1
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Neville MC, Webb P, Ramanathan P, Mannino MP, Pecorini C, Monks J, Anderson SM, MacLean P. The insulin receptor plays an important role in secretory differentiation in the mammary gland. Am J Physiol Endocrinol Metab 2013; 305:E1103-14. [PMID: 23982156 PMCID: PMC3840206 DOI: 10.1152/ajpendo.00337.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin is known to be an important regulator of milk secretion in the lactating mammary gland. Here we examine the role of insulin signaling in mammary development in pregnancy using a mouse with a floxed insulin receptor (IR) crossed with a mouse expressing Cre specifically in the mammary gland. In the mammary glands of these IR(fl/fl) Cre(+) mice, expression of IR is significantly diminished throughout development. Glands from these mice had 50% fewer alveoli at midpregnancy; casein and lipid droplets were diminished by 60 and 75%, respectively, indicating a role for IR both in alveolar development and differentiation. In an acinar preparation from mammary epithelial cells (MEC) isolated from pregnant mice, insulin stimulated lumen formation, mammary cell size, acinar size, acinar casein content, and the formation of lipid droplets with a Km of ∼1.7 nM. IGF-I and IGF-II had no effect at concentrations below 50 nM, and a function blocking antibody to the IGF type 1 receptor did not alter the response to insulin. We conclude that insulin interacting with IR is essential for mammary differentiation during murine pregnancy. Using array analysis, we then examined the expression of genes up- or downregulated >1.5-fold in the IR(fl/fl) Cre(+) MECs, finding significant downregulation of differentiation specific genes and upregulation of cell cycle and extracellular matrix genes. We conclude that insulin fosters differentiation and may inhibit cell proliferation in the mammary gland of the midpregnant mouse.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Grassian AR, Metallo CM, Coloff JL, Stephanopoulos G, Brugge JS. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev 2011; 25:1716-33. [PMID: 21852536 DOI: 10.1101/gad.16771811] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Loss of extracellular matrix (ECM) attachment leads to metabolic impairments that limit cellular energy production. Characterization of the metabolic alterations induced by ECM detachment revealed a dramatic decrease in uptake of glucose, glutamine, and pyruvate, and a consequent decrease in flux through glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle. However, flux through pyruvate dehydrogenase (PDH) is disproportionally decreased, concomitant with increased expression of the PDH inhibitory kinase, PDH kinase 4 (PDK4), and increased carbon secretion. Overexpression of ErbB2 maintains PDH flux by suppressing PDK4 expression in an Erk-dependent manner, and Erk signaling also regulates PDH flux in ECM-attached cells. Additionally, epidermal growth factor (EGF), a potent inducer of Erk, positively regulates PDH flux through decreased PDK4 expression. Furthermore, overexpression of PDK4 in ECM-detached cells suppresses the ErbB2-mediated rescue of ATP levels, and in attached cells, PDK4 overexpression decreases PDH flux, de novo lipogenesis, and cell proliferation. Mining of microarray data from human tumor data sets revealed that PDK4 mRNA is commonly down-regulated in tumors compared with their tissues of origin. These results identify a novel mechanism by which ECM attachment, growth factors, and oncogenes modulate the metabolic fate of glucose by controlling PDK4 expression and PDH flux to influence proliferation.
Collapse
Affiliation(s)
- Alexandra R Grassian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
4
|
Wu P, Blair PV, Sato J, Jaskiewicz J, Popov KM, Harris RA. Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys 2000; 381:1-7. [PMID: 11019813 DOI: 10.1006/abbi.2000.1946] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covalent modification of the pyruvate dehydrogenase complex provides an important regulatory mechanism for controlling the disposal of glucose and other compounds metabolized to pyruvate. Regulation of the complex by this mechanism is achieved in part by tissue-specific expression of the genes encoding isoenzymes of pyruvate dehydrogenase kinase (PDK). Starvation is known from our previous work to increase PDK activity of heart and skeletal muscle by increasing the amount of PDK isoenzyme 4 (PDK4) present in these tissues. This study demonstrates that increased expression of both PDK4 and PDK2 occurs in rat liver, kidney, and lactating mammary gland in response to starvation. PDK4 and PDK2 message levels were also increased by starvation in the two tissues examined (liver and kidney), suggesting enhancement of gene transcription. Changes in PDK2 message and protein were of similar magnitude, but changes in PDK4 message were greater than those in PDK4 protein, suggesting regulation at the level of translation. In contrast to these tissues, starvation had little or no effect on PDK2 and PDK4 protein in brain, white adipose tissue, and brown adipose tissue. Nevertheless, PDK4 message levels were significantly increased in brain and white adipose tissue by starvation. The findings of this study indicate that increased expression of PDK isoenzymes is an important mechanism for bringing about inactivation of the pyruvate dehydrogenase complex during starvation in many but not all tissues of the body. The absence of this mechanism preserves the capacity of neuronal tissue to utilize glucose for energy during starvation.
Collapse
Affiliation(s)
- P Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | | | | | | | |
Collapse
|
5
|
Hagopian K, Munday MR. The role of pyruvate dehydrogenase, phosphofructo-1-kinase and acetyl-CoA carboxylase in the regulation of fatty acid synthesis in the lactating rat mammary gland during the starved to re-fed transition. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:474-84. [PMID: 9367175 DOI: 10.1016/s0304-4165(97)00061-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Re-feeding 24-h-starved lactating rats resulted in a rapid (within 0.5 h) restoration of glucose uptake by the mammary gland and a slower (within 3 h) restoration of fatty acid synthesis. The rapid reactivation of glucose uptake (82% of fed value within 0.5 h of re-feeding) correlated with a rapid reactivation of 6-phosphofructo-1-kinase (6-PF-1-K) and glycolysis (as determined by a 97% decrease in the [fructose-6-phosphate]/[fructose-1,6-bisphosphate] ratio). This could not be fully explained by a fall (29%) in the tissue concentration of its allosteric inhibitor, citrate. The delayed reactivation of pyruvate dehydrogenase (PDH) correlated very closely with the delayed reactivation of fatty acid synthesis and explained the continued output of pyruvate and lactate within the first 0.5 h of re-feeding. PDH reactivation preceded the reactivation of acetyl-CoA carboxylase (ACC), which did not occur significantly until 1.5 h of re-feeding. ACC reactivation correlated with a decrease in the tissue concentration of citrate and a second late phase of 6-PF-1-K activation. It is clear that the important regulatory steps 6-PF-1-K, PDH and ACC, are reactivated asynchronously in the lactating mammary gland in response to re-feeding starved rats and that PDH is more important than ACC in the regulation of fatty acid synthesis.
