1
|
Mazat JP. The metabolic control theory: Its development and its application to mitochondrial oxidative phosphorylation. Biosystems 2023; 234:105038. [PMID: 37838015 DOI: 10.1016/j.biosystems.2023.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023]
Abstract
Metabolic Control Theory (MCT) and Metabolic Control Analysis (MCA) are the two sides, theoretical and experimental, of the measurement of the sensitivity of metabolic networks in the vicinity of a steady state. We will describe the birth and the development of this theory from the first analyses of linear pathways up to a global mathematical theory applicable to any metabolic network. We will describe how the theory, given the global nature of mitochondrial oxidative phosphorylation, solved the problem of what controls mitochondrial ATP synthesis and then how it led to a better understanding of the differential tissue expression of human mitochondrial pathologies and of the heteroplasmy of mitochondrial DNA, leading to the concept of the threshold effect.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- IBGC CNRS UMR 5095 & Université de Bordeaux, 1, rue Camille Saint-Saëns, 33077, BORDEAUX Cedex, France.
| |
Collapse
|
2
|
Westerhoff HV. On paradoxes between optimal growth, metabolic control analysis, and flux balance analysis. Biosystems 2023; 233:104998. [PMID: 37591451 DOI: 10.1016/j.biosystems.2023.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
In Microbiology it is often assumed that growth rate is maximal. This may be taken to suggest that the dependence of the growth rate on every enzyme activity is at the top of an inverse-parabolic function, i.e. that all flux control coefficients should equal zero. This might seem to imply that the sum of these flux control coefficients equals zero. According to the summation law of Metabolic Control Analysis (MCA) the sum of flux control coefficients should equal 1 however. And in Flux Balance Analysis (FBA) catabolism is often limited by a hard bound, causing catabolism to fully control the fluxes, again in apparent contrast with a flux control coefficient of zero. Here we resolve these paradoxes (apparent contradictions) in an analysis that uses the 'Edinburgh pathway', the 'Amsterdam pathway', as well as a generic metabolic network providing the building blocks or Gibbs energy for microbial growth. We review and show that (i) optimization depends on so-called enzyme control coefficients rather than the 'catalytic control coefficients' of MCA's summation law, (ii) when optimization occurs at fixed total protein, the former differ from the latter to the extent that they may all become equal to zero in the optimum state, (iii) in more realistic scenarios of optimization where catalytically inert biomass is compensating or maintenance metabolism is taken into consideration, the optimum enzyme concentrations should not be expected to equal those that maximize the specific growth rate, (iv) optimization may be in terms of yield rather than specific growth rate, which resolves the paradox because the sum of catalytic control coefficients on yield equals 0, (v) FBA effectively maximizes growth yield, and for yield the summation law states 0 rather than 1, thereby removing the paradox, (vi) furthermore, FBA then comes more often to a 'hard optimum' defined by a maximum catabolic flux and a catabolic-enzyme control coefficient of 1. The trade-off between maintenance metabolism and growth is highlighted as worthy of further analysis.
