan may be bound in the liver and that such a possible binding may control its availability for its hepatic functions.
Collapse
|
29
|
Badawy AA, Welch AN, Morgan CJ. Tryptophan pyrrolase in haem regulation. The mechanisms of enhancement of rat liver 5-aminolaevulinate synthase activity by starvation and of the glucose effect on induction of the enzyme by 2-allyl-2-isopropylacetamide. Biochem J 1982; 206:441-9. [PMID: 7150255 PMCID: PMC1158609 DOI: 10.1042/bj2060441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. Rat liver tryptophan pyrrolase activity is enhanced by a hormonal-type mechanism during the first 2 days of starvation and by a substrate-type mechanism during the subsequent 2 days. 5-Aminolaevulinate synthase activity is also enhanced during the first 2 days of starvation, but returns thereafter to values resembling those observed in the fed rat. Treatments that prevent or reversé the enhancement of tryptophan pyrrolase activity in 24-48h-starved rats also abolish that of 5-aminolaevulinate synthase activity. Starvation of guinea pigs, which does not enhance the pyrrolase activity, also fails to alter that of the synthase. It is suggested that the decrease in 5-aminolaevulinate synthase activity in 72-96h-starved rats represents negative-feedback repression of synthesis, possibly involving tryptophan participation, whereas the enhancement observed in 24-48h-starved animals is caused by positive-feedback induction secondarily to increased utilization of the regulatory-haem pool by the newly synthesized apo-(tryptophan pyrrolase). 2. Glucose, fructose and sucrose abolish the 24h-starvation-induced increases in rat liver tryptophan pyrrolase and 5-aminolaevulinate synthase activities. Cortisol reverses the glucose effect on 5-aminolaevulinate synthase activity, presumably by enabling pyrrolase to re-utilize the regulatory-haem pool after induction of synthesis of this latter enzyme. 3. The impaired ability of 2-allyl-2-isopropylacetamide to enhance markedly 5-aminolaevulinate synthase activity in 24h-starved rats treated with glucose is associated with a failure of the porphyrogen to cause loss of tryptophan pyrrolase haem. Cortisol restores the ability of the porphyrogen to destroy tryptophan pyrrolase haem and to enhance markedly 5-aminolaevulinate synthase activity, presumably by enhancing tryptophan pyrrolase synthesis and, thereby, its re-utilization of the regulatory-haem pool. It is tentatively suggested that 2-allyl-2-isopropylacetamide destroys the above pool only after it has become bound to (or utilized by) apo-(tryptophan pyrrolase).
Collapse
|
30
|
Badawy AA. Heme utilization by rat liver tryptophan pyrrolase as a screening test for exacerbation of hepatic porphyrias by drugs. JOURNAL OF PHARMACOLOGICAL METHODS 1981; 6:77-85. [PMID: 6270470 DOI: 10.1016/0160-5402(81)90030-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rat liver tryptophan pyrrolase plays a versatile and unique role among hepatic hemoproteins in relation to heme utilization. The depletion of pyrrolase heme in the experimental porphyria produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine is potentiated by joint administration of any one of 19 drugs known to exacerbate the human disease, but not by any of 13 nonexacerbators. These findings form the basis of a screening test for drug exacerbation of hepatic porphyrias; the conditions, details, and requirements of which are described.
Collapse
|
31
|
Badawy AA, Welch AN, Morgan CJ. Tryptophan pyrrolase in haem regulation. The mechanism of the opposite effects of tryptophan on rat liver 5-aminolaevulinate synthase activity and the haem saturation of tryptophan pyrrolase. Biochem J 1981; 198:309-14. [PMID: 7326008 PMCID: PMC1163249 DOI: 10.1042/bj1980309] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1. Administration of tryptophan to starved rats causes a rapid decrease in liver 5-aminolaevulinate synthase activity associated with an increase in the haem saturation of tryptophan pyrrolase. Both effects are maximally produced at 30 min by a 100 mg/kg body wt. dose of tryptophan. 2. Pb2+ prevents both effects. 3. Prevention by allopurinol or benserazide of the tryptophan-induced increase in the haem saturation of tryptophan pyrrolase renders this haem available for further repression of synthase synthesis. 4. The opposite effects on synthase activity and pyrrolase saturation with haem caused by administration of 5-aminolaevulinate, but not those by that of haematin, are potentiated by tryptophan. 5. It is suggested that tryptophan decreases 5-aminolaevulinate synthase activity and causes the initial increase in the haem saturation of tryptophan pyrrolase by enhancing the conversion of 5-aminolaevulinate into haem by a process requiring protein synthesis.
Collapse
|
32
|
Yamamoto M, Hayashi N, Kikuchi G. Regulation of synthesis and intracellular translocation of delta-aminolevulinate synthase by heme and its relation to the heme saturation of tryptophan pyrrolase in rat liver. Arch Biochem Biophys 1981; 209:451-9. [PMID: 7294805 DOI: 10.1016/0003-9861(81)90302-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Kikuchi G, Hayashi N. Regulation by heme of synthesis and intracellular translocation of delta-aminolevulinate synthase in the liver. Mol Cell Biochem 1981; 37:27-41. [PMID: 6789140 DOI: 10.1007/bf02355885] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|