Collapse
Affiliation(s)
- K Hagopian
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, UK
| | | |
Collapse
|
6
|
Barber MC, Clegg RA, Travers MT, Vernon RG. Lipid metabolism in the lactating mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:101-26. [PMID: 9295156 DOI: 10.1016/s0005-2760(97)00079-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Williamson DH, Lund P, Evans RD. Substrate selection and oxygen uptake by the lactating mammary gland. Proc Nutr Soc 1995; 54:165-75. [PMID: 7568251 DOI: 10.1079/pns19950046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- D H Williamson
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford
| | | | | |
Collapse
|
8
|
Heesom KJ, Souza PF, Ilic V, Williamson DH. Chain-length dependency of interactions of medium-chain fatty acids with glucose metabolism in acini isolated from lactating rat mammary glands. A putative feed-back to control milk lipid synthesis from glucose. Biochem J 1992; 281 ( Pt 1):273-8. [PMID: 1731763 PMCID: PMC1130673 DOI: 10.1042/bj2810273] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of a series of medium-chain fatty acids (C6-C12) on glucose metabolism in isolated acini from lactating rat mammary glands have been studied. Hexanoate (C6) octanoate (C8) and decanoate (C10), but not laurate (C12), decreased [1-14C]glucose conversion into [14C]lipid and the production of 14CO2 (an index of the pentose phosphate pathway). With hexanoate and octanoate, glucose utilization was decreased, whereas decanoate had a slight stimulatory effect on glucose utilization, but there was a large accumulation of lactate. Addition of dichloroacetate (an inhibitor of pyruvate dehydrogenase kinase) decreased this accumulation of lactate and stimulated the conversion of [1-14C]glucose into [14C]lipid and 14CO2. Insulin had no effect on the rate of glucose utilization in the presence of hexanoate. It stimulated the rate in the presence of octanoate and laurate and increased the conversion of [1-14C]glucose into [14C]lipid in the presence of octanoate, decanoate or laurate. The major fate of 1-14C-labelled medium-chain fatty acids (C6, C8 and C12) was conversion into [14C]lipid. The proportion converted into 14CO2 decreased with increasing chain length, whereas the rate of [14C]lipid formation increased. It is concluded that the interactions between medium-chain fatty acids and glucose metabolism represent a feed-back mechanism to control milk lipid synthesis, and this may be important when milk accumulates in the gland.
Collapse
Affiliation(s)
- K J Heesom
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
9
|
Hagopian K, Butt J, Munday MR. Regulation of fatty acid synthesis in lactating rat mammary gland in the fed to starved transition: asynchronous control of pyruvate dehydrogenase, phosphofructokinase and acetyl-CoA carboxylase. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 100:527-34. [PMID: 1687675 DOI: 10.1016/0305-0491(91)90215-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Withdrawal of food from lactating rats produced a rapid and dramatic decrease in the uptake of glucose by the mammary gland and an inhibition of the rate of fatty acid synthesis that could not be explained alone by decreased substrate supply to the tissue. 2. Within the first 6 hr starvation, fatty acid synthesis and pyruvate dehydrogenase activity were inhibited by 87 and 80%, respectively, but acetyl-CoA carboxylase activity did not change significantly. 3. Between 6 and 24 hr starvation, total and expressed activities of acetyl-CoA carboxylase decreased by 62 and 55%, respectively. 4. The ratio of fructose-6-phosphate/fructose-1,6-bisphosphate concentration in mammary tissue increased 9-fold during the first 6 hr starvation, indicating an inhibition of 6-phosphofructo-1-kinase. However, the major inhibition of this enzyme occurred between 6 and 24 hr starvation when this metabolite ratio increased a further 160-fold in parallel with increased tissue citrate concentration. 5. The increase in citrate concentration between 6 and 24 hr starvation correlated with acetyl-CoA carboxylase inactivation and ketone body accumulation in the mammary gland. 6. This study confirms the asynchronous control of three important regulatory steps in the pathway of glucose utilization and fatty acid synthesis in the lactating rat mammary gland.
Collapse
Affiliation(s)
- K Hagopian
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of London, UK
| | | | | |
Collapse
|
10
|
Holness MJ, Sugden MC. Pyruvate dehydrogenase activities and rates of lipogenesis during the fed-to-starved transition in liver and brown adipose tissue of the rat. Biochem J 1990; 268:77-81. [PMID: 2188650 PMCID: PMC1131393 DOI: 10.1042/bj2680077] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The percentages of pyruvate dehydrogenase complex (PDH) in the active form (PDHa) in two lipogenic tissues (liver and brown adipose tissue) in the fed state were 12.0% and 13.4% respectively. After acute (0.5 h) insulin treatment, PDHa activities had increased by 77% in liver and by 234% in brown fat. Significant decreases in PDHa activities were observed in both tissues by 5 h after the removal of food. The patterns of decline in PDHa activities in the two lipogenic tissues were similar in that the major decreases in activities were observed within the first 7 h of starvation. The significant decreases in PDHa activities observed after starvation for 6 h were accompanied by decreased rates of lipogenesis. Hepatic and brown-fat PDHa activities after acute (30 min) exposure to exogenous insulin were less in 6 h-starved than in fed rats, but the absolute increases in PDHa activities over the 30 min exposure period were similar in fed and 6 h-starved rats. Increases in PDHa activities were paralleled by increases in lipid synthesis in both tissues. Re-activation of PDH in response to insulin treatment or chow re-feeding after 48 h starvation occurred more rapidly in brown adipose tissue than in liver. The results are discussed in relation to the importance of the activity of the PDH complex as a determinant of the total rate of lipogenesis during the fed-to-starved transition and after insulin challenge or re-feeding.
Collapse
Affiliation(s)
- M J Holness
- Department of Biochemistry, London Hospital Medical College, U.K
| | | |
Collapse
|
11
|
Abstract
Dichloroacetate (DCA) exerts multiple effects on pathways of intermediary metabolism. It stimulates peripheral glucose utilization and inhibits gluconeogeneis, thereby reducing hyperglycemia in animals and humans with diabetes mellitus. It inhibits lipogenesis and cholesterolgenesis, thereby decreasing circulating lipid and lipoprotein levels in short-term studies in patients with acquired or hereditary disorders of lipoprotein metabolism. By stimulating the activity of pyruvate dehydrogenase, DCA facilitates oxidation of lactate and decreases morbidity in acquired and congenital forms of lactic acidosis. The drug improves cardiac output and left ventricular mechanical efficiency under conditions of myocardial ischemia or failure, probably by facilitating myocardial metabolism of carbohydrate and lactate as opposed to fat. DCA may also enhance regional lactate removal and restoration of brain function in experimental states of cerebral ischemia. DCA appears to inhibit its own metabolism, which may influence the duration of its pharmacologic actions and lead to toxicity. DCA can cause a reversible peripheral neuropathy that may be related to thiamine deficiency and may be ameliorated or prevented with thiamine supplementation. Other toxic effects of DCA may be species-specific and reflect marked interspecies variation in pharmacokinetics. Despite its potential toxicity and limited clinical experience, DCA and its derivatives may prove to be useful in probing regulatory aspects of intermediary metabolism and in the acute or chronic treatment of several metabolic disorders.