Collapse
Affiliation(s)
- Hans V Westerhoff
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, A-Life, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands; School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, United Kingdom; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
3
|
Bruggeman FJ, Remeijer M, Droste M, Salinas L, Wortel M, Planqué R, Sauro HM, Teusink B, Westerhoff HV. Whole-cell metabolic control analysis. Biosystems 2023; 234:105067. [PMID: 39492480 DOI: 10.1016/j.biosystems.2023.105067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Since its conception some fifty years ago, metabolic control analysis (MCA) aims to understand how cells control their metabolism by adjusting the activity of their enzymes. Here we extend its scope to a whole-cell context. We consider metabolism in the evolutionary context of growth-rate maximisation by optimisation of protein concentrations. This framework allows for the prediction of flux control coefficients from proteomics data or stoichiometric modelling. Since genes compete for finite biosynthetic resources, we treat all protein concentrations as interdependent. We show that elementary flux modes (EFMs) emerge naturally as the optimal metabolic networks in the whole-cell context and we derive their control properties. In the evolutionary optimum, the number of expressed EFMs is determined by the number of protein-concentration constraints that limit growth rate. We use published glucose-limited chemostat data of S. cerevisiae to illustrate that it uses only two EFMs prior to the onset of fermentation and that it uses four EFMs during fermentation. We discuss published enzyme-titration data to show that S. cerevisiae and E. coli indeed can express proteins at growth-rate maximising concentrations. Accordingly, we extend MCA to elementary flux modes operating at an optimal state. We find that the expression of growth-unassociated proteins changes results from classical metabolic control analysis. Finally, we show how flux control coefficients can be estimated from proteomics and ribosome-profiling data. We analyse published proteomics data of E. coli to provide a whole-cell perspective of the control of metabolic enzymes on growth rate. We hope that this paper stimulates a renewed interest in metabolic control analysis, so that it can serve again the purpose it once had: to identify general principles that emerge from the biochemistry of the cell and are conserved across biological species.
Collapse
Affiliation(s)
- Frank J Bruggeman
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, Netherlands.
| | - Maaike Remeijer
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, Netherlands
| | - Maarten Droste
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, Netherlands; Department of Mathematics, VU University, Amsterdam, Netherlands
| | - Luis Salinas
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, Netherlands
| | - Meike Wortel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Planqué
- Department of Mathematics, VU University, Amsterdam, Netherlands
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5061, USA
| | - Bas Teusink
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, Netherlands
| | - Hans V Westerhoff
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, Netherlands
| |
Collapse
|
4
|
Cornish-Bowden A, Cárdenas ML. Evolution of Henrik Kacser's thought: Early publications on the organization of the whole system. Biosystems 2023; 226:104883. [PMID: 36931555 DOI: 10.1016/j.biosystems.2023.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Although the papers of Kacser and Burns (1973) and Heinrich and Rapoport (1974a,b) are commonly taken as the birth of metabolic control analysis, many of the ideas in them are foreshadowed in earlier papers, from 1956 onwards, when Kacser first argued for taking a systemic view of genetics and biochemistry.
Collapse
|
5
|
Fell DA. Metabolic Control Analysis. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Calvo P, Gagliano M, Souza GM, Trewavas A. Plants are intelligent, here's how. ANNALS OF BOTANY 2020; 125:11-28. [PMID: 31563953 PMCID: PMC6948212 DOI: 10.1093/aob/mcz155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
HYPOTHESES The drive to survive is a biological universal. Intelligent behaviour is usually recognized when individual organisms including plants, in the face of fiercely competitive or adverse, real-world circumstances, change their behaviour to improve their probability of survival. SCOPE This article explains the potential relationship of intelligence to adaptability and emphasizes the need to recognize individual variation in intelligence showing it to be goal directed and thus being purposeful. Intelligent behaviour in single cells and microbes is frequently reported. Individual variation might be underpinned by a novel learning mechanism, described here in detail. The requirements for real-world circumstances are outlined, and the relationship to organic selection is indicated together with niche construction as a good example of intentional behaviour that should improve survival. Adaptability is important in crop development but the term may be complex incorporating numerous behavioural traits some of which are indicated. CONCLUSION There is real biological benefit to regarding plants as intelligent both from the fundamental issue of understanding plant life but also from providing a direction for fundamental future research and in crop breeding.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| | - Monica Gagliano
- Biological Intelligence Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gustavo M Souza
- Laboratory of Plant Cognition and Electrophysiology, Federal University of Pelotas, Pelotas - RS, Brazil
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Saavedra E, González-Chávez Z, Moreno-Sánchez R, Michels PA. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling. Curr Med Chem 2019; 26:6652-6671. [DOI: 10.2174/0929867325666180917104242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022]