Collapse
Affiliation(s)
- P W Stacpoole
- Department of Medicine, University of Florida, College of Medicine, Gainesville 32610
| |
Collapse
|
12
|
Tedstone AE, Tedoldi B, Ilic V, Williamson DH. Polymyxin B diminishes blood flow to brown adipose tissue and lactating mammary gland in the rat. Possible mechanism of its action to decrease the stimulation of lipogenesis on refeeding. Biochem J 1989; 261:445-50. [PMID: 2549972 PMCID: PMC1138846 DOI: 10.1042/bj2610445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymyxin B, a cyclic decapeptide antibiotic, increased blood glucose and lactate, and inhibited the stimulation of lipogenesis in interscapular brown adipose tissue and lactating mammary gland of starved-refed virgin and lactating rats respectively. Lipogenesis was not inhibited in white adipose tissue or liver. The antibiotic increased the haematocrit. The relative blood flow to brown adipose tissue and lactating mammary gland was decreased by polymyxin B, and this was accompanied by a decrease in tissue ATP content. In vitro polymyxin B did not affect glucose utilization or conversion into lipid, nor the stimulation by insulin of these processes in brown-adipose-tissue slices. Treatment of rats in vivo with polymyxin B resulted in decreased utilization of glucose in vitro in brown-adipose-tissue slices. Similarly, acini from mammary glands of polymyxin B-treated lactating rats had decreased rates of conversion of [1-14C]glucose to lipid. It is concluded that the effects of polymyxin B may be brought about by decreases in tissue blood flow. The possibility that these effects are secondary to inhibition of glucose utilization cannot be ruled out.
Collapse
Affiliation(s)
- A E Tedstone
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
13
|
Page T. Evidence for the involvement of a gastrointestinal peptide in the regulation of glucose uptake in the mammary gland of the lactating rat. Biochem J 1989; 258:639-43. [PMID: 2658971 PMCID: PMC1138414 DOI: 10.1042/bj2580639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. A method of obtaining serial arterial and mammary-venous blood samples was used to identify possible factors involved in the regulation of glucose uptake in the gland of the lactating rat. 2. Administration of insulin alone increased the arteriovenous glucose difference across the mammary gland of starved rats, but the time course of the recovery could not account for the restoration of arteriovenous glucose difference observed during refeeding [Page & Kuhn (1986). Biochem. J. 239, 269-274]. 3. A crude extract of the gastrointestinal tract (stomach-ileum) from lactating rats enhanced the change in mammary glucose uptake observed with insulin, but only when large amounts (100 munits/rat) of insulin were used. To achieve a similar recovery of arteriovenous glucose difference using near-physiological amounts (5 munits/rat) of insulin it was necessary to sever the mammary nerves. 4. A peptide fraction (of less than 10 kDa) isolated from the gut extract enhanced the effect of insulin in a similar manner to the crude extract. 5. It is suggested that in addition to insulin at least another component, probably a gut peptide, is required for the restoration of mammary glucose uptake during refeeding. An inhibitory component may also contribute to the regulation of mammary glucose extraction in the lactating rat.
Collapse
Affiliation(s)
- T Page
- Department of Biochemistry, University of Birmingham, U.K
| |
Collapse
|
14
|
Oller do Nascimento CM, Williamson DH. Tissue-specific effects of starvation and refeeding on the disposal of oral [1-14C]triolein in the rat during lactation and on removal of litter. Biochem J 1988; 254:539-46. [PMID: 3052438 PMCID: PMC1135111 DOI: 10.1042/bj2540539] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The effects of starvation and refeeding on the disposal of oral [14C]triolein between 14CO2 production and 14C-lipid accumulation in tissues of virgin rats, lactating rats and lactating rats with pups removed were studied. 2. Starvation (24 h) increased 14CO2 production in lactating rats and lactating rats with pups removed to values found in virgin rats. This increase was accompanied by decreases in 14C-lipid accumulation in mammary gland and pups of lactating rats and in white and brown adipose tissue of lactating rats with pups removed. 3. Short-term (2 h) refeeding ad libitum decreased 14CO2 production in lactating rats and lactating rats with pups removed, and restored the 14C-lipid accumulation in mammary glands plus pups and in white and brown adipose tissue respectively 4. Insulin deficiency induced with mannoheptulose inhibited the restoration of 14C-lipid accumulation in white adipose tissue on refeeding of lactating rats with pups removed, but did not prevent the restoration of 14C-lipid accumulation in mammary gland. 5. Changes in the activity of lipoprotein lipase in mammary gland and white adipose tissue paralleled the changes in 14C-lipid accumulation in these tissues. 6. It is concluded that 14C-lipid accumulation in mammary gland may not be affected by changes in plasma insulin concentration and that it is less sensitive to starvation than is lipogenesis or lactose synthesis. This has the advantage that the milk lipid content can still be maintained from hepatic very-low-density lipoprotein for a period after withdrawal of food. The major determinant of the disposal of oral 14C-triolein appears to be the total tissue activity of lipoprotein lipase. When this is high in mammary gland (fed lactating rats) or white adipose tissue (fed lactating rats with pups removed), less triacylglycerol is available for the muscle mass and consequently less is oxidized.
Collapse
Affiliation(s)
- C M Oller do Nascimento
- Metabolism Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | |
Collapse
|
15
|
Mercer SW, Williamson DH. Rapid inhibition by intragastric triolein of the re-activation of glucose utilization and lipogenesis in the mammary gland during the starved-refed transition in lactating rats. Evidence for a direct effect of oral lipid on mammary tissue. Biochem J 1988; 250:269-76. [PMID: 3281661 PMCID: PMC1148843 DOI: 10.1042/bj2500269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Oral administration of triacylglycerol (triolein) to starved/chow-refed lactating rats suppressed the lipogenic switch-on in the mammary gland in vivo. 2. A time-course study revealed that triolein, administered at 30 min after the onset of refeeding, had no influence on lipogenic rate in the mammary gland between 30 and 60 min, but markedly decreased it between 60 and 90 min. Glucose uptake by the mammary gland (arteriovenous difference) increased by 30 min of refeeding, as did lactate production. Between 30 and 90 min glucose uptake remained high in the control animals, but glucose uptake and net C3-unit uptake were decreased in the triolein-loaded animals by 90 min. 3. Triolein increased [glucose 6-phosphate] in the gland and simultaneously decreased [fructose 1,6-bisphosphate], indicative of a decrease in phosphofructokinase activity. This cross-over occurred at 60 min, i.e. immediately before the inhibition of lipogenesis, and by 90 min had reached 'starved' values. 4. Triolein had no effect on plasma [insulin] nor on whole-blood [glucose], [lactate] or [3-hydroxybutyrate]; a small increase in [acetoacetate] was observed. 5. Infusion of the lipoprotein lipase inhibitor, Triton WR1339, abolished the suppression of mammary-gland lipogenesis by triolein and the increase in the [glucose 6-phosphate]/[fructose 1,6-bisphosphate] ratio, suggesting a direct influence of dietary lipid on mammary-gland glucose utilization and phosphofructokinase activity.