Abstract
In the search for therapeutic targets in the intermediary metabolism of trypanosomatids
the gene essentiality criterion as determined by using knock-out and knock-down genetic
strategies is commonly applied. As most of the evaluated enzymes/transporters have
turned out to be essential for parasite survival, additional criteria and approaches are clearly
required for suitable drug target prioritization. The fundamentals of Metabolic Control
Analysis (MCA; an approach in the study of control and regulation of metabolism) and kinetic
modeling of metabolic pathways (a bottom-up systems biology approach) allow quantification
of the degree of control that each enzyme exerts on the pathway flux (flux control coefficient)
and metabolic intermediate concentrations (concentration control coefficient). MCA
studies have demonstrated that metabolic pathways usually have two or three enzymes with
the highest control of flux; their inhibition has more negative effects on the pathway function
than inhibition of enzymes exerting low flux control. Therefore, the enzymes with the highest
pathway control are the most convenient targets for therapeutic intervention. In this review,
the fundamentals of MCA as well as experimental strategies to determine the flux control coefficients
and metabolic modeling are analyzed. MCA and kinetic modeling have been applied
to trypanothione metabolism in Trypanosoma cruzi and the model predictions subsequently
validated in vivo. The results showed that three out of ten enzyme reactions analyzed
in the T. cruzi anti-oxidant metabolism were the most controlling enzymes. Hence, MCA and
metabolic modeling allow a further step in target prioritization for drug development against
trypanosomatids and other parasites.
Collapse
Affiliation(s)
- Emma Saavedra
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Zabdi González-Chávez
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Paul A.M. Michels
- Centre for Immunity, Infection and Evolution (CIIE) and Centre for Translational and Chemical Biology (CTCB), School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
8
|
Rotem A, Serohijos AWR, Chang CB, Wolfe JT, Fischer AE, Mehoke TS, Zhang H, Tao Y, Lloyd Ung W, Choi JM, Rodrigues JV, Kolawole AO, Koehler SA, Wu S, Thielen PM, Cui N, Demirev PA, Giacobbi NS, Julian TR, Schwab K, Lin JS, Smith TJ, Pipas JM, Wobus CE, Feldman AB, Weitz DA, Shakhnovich EI. Evolution on the Biophysical Fitness Landscape of an RNA Virus. Mol Biol Evol 2019; 35:2390-2400. [PMID: 29955873 PMCID: PMC6188569 DOI: 10.1093/molbev/msy131] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype to fitness. However, a quantitative description of the landscape and the evolutionary forces on it remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and antibody binding affinity to predict the evolutionary pathway of norovirus escaping a neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a drop-based microfluidics that propagates millions of independent small viral subpopulations. We demonstrate that along the axis of binding affinity, selection for escape variants and drift due to random mutations have the same direction, an atypical case in evolution. However, along folding stability, selection and drift are opposing forces whose balance is tuned by viral population size. Our results demonstrate that predictable epistatic tradeoffs between molecular traits of viral proteins shape viral evolution.
Collapse
Affiliation(s)
- Assaf Rotem
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Adrian W R Serohijos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.,Département de Biochimie et Centre Robert-Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC, Canada
| | - Connie B Chang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT
| | - Joshua T Wolfe
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Audrey E Fischer
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Thomas S Mehoke
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Huidan Zhang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ye Tao
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - W Lloyd Ung
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Jeong-Mo Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephan A Koehler
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Susan Wu
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Peter M Thielen
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Naiwen Cui
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | | | - Timothy R Julian
- Environmental Health Sciences and the Hopkins Water Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Kellogg Schwab
- Environmental Health Sciences and the Hopkins Water Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey S Lin
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew B Feldman
- Department of Emergency Medicine, Johns Hopkins Medicine, Baltimore, MD
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | | |
Collapse
|
9
|
Dasmeh P, Serohijos AWR. Estimating the contribution of folding stability to nonspecific epistasis in protein evolution. Proteins 2018; 86:1242-1250. [DOI: 10.1002/prot.25588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Pouria Dasmeh
- Department of BiochemistryUniversity of Montreal Montreal Quebec Canada
- Cedergren Center for Bioinformatics and GenomicsUniversity of Montreal Montreal, Quebec Canada
- Department of Biochemistry and Institute for Data Valorization (IVADO)University of Montreal Montreal, Quebec Canada
| | - Adrian W. R. Serohijos
- Department of BiochemistryUniversity of Montreal Montreal Quebec Canada
- Cedergren Center for Bioinformatics and GenomicsUniversity of Montreal Montreal, Quebec Canada
| |
Collapse
|
10
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
11
|
Baghalian K, Hajirezaei MR, Schreiber F. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering. THE PLANT CELL 2014; 26:3847-66. [PMID: 25344492 PMCID: PMC4247579 DOI: 10.1105/tpc.114.130328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology.