Collapse
Affiliation(s)
- S W Mercer
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | |
Collapse
|
16
|
Clegg RA, Calvert DT. An 'in situ' perfusion system suitable for investigating mammary-tissue metabolism in the lactating rat. Hormonal regulation of acetyl-CoA carboxylase. Biochem J 1988; 249:771-7. [PMID: 2895636 PMCID: PMC1148773 DOI: 10.1042/bj2490771] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A technique is described for the non-recirculating perfusion of inguinal/abdominal mammary tissue in situ in anaesthetized lactating rats. Tissue viability was maintained, without resort to infusion of vasoactive chemicals which may also be effectors of cellular metabolism, for at least 90 min. Total tissue adenine nucleotides (per mg of DNA) were somewhat decreased in perfused relative to non-perfused mammary tissue. DNA content (per g wet wt. of tissue) was diminished after 90 min of perfusion to approx. 65% of its value in control tissue. Adenylate energy-charge ratios were lower in perfused tissue in the absence of hormones than in control tissue. They were increased to control values by the presence of either insulin or isoprenaline in the perfusate. No changes occurred in flow rate of the perfusate that might account for these increases. In mammary tissue perfused without addition of hormones, acetyl-CoA carboxylase activities were similar to those measured in control tissue samples, although activity-ratio measurements implied some increase in the phosphorylation of this enzyme. Insulin or isoprenaline increased the activity of acetyl-CoA carboxylase, especially when this was measured at low concentrations of citrate. Confirming conclusions from previous experiments with mammary acini and explant preparations, insulin activated acetyl-CoA carboxylase in mammary tissue, but inhibition of its activity was not mediated by cyclic AMP.
Collapse
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Ayr, Scotland, U.K
| | | |
Collapse
|
17
|
Clegg RA. Regulation of fatty acid uptake and synthesis in mammary and adipose tissues: contrasting roles for cyclic AMP. CURRENT TOPICS IN CELLULAR REGULATION 1988; 29:77-128. [PMID: 2840244 DOI: 10.1016/b978-0-12-152829-4.50005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Ayr, Scotland
| |
Collapse
|
18
|
Munday MR, Williamson DH. Insulin activation of lipogenesis in isolated mammary acini from lactating rats fed on a high-fat diet. Evidence that acetyl-CoA carboxylase is a site of action. Biochem J 1987; 242:905-11. [PMID: 2884993 PMCID: PMC1147794 DOI: 10.1042/bj2420905] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Feeding lactating rats on high-fat cheese crackers in addition to laboratory chow increased the dietary intake of fat from 2 to 20% of the total weight of food eaten and decreased mammary-gland lipogenesis in vivo by approx. 50%. This lipogenic inhibition was also observed in isolated mammary acini, where it was accompanied by decreased glucose uptake. These inhibitions were completely reversed by incubation with insulin. Insulin had no effect on the rate of glucose transport into acini, nor on pyruvate dehydrogenase activity as estimated by the accumulation of pyruvate and lactate, suggesting that these are not the sites of lipogenic inhibition. Insulin stimulated the incorporation of [1-14C]acetate into lipid in acini from high-fat-fed rats. In the presence of alpha-cyanohydroxycinnamate, a potent inhibitor of mitochondrial pyruvate transport, and with glucose as the sole substrate, neither [1-14C]glucose incorporation into lipid nor glucose uptake were stimulated by insulin. Insulin did stimulate the incorporation of [1-14C]acetate into lipid in the presence of alpha-cyanohydroxycinnamate, and this was accompanied by an increase in glucose uptake by the acini. This indicated that increased glucose uptake was secondary to the stimulation of lipogenesis by insulin, which therefore must occur via activation of a step in the pathway distal to mitochondrial pyruvate transport. Insulin stimulated acetyl-CoA carboxylase activity measured in crude extracts of acini from high-fat-fed rats, restoring it to values close to those of chow-fed controls. The effects of insulin on acetyl-CoA carboxylase activity and lipogenesis were not antagonized by adrenaline or dibutyryl cyclic AMP.
Collapse
|
19
|
Mercer SW, Williamson DH. The regulation of lipogenesis in vivo in the lactating mammary gland of the rat during the starved-refed transition. Studies wtih acarbose, a glucosidase inhibitor. Biochem J 1987; 242:235-43. [PMID: 2954538 PMCID: PMC1147688 DOI: 10.1042/bj2420235] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Depression of carbohydrate digestion by oral administration of acarbose, a glucosidase inhibitor, led to a 75% inhibition of the re-activation of lipogenesis in vivo in the mammary gland of 18 h-starved lactating rats refed with 5 g of chow diet. Rates of [1-14C]glucose incorporation in vitro into lipid and CO2 in mammary-gland acini isolated from refed animals were elevated compared with acini from starved rats, but acarbose treatment completely prevented this stimulation. Gastric intubation of glucose led to a large stimulation of lipogenesis in the mammary gland of starved lactating rats, similar to that induced by refeeding with chow diet; this was dependent on the amount of glucose given and the time elapsed between glucose administration and injection of 3H2O for the measurement of lipogenesis. The switch-on of lipogenesis in the mammary gland of starved lactating rats, by refeeding or by intubation of glucose, was associated with a decrease in the ratio of [glucose 6-phosphate]/[fructose 1,6-bisphosphate] in the gland, indicative of an increase in phosphofructokinase activity. A time-course study revealed that the ratio decreased rapidly over the first 30 min of chow refeeding, after which a large surge in lipogenesis was seen. Acarbose, given 25 min after the onset of refeeding, led to a stepwise increase in the ratio, in parallel with the observed decrease in lipogenic activity. It is concluded that the control of lipogenesis in the mammary gland is closely linked to the availability of dietary carbohydrate. An important site of regulation of lipogenesis in the gland appears to be at the level of phosphofructokinase. A possible role of insulin in the regulation of phosphofructokinase activity, and the acute modulation of insulin-sensitivity in the gland during the starved-refed transition, are discussed.
Collapse
|
20
|
Clegg RA, Mullaney I, Robson NA, Zammit VA. Modulation of intracellular cyclic AMP content and rate of lipogenesis in mammary acini in vitro. Biochem J 1986; 240:13-8. [PMID: 2881537 PMCID: PMC1147369 DOI: 10.1042/bj2400013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Relationships between the cyclic AMP content, the rate of lipogenesis and the activity of acetyl-CoA carboxylase in acini prepared from lactating rat mammary tissue were investigated by exposing them to agents that increase their cyclic AMP content in the presence or absence of insulin. The dose-dependent inhibition of lipogenesis by theophylline in acini isolated from fed rats was highly correlated with the induced increases in acinar cyclic AMP content. Cyclic AMP of acini from 24 h-starved lactating rats was more sensitive in its response to theophylline than that in acini from fed animals. Neither forskolin nor a mixture of isoprenaline and Ro 7-2956 were able significantly to change either the rate of lipogenesis or the activity of acetyl-CoA carboxylase in acini from fed rats when added to incubations in vitro, in spite of the large increases in cyclic AMP concentration produced by these agents. Insulin was without effect on the activity of acetyl-CoA carboxylase and on either the basal or isoprenaline-stimulated cyclic AMP content of acini. These results are discussed in terms of the possibility that the rate of lipogenesis and the cyclic AMP content in mammary acini can vary independently of one another and of the activity of acetyl-CoA carboxylase.
Collapse
|
21
|
Mercer SW, Williamson DH. Time course of changes in plasma glucose and insulin concentrations and mammary-gland lipogenesis during re-feeding of starved conscious lactating rats. Biochem J 1986; 239:489-92. [PMID: 3545183 PMCID: PMC1147308 DOI: 10.1042/bj2390489] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Temporal changes in circulating insulin concentrations were measured during re-feeding of 18 h-starved lactating rats. Insulin concentrations rose rapidly over the first 20 min of re-feeding with 5 g of chow diet, and then sharply declined between 20-30 min and remained low for the rest of the 90 min experimental period. Lipogenic activity in the mammary gland also exhibited a peak during re-feeding, but there was a clear time lag between the insulin response and the lipogenic response. Blood-flow measurements failed to show any major increase to the tissue during this activation of lipogenesis. Acute suppression of insulin secretion at 30 min (after the initial surge) abolished the switch-on of lipogenesis, suggesting that the insulin-sensitivity of the gland may be acutely enhanced over this period of re-feeding.
Collapse
|
22
|
Munday MR, Hardie DG. The role of acetyl-CoA carboxylase phosphorylation in the control of mammary gland fatty acid synthesis during the starvation and re-feeding of lactating rats. Biochem J 1986; 237:85-91. [PMID: 2879530 PMCID: PMC1146950 DOI: 10.1042/bj2370085] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activation of acetyl-CoA carboxylase during incubation of crude extracts of lactating rat mammary gland with Mg2+ and citrate can be blocked by NaF, suggesting that it represents a dephosphorylation of the enzyme. The greater extent of activation in extracts from 24 h-starved rats (200%) compared with fed controls (70%) implies that the decrease in acetyl-CoA carboxylase activity in response to 24 h starvation may involve increased phosphorylation of the enzyme. Acetyl-CoA carboxylase was purified from the mammary glands of lactating rats in the presence of protein phosphatase inhibitors by avidin-Sepharose chromatography. Starvation of the rats for 24 h increased the concentration of citrate giving half-maximal activation by 75%, and decreased the Vmax. of the purified enzyme by 73%. This was associated with an increase in the alkali-labile phosphate content from 3.3 +/- 0.2 to 4.5 +/- 0.4 mol/mol of enzyme subunit. Starvation of lactating rats for 6 h, or short-term insulin deficiency induced by streptozotocin injection, did not effect the kinetic parameters or the phosphate content of acetyl-CoA carboxylase purified from mammary glands. The effects of 24 h starvation on the kinetic parameters and phosphate content of the purified enzyme were completely reversed by re-feeding for only 2.5 h. This effect was blocked if the animals were injected with streptozotocin before re-feeding, suggesting that the increase in plasma insulin that occurs on re-feeding was responsible for the activation of the enzyme. The effects of re-feeding 24 h-starved rats on the kinetic parameters and phosphate content of acetyl-CoA carboxylase could be mimicked by treating enzyme purified from 24 h-starved rats with protein phosphatase-2A in vitro. Our results suggest that, in mammary glands of 24 h-starved lactating rats, insulin brings about a dephosphorylation of acetyl-CoA carboxylase in vivo, which may be at least partly responsible for the reactivation of mammary lipogenesis in response to re-feeding.
Collapse
|
23
|
Clegg RA, Mullaney I. Acute change in the cyclic AMP content of rat mammary acini in vitro. Influence of physiological and pharmacological agents. Biochem J 1985; 230:239-46. [PMID: 2864919 PMCID: PMC1152607 DOI: 10.1042/bj2300239] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cyclic AMP content of acini, freshly prepared from mammary tissue of lactating rats, was measured during incubation in vitro. Neither adrenergic agonists nor cyclic AMP phosphodiesterase inhibitors alone caused a change of more than 2-fold in the basal cyclic AMP content of acini. Together, however, these agents provoked increases of around 20-fold in acini cyclic AMP content. Forskolin caused similar effects. The relative potency of adrenergic agonists in increasing cyclic AMP in acini, together with the ability of selective antagonists to oppose such rises, indicated that beta 2-adrenergic receptors were involved in mediating the effects. Receptor-binding experiments using [3H]dihydroalprenolol and selective beta-antagonists confirmed the predominant presence of beta 2-adrenergic receptors on acini membranes and on membranes prepared from purified mammary secretory epithelial cells. These results elucidate some previous findings [Robson, Clegg & Zammit (1984) Biochem. J. 217, 743-749; Williamson, Munday, Jones, Roberts & Ramsey (1983) Adv. Enzyme Regul. 21, 135-145], questioning the role of cyclic AMP in the regulation of lipogenesis in mammary acini.
Collapse
|
24
|
Williamson DH, Ilic V, Jones RG. Evidence that the stimulation of lipogenesis in the mammary glands of starved lactating rats re-fed with a chow diet is dependent on continued hepatic gluconeogenesis during the absorptive period. Effects of a gluconeogenic inhibitory, mercaptopicolinic acid, in vivo. Biochem J 1985; 228:727-33. [PMID: 4026806 PMCID: PMC1145044 DOI: 10.1042/bj2280727] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rapid stimulation of lipogenesis in mammary gland that occurs on re-feeding starved lactating rats with a chow diet was decreased (60%) by injection of mercaptopicolinic acid, an inhibitor of hepatic gluconeogenesis at the phosphoenolpyruvate carboxykinase step. Mercaptopicolinate had no effect on lipogenesis in mammary glands of fed lactating rats. The inhibition of lipogenesis persisted in vitro when acini from mammary glands of re-fed rats treated with mercaptopicolinate were incubated with [1-14C]glucose. Mercaptopicolinate added in vitro had no significant effect on lipogenesis in acini from starved-re-fed lactating rats. Mercaptopicolinate prevented the deposition of glycogen and increased the rate of lipogenesis in livers of starved-re-fed lactating rats, whereas it had no significant effect on livers of fed lactating rats. Administration of intraperitoneal glucose restored the rate of mammary-gland lipogenesis in re-fed rats treated with mercaptopicolinate to the values for re-fed rats. Hepatic glycogen deposition was also restored, and the rate of hepatic lipogenesis was stimulated 5-fold. It is concluded that stimulation of mammary-gland lipogenesis on re-feeding with a chow diet after a period of starvation is in part dependent on continued hepatic gluconeogenesis during the absorptive period. Possible sources of the glucose precursors are discussed.