Collapse
Affiliation(s)
- Kambiz Baghalian
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany College of Agriculture and Natural Resources, Islamic Azad University-Karaj Branch, Karaj 31485-313, Iran
| | | | - Falk Schreiber
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany Faculty of IT, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
12
|
Belorgey D, Lanfranchi DA, Davioud-Charvet E. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr Pharm Des 2013; 19:2512-28. [PMID: 23116403 DOI: 10.2174/1381612811319140003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in developmental arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages.
Collapse
Affiliation(s)
- Didier Belorgey
- European School of Chemistry, Polymers and Materials (ECPM), UMR7509 CNRS - Universite de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | |
Collapse
|
13
|
Quezada H, Marín-Hernández A, Arreguín-Espinosa R, Rumjanek FD, Moreno-Sánchez R, Saavedra E. The 2-oxoglutarate supply exerts significant control on the lysine synthesis flux in Saccharomyces cerevisiae. FEBS J 2013; 280:5737-49. [PMID: 24034837 DOI: 10.1111/febs.12490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 11/28/2022]
Abstract
To determine the extent to which the supply of the precursor 2-oxoglutarate (2-OG) controls the synthesis of lysine in Saccharomyces cerevisiae growing exponentially in high glucose, top-down elasticity analysis was used. Three groups of reactions linked by 2-OG were defined. The 2-OG supply group comprised all metabolic steps leading to its formation, and the two 2-OG consumer groups comprised the enzymes and transporters involved in 2-OG transformation into lysine and glutamate and their further utilization for protein synthesis and storage. Various 2-OG steady-state concentrations that produced different fluxes to lysine and glutamate were attained using yeast mutants with increasing activities of Krebs cycle enzymes and decreased activities of Lys synthesis enzymes. The elasticity coefficients of the three enzyme groups were determined from the dependence of the amino acid fluxes on the 2-OG concentration. The respective degrees of control on the flux towards lysine (flux control coefficients) were determined from their elasticities, and were 1.1, 0.41 and -0.52 for the 2-OG producer group and the Lys and Glu branches, respectively. Thus, the predominant control exerted by the 2-OG supply on the rate of lysine synthesis suggests that over-expression of 2-OG producer enzymes may be a highly effective strategy to enhance Lys production.
Collapse
Affiliation(s)
- Héctor Quezada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico
| | | | | | | | | | | |
Collapse
|
14
|
Quezada H, Marín-Hernández A, Aguilar D, López G, Gallardo-Pérez JC, Jasso-Chávez R, González A, Saavedra E, Moreno-Sánchez R. The Lys20 homocitrate synthase isoform exerts most of the flux control over the lysine synthesis pathway in Saccharomyces cerevisiae. Mol Microbiol 2011; 82:578-90. [PMID: 21895798 DOI: 10.1111/j.1365-2958.2011.07832.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In Saccharomyces cerevisiae, the first committed step in the lysine (Lys) biosynthetic pathway is catalysed by the Lys20 and Lys21 homocitrate synthase (HCS) isoforms. Overexpression of Lys20 resulted in eightfold increased Lys, as well as 2-oxoglutarate pools, which were not attained by overexpressing Lys21 or other pathway enzymes (Lys1, Lys9 or Lys12). A metabolic control analysis-based strategy, by gradually and individually manipulating the Lys20 and Lys21 activities demonstrated that the cooperative and strongly feedback-inhibited Lys21 isoform exerted low control of the pathway flux whereas most of the control resided on the non-cooperative and weakly feedback-inhibited Lys20 isoform. Therefore, the higher control of Lys20 over the Lys flux represents an exception to the dogma of higher pathway control by the strongest feedback-inhibited enzyme and points out to multi-site engineering (HCS isoforms and supply of precursors) to increase Lys synthesis.