Collapse
|
25
|
Agius L, Vaartjes WJ. Effect of insulin on ketogenesis and fatty acid synthesis in rat hepatocytes incubated with dichloroacetate. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 844:393-9. [PMID: 3918587 DOI: 10.1016/0167-4889(85)90141-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In parenchymal liver cells isolated from fed rats, insulin increased the formation of 14CO2 from [1-14C]pyruvate (and presumably the flux through pyruvate dehydrogenase) by 14%. Dichloroacetate, an activator of the pyruvate dehydrogenase complex, stimulated this process by 133%. As judged from the conversion of [2-14C]pyruvate to 14CO2, the tricarboxylic acid cycle activity was not affected by insulin, but it was depressed by dichloroacetate. In hepatocytes from fed rats, incubated with glucose as the only carbon source, dichloroacetate caused a stimulation (31%) of fatty acid synthesis, measured as 3H incorporation from 3H2O into fatty acid, and an increased (134%) accumulation of ketone bodies (acetoacetate + D-3-hydroxybutyrate). Dichloroacetate did not affect ketone body formation from [14C]palmitate, suggesting that the increased accumulation of ketone bodies resulted from acetyl-CoA derived from pyruvate. Insulin stimulated fatty acid synthesis in hepatocytes from fed rats. In the combined presence of insulin plus dichloroacetate, fatty acid synthesis was more rapid than in the presence of either insulin or dichloroacetate, whereas the accumulation of ketone bodies was smaller than in the presence of dichloroacetate alone. Although pyruvate dehydrogenase activity, which is rate-limiting for fatty acid synthesis in hepatocytes from fed rats, is stimulated both by insulin and by dichloroacetate, the reciprocal changes in fatty acid synthesis and ketone body accumulation brought about by insulin in the presence of dichloroacetate suggest that insulin is also involved in the regulation of fatty acid synthesis at a mitochondrial site after pyruvate dehydrogenase, possibly at the partitioning of acetyl-CoA between citrate and ketone body formation.
Collapse
|
26
|
Jones RG, Ilic V, Williamson DH. Regulation of lactating-rat mammary-gland lipogenesis by insulin and glucagon in vivo. The role and site of action of insulin in the transition to the starved state. Biochem J 1984; 223:345-51. [PMID: 6388568 PMCID: PMC1144306 DOI: 10.1042/bj2230345] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Starvation for 6h and 24h caused an 80% and 95% decrease in the rate of mammary-gland lipogenesis respectively in conscious lactating rats. 2. Plasma insulin concentrations decreased and circulating ketone-body concentrations increased with the length of starvation. 3. The inhibition of lipogenesis after 24h starvation was accompanied by increased concentrations of glucose, glucose 6-phosphate and citrate in the mammary gland. Qualitatively similar changes were observed after 6h starvation. 4. Infusion of insulin at physiological concentrations caused a 100% increase in the rate of lipogenesis in fed animals and partially reversed the inhibition of lipogenesis caused by starvation. 5. Infusion of insulin tended to reverse the changes seen in intracellular metabolite concentrations. 4. Infusion of glucagon into fed rats caused no change in the rates of lipogenesis in mammary gland, liver or white adipose tissue. 7. It is concluded that (a) insulin acts physiologically to regulate lipogenesis in the mammary gland, (b) hexokinase and phosphofructokinase are important regulatory enzymes in the short-term control of lipogenesis in the mammary gland, which are under the influence of insulin, and (c) the unresponsiveness of mammary-gland lipogenesis in vivo to infusions of glucagon is consistent with an adaptive mechanism which diverts substrate towards the lactating mammary gland and away from other tissues.
Collapse
|
27
|
Jones RG, Ilic V, Williamson DH. Physiological significance of altered insulin metabolism in the conscious rat during lactation. Biochem J 1984; 220:455-60. [PMID: 6146315 PMCID: PMC1153647 DOI: 10.1042/bj2200455] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uptake of radioactively labelled insulin by the mammary gland of the rat increased 12-fold in lactation compared with non-lactating controls. This uptake was decreased by the presence of unlabelled insulin, indicating that it occurred via insulin receptors. The plasma half-life of insulin is decreased in lactation from 9.4 min to 4.8 min, and the metabolic clearance rate for insulin increased from 7.26 to 13.03 ml/kg body wt. per min. The basal insulin and glucose concentrations in the plasma were decreased in lactation. Infusion of insulin at a dose which led to a small physiological rise in plasma insulin concentration increased lipogenic rates in the mammary gland by 100% without causing marked hypoglycaemia. It is concluded that the lactating mammary gland is a highly insulin-sensitive tissue and that the lower plasma insulin during lactation occurs primarily as a result of this sensitivity increasing extraction of glucose by the gland and thus producing a decrease in the plasma glucose concentration. It is suggested that a secondary result of the fall in plasma insulin concentration is the preferential direction of substrates (glucose and non-esterified fatty acids) towards the lactating mammary gland and away from adipose tissue and the liver.
Collapse
|
28
|
Robson NA, Clegg RA, Zammit VA. Regulation of peripheral lipogenesis by glucagon. Inability of the hormone to inhibit lipogenesis in rat mammary acini in vitro in the presence or absence of agents which alter its effects on adipocytes. Biochem J 1984; 217:743-9. [PMID: 6370233 PMCID: PMC1153277 DOI: 10.1042/bj2170743] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rate of lipogenesis in acini isolated from mammary glands of mid-lactating rats was studied by measuring the rate of incorporation of 3H from 3H2O into total lipid and fatty acids, with glucose as substrate. Glucagon did not affect the rate of lipogenesis in acini. Glucagon did not antagonize the maximal stimulatory effect of insulin, nor did it alter the insulin dose-response curve. Theophylline, at concentrations up to 20 mM, was a potent inhibitor of lipogenesis in acini. Glucagon did not augment the degree of inhibition of lipogenesis induced by 5 mM-theophylline. The results suggest that mammary-gland acini do not respond to glucagon in vitro under conditions in which the hormone induces inhibition of lipogenesis (the present paper) and of individual key steps in the lipogenic pathway in adipocytes [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788; Green (1983) Biochem. J. 212, 189-195]. In agreement with these observations, we could detect only a minimal degree of specific binding of 125I-labelled glucagon to acini which bound insulin normally. This difference in responsiveness of mammary and adipose cell preparations in vitro to glucagon suggests that the two tissues may be differentially responsive to changes in the circulating insulin/glucagon concentration ratio in vivo. The significance of these findings for the regulation of substrate utilization for lipogenesis in the two tissues during lactation is discussed.
Collapse
|
29
|
Viña JR, Puertes IR, Montoro JB, Viña J. Effect of starvation and refeeding on amino acid uptake by mammary gland of the lactating rat. Role of ketone bodies. Biochem J 1983; 216:343-7. [PMID: 6661201 PMCID: PMC1152510 DOI: 10.1042/bj2160343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Arteriovenous differences of amino acids across the mammary glands of lactating rats are diminished when the rats are starved for 24 h. When 24 h-starved rats were refed for 2 1/2 h, the arteriovenous differences of amino acids returned to values similar to those found in well-fed rats. In order to find a possible explanation for these rapid changes, we tested the effect of ketone bodies on amino acid uptake by the gland. At 5 min after injection of acetoacetate to fed rats, when the total concentration of ketone bodies in blood was similar to that found in starvation, the uptake of amino acids by the mammary gland was similar to that found after starvation, i.e. lower than in fed rats. However, 30 min after administration of acetoacetate, when the arterial concentration of ketone bodies had returned to values similar to those in fed rats, the arteriovenous differences of amino acids were similar to those found in fed rats. We conclude that the changes in blood ketone bodies may be responsible, at least in part, for the changes in amino acid uptake that occur in starvation and in the starvation--refeeding transition.
Collapse
|
30
|
Munday MR, Williamson DH. Diurnal variations in food intake and in lipogenesis in mammary gland and liver of lactating rats. Biochem J 1983; 214:183-7. [PMID: 6137213 PMCID: PMC1152224 DOI: 10.1042/bj2140183] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite the hyperphagia, the food intake of the lactating rat showed marked diurnal changes which paralleled those of virgin rats. The major difference was that lactating rats consumed a higher proportion (35%) of their diet during the light period than did virgin rats (14%). The peak rate of lipogenesis in the lactating mammary gland occurred around midnight, and this decreased by 67% to reach a nadir around mid-afternoon; this corresponded with the period of lowest food intake. The diurnal variations in hepatic lipogenesis in lactating rats were much less marked. The changes in hepatic glycogen over 24 h suggest that it acts to supply carbon for lipogenesis during the period of decreased food intake. The activation state of acetyl-CoA carboxylase in mammary gland altered during 24 h, but the changes did not always correlate with alterations in the rate of lipogenesis. The changes in plasma insulin concentration tended to parallel the food intake in the lactating rats, but they did not appear to be sufficient to explain the large alterations in lipogenic rate in the mammary gland.
Collapse
|
31
|
Denton RM, Brownsey RW. The role of phosphorylation in the regulation of fatty acid synthesis by insulin and other hormones. Philos Trans R Soc Lond B Biol Sci 1983; 302:33-45. [PMID: 6137007 DOI: 10.1098/rstb.1983.0036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Insulin stimulates fatty acid synthesis in white and brown fat cells as well as in liver and mammary tissue. Hormones that increase cellular cyclic AMP concentrations inhibit fatty acid synthesis, at least in white adipose tissue and liver. These changes in fatty acid synthesis occur within minutes. In white fat cells, they are brought about not only by changes in glucose transport but also changes in the activities of pyruvate kinase, pyruvate dehydrogenase and acetyl-CoA carboxylase. The basis of the alterations in pyruvate kinase activity in fat cells is not understood. Unlike the liver isoenzyme, the isoenzyme present in fat cells does not appear to be phosphorylated either in the absence or presence of hormones. The changes in pyruvate dehydrogenase activity in fat cells are undoubtedly due to changes in phosphorylation of the alpha subunits. Insulin appears to act by causing the parallel dephosphorylation of all three sites. The persistence of the effect of insulin during the preparation and subsequent incubation of mitochondria has allowed the demonstration that insulin acts mainly by stimulating pyruvate dehydrogenase phosphatase rather than inhibiting the kinase. Acetyl-CoA carboxylase within fat cells is phosphorylated on a number of different sites. The exposure of cells to insulin leads to activation of the enzyme and this is associated with increased phosphorylation of a specific site on the enzyme. Exposure to adrenalin, which results in a marked diminution in activity, also causes a small increase in the overall level of phosphorylation, but this increase is due to an enhanced phosphorylation of different sites; probably those phosphorylated by cyclic-AMP-dependent protein kinase. Acetyl-CoA carboxylase is one of a number of proteins in fat cells that exhibit increased phosphorylation with insulin. Others include ATP-citrate lyase, the ribosomal protein S6, the beta subunit of the insulin receptor and a heat and acid stable protein of Mr 22000. Changes in phosphorylation of ATP-citrate lyase do not appear to result in any appreciable changes in catalytic activity. A central aspect of insulin action may be the activation and perhaps release of a membrane-associated protein kinase. Plasma membranes from fat cells have been shown to contain a cyclic-nucleotide-independent kinase able to phosphorylate and activate acetyl-CoA carboxylase. Furthermore, high-speed supernatant fractions from cells previously exposed to insulin contain elevated levels of the same or similar kinase activity capable of phosphorylating both ATP-citrate lyase and acetyl-CoA carboxylase.
Collapse
|
32
|
Gibbons GF, Pullinger CR, Munday MR, Williamson DH. Regulation of cholesterol synthesis in the liver and mammary gland of the lactating rat. Biochem J 1983; 212:843-8. [PMID: 6683964 PMCID: PMC1153162 DOI: 10.1042/bj2120843] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase; EC 1.1.1.34) in the lactating mammary gland of rats killed between 10:00 and 14:30 h was 2-3 times that in the livers of the same animals. In contrast, after injection of 3H2O in vivo, the rate of appearance of 3H in the cholesterol of the gland was much lower than that in the liver. In the mammary gland of virgin and non-lactating animals, the activity of HMG-CoA reductase was less than 10% of that of the lactating gland. The activity of HMG-CoA reductase in the lactating mammary gland was significantly (P less than 0.005) lower at midnight than at mid-day, and appeared to show an inverse relationship to the activity of the liver enzyme. However, there was no corresponding change in the incorporation of 3H into the gland cholesterol. Withdrawal of food for 6h had no effect on the activity of HMG-CoA reductase in the lactating mammary gland, but resulted in a significant decrease (P less than 0.005) in that of the liver. Starvation of lactating rats for 24h produced a significant decrease (P less than 0.005) in the activity of the enzyme in both organs. There was also a significant decline in the rate at which 3H2O was incorporated in vivo into the cholesterol of both organs (liver, P less than 0.05; gland, P less than 0.005). Giving a high-fat palatable diet together with chow to lactating animals led to a decline in HMG-CoA reductase activity in the mammary gland, but not in liver. This decrease in the gland was not accompanied by a corresponding decline in the apparent rate of cholesterol synthesis.
Collapse
|
33
|
Abstract
Lactation results not only in an increased rate of fatty acid synthesis in the mammary gland but also in a decreased rate of fatty acid synthesis in adipose tissue and, in the rat at least, an increased rate of hepatic fatty acid synthesis. Progesterone (during pregnancy), prolactin and (in ruminants) GH are implicated in the regulation of the reciprocal changes in fatty acid synthesis in mammary gland and adipose tissue. Progesterone and prolactin, at least, appear to influence the rate of fatty acid synthesis by modulating the insulin-binding capacities of the tissues, but it is clear that steps in the mechanism of action of insulin subsequent to its binding to the receptor are also changed in adipose tissue during lactation.
Collapse
|
34
|
Williamson DH, Munday MR, Jones RG, Roberts AF, Ramsey AJ. Short-term dietary regulation of lipogenesis in the lactating mammary gland of the rat. ADVANCES IN ENZYME REGULATION 1983; 21:135-45. [PMID: 6152728 DOI: 10.1016/0065-2571(83)90012-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Short-term (6 hr) withdrawal of chow diet from lactating rats decreases the rate of lipogenesis in mammary gland by 87%. This inhibition is in part explained by a 60% decrease in the extraction of glucose (the major lipogenic precursor) by the mammary tissue. These changes are not accompanied by any significant alteration in the arterial concentrations of glucose, lactate or insulin; the concentration of acetoacetate did increase by about 30%. Removal of food for 6 hr did not alter the activation state of acetyl-CoA carboxylase or the total activity of the enzyme. Glucose utilization by mammary gland acini from short-term starved rats was not depressed although a higher proportion of the glucose appeared as lactate in the medium and consequently less glucose was converted to lipid. Insulin was able to reverse these changes. Glucagon, adrenaline or cAMP did not inhibit glucose utilization or lipogenesis in isolated acini. It is concluded that the inhibition of lipogenesis in mammary gland after short-term withdrawal of food is mainly due to decreased extraction of glucose. The signal for this change does not appear to be an alteration in plasma insulin and it is postulated that there may be an intestinal factor(s) which acts synergistically with insulin.
Collapse
|
35
|
Grigor MR, Geursen A, Sneyd MJ, Warren SM. Regulation of lipogenic capacity in lactating rats. Biochem J 1982; 208:611-8. [PMID: 7165721 PMCID: PMC1154010 DOI: 10.1042/bj2080611] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. The rate of mammary-gland lipogenesis measured in vivo from 3H2O was suppressed after decreasing the milk demand by decreasing the number of pups from ten to two or three, as well as by giving diets containing lipid [Grigor & Warren (1980) Biochem. J. 188, 61-65]. 2. The specific activities of the lipogenic enzymes fatty acid synthase, glucose 6-phosphate dehydrogenase and 'malic' enzyme increased between 6- and 10-fold in the mammary gland and between 2- and 3-fold in the livers during the first 10 days of lactation. The increases in specific activity coupled with the doubling of liver mass which occurred during pregnancy and lactation resulted in considerable differences in total liver activities when compared with virgin animals. 3. Although consumption of a diet containing 20% peanut oil suppressed the activities of the three lipogenic enzymes in the livers, only the 'malic' enzyme was affected in the mammary glands. 4. In contrast, decreased milk demand did not affect the specific activities of any of the liver enzymes, whereas it resulted in suppression of all three lipogenic enzymes of the mammary glands. There was no effect on either the cytoplasmic malate dehydrogenase or the lactate dehydrogenase of the mammary gland. 5. In all the experiments performed, the activity of the fatty acid synthase correlated with the amount of material precipitated by the rabbit antibody raised against rat fatty acid synthase.
Collapse
|
36
|
McNeillie EM, Zammit VA. Regulation of acetyl-CoA carboxylase in rat mammary gland. Effects of starvation and of insulin and prolactin deficiency on the fraction of the enzyme in the active form in vivo. Biochem J 1982; 204:273-80. [PMID: 6126184 PMCID: PMC1158342 DOI: 10.1042/bj2040273] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ;initial' (I), endogenous phosphatase-activated (A) and citrate-activated (C) activities of acetyl-CoA carboxylase were measured in mammary-gland extracts of pregnant and lactating rats. There was a 10-fold increase in the A and C enzyme activities in the transition from early to peak lactation [cf. data of Mackall & Lane (1977) Biochem. J.162, 635-642], but there was no significant increase in the ratio of the initial activity to the A and C activities of the enzyme. Starvation (24h) or short-term (3h) streptozotocin-induced diabetes both resulted in a 40% decrease in I/A and I/C activity ratios. In starvation this was accompanied by a decrease in the absolute values of the A and C activities such that the initial activity in mammary glands of starved animals was 45% that in glands from fed animals. Insulin treatment of starved or diabetic animals 60min before killing increased the I activity without affecting the A or C enzyme activities. Removal of the pups for 24h from animals in peak lactation (weaning) resulted in a marked but similar decrease in all three activities such that, although the initial activity was only 10% of that in suckled animals, the I/A and I/C activity ratios remained high and unaltered. Inhibition of prolactin secretion by injection of 2-bromo-alpha-ergocryptine gave qualitatively similar results to those during weaning. Simultaneous administration of ovine prolactin completely prevented the effects of bromoergocryptine. It is suggested that the initial activity of acetyl-CoA carboxylase in rat mammary gland is regulated by at least two parallel mechanisms: (i) an acute regulation of the proportion of the enzyme in the active state and (ii) a longer-term modulation of enzyme concentration in the gland. Insulin appeared to mediate its acute effects through mechanism (i), whereas prolactin had longer-term effects on enzyme concentration in the gland. A comparison of initial enzyme activities (I) obtained in the present study with rates of lipogenesis measured in vivo [Agius & Williamson (1980) Biochem. J.192, 361-364; Munday & Williamson (1981) Biochem. J.196, 831-837] gave good agreement between the two sets of data for all conditions studied except for 24h-starved and streptozotocin-diabetic animals. It is suggested that acetyl-CoA carboxylase activity is rate-limiting for lipogenesis in the mammary gland in normal, fed, suckled or weaned animals but that in starved and short-term diabetic animals changes in the activity of the enzyme by covalent modification alone may not be sufficient to maintain the enzyme in its rate-limiting role.
Collapse
|
37
|
Munday MR, Williamson DH. Effects of starvation, insulin or prolactin deficiency on the activity of acetyl-CoA carboxylase in mammary gland and liver of lactating rats. FEBS Lett 1982; 138:285-8. [PMID: 6121720 DOI: 10.1016/0014-5793(82)80462-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Buc HA, Demaugre F, Moncion A, Leroux JP. Effects of oxalate and dichloroacetate on lipogenesis and ketogenesis in rat hepatocytes. Biochem Biophys Res Commun 1982; 104:1107-13. [PMID: 7073727 DOI: 10.1016/0006-291x(82)91364-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
McNeillie EM, Clegg RA, Zammit VA. Regulation of acetyl-CoA carboxylase in rat mammary gland. Effects of incubation with Ca2+, Mg2+ and ATP on enzyme activity in tissue extracts. Biochem J 1981; 200:639-44. [PMID: 6123311 PMCID: PMC1163586 DOI: 10.1042/bj2000639] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1. The effect of preincubation of extracts of lactating rat mammary gland with ATP, Mg2+ and micromolar concentrations of Ca2+ on the activity of acetyl-CoA carboxylase was studied. 2. Both Mg2+ and Ca2+ activated the enzyme. Activation with Mg2+ (5 mM) was larger than that with Ca2+ (calculated free Ca2+ concentration = 20-50 microM), but the activity decreased after reaching a peak. The activation obtained with Ca2+ was stable for up to 180 min. 3. Incubation with Ca2+ and Mg2+ together resulted in an activation that was slightly higher than that with Mg2+ only and was stable (compare the results for Ca2+ alone). 4. Preincubation in the absence of Mg2+, but not in the absence of Ca2+, resulted in the impairment of subsequent activation with either Mg2+ (when preincubation was with Ca2+ alone) or Mg2+ plus Ca2+. 5. KF (50 mM) prevented the activation of acetyl-CoA carboxylase by Ca2+ and Mg2+. 6. MgATP2- reversed (Mg2+ + Ca2+)-mediated activation and decreased the activity of acetyl-CoA carboxylase to about 10% of initial activity. Inhibition by ATP was unaffected by addition of cyclic AMP or cyclic AMP-dependent protein kinase inhibitor. 7. 32P was incorporated into acetyl-CoA carboxylase when incubations were carried out in the presence of [gamma-32P]ATP. Subsequent removal of ATP from the incubation medium resulted in rapid loss of 32P from acetyl-CoA carboxylase. 8. It is suggested that extracts of rat mammary gland contain endogenous protein kinase and phosphatase activities that modulate acetyl-CoA carboxylase activity through reversible phosphorylation and dephosphorylation. The phosphatase activity is sensitive to both Mg2+ and micromolar concentrations of Ca2+, whereas the kinase does not appear to be cyclic AMP-dependent.
Collapse
|