Collapse
Affiliation(s)
- Héctor Quezada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, México DF, 14080, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Towards a quantitative prediction of the fluxome from the proteome. Metab Eng 2011; 13:253-62. [PMID: 21296181 DOI: 10.1016/j.ymben.2011.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 12/04/2010] [Accepted: 01/27/2011] [Indexed: 11/24/2022]
Abstract
The promise of proteomics and fluxomics is limited by our current inability to integrate these two levels of cellular organization. Here we present the derivation, experimental parameterization, and appraisal of flux functions that enable the quantitative prediction of changes in metabolic fluxes from changes in enzyme levels. We based our derivation on the hypothesis that, in the determination of steady-state flux changes, the direct proportionality between enzyme concentrations and reaction rates is principal, whereas the complexity of enzyme-metabolite interactions is secondary and can be described using an approximate kinetic format. The quality of the agreement between predicted and experimental fluxes in Lactococcus lactis, supports our hypothesis and demonstrates the need and usefulness of approximative descriptions in the study of complex biological systems. Importantly, these flux functions are scalable to genome-wide networks, and thus drastically expand the capabilities of flux prediction for metabolic engineering efforts beyond those conferred by the currently used constraints-based models.
Collapse
|
16
|
Systems biochemistry in practice: experimenting with modelling and understanding, with regulation and control. Biochem Soc Trans 2010; 38:1189-96. [DOI: 10.1042/bst0381189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biology and medicine have become ‘big science’, even though we may not always like this: genomics and the subsequent analysis of what the genomes encode has shown that interesting living organisms require many more than 300 gene products to interact. We once thought that somewhere in this jungle of interacting macromolecules was hidden the molecule that constitutes the secret of Life, and therewith of health and disease. Now we know that, somehow, the secret of Life is the jungle of interactions. Consequently, we need to find the Rosetta Stones, i.e. interpretations of this jungle of systems biology. We need to find, perhaps convoluted, paths of understanding and intervention. Systems biochemistry is a good place to start, as it has the foothold that what goes in must come out. In the present paper, we review two strategies, which look at control and regulation. We discuss the difference between control and regulation and prove a relationship between them.
Collapse
|
17
|
Groeneveld P, Stouthamer AH, Westerhoff HV. Super life--how and why 'cell selection' leads to the fastest-growing eukaryote. FEBS J 2009; 276:254-70. [PMID: 19087200 DOI: 10.1111/j.1742-4658.2008.06778.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
What is the highest possible replication rate for living organisms? The cellular growth rate is controlled by a variety of processes. Therefore, it is unclear which metabolic process or group of processes should be activated to increase growth rate. An organism that is already growing fast may already have optimized through evolution all processes that could be optimized readily, but may be confronted with a more generic limitation. Here we introduce a method called 'cell selection' to select for highest growth rate, and show how such a cellular site of 'growth control' was identified. By applying pH-auxostat cultivation to the already fast-growing yeast Kluyveromyces marxianus for a sufficiently long time, we selected a strain with a 30% increased growth rate; its cell-cycle time decreased to 52 min, much below that reported to date for any eukaryote. The increase in growth rate was accompanied by a 40% increase in cell surface at a fairly constant cell volume. We show how the increase in growth rate can be explained by a dominant (80%) limitation of growth by the group of membrane processes (a 0.7% increase of specific growth rate to a 1% increase in membrane surface area). Simultaneous activation of membrane processes may be what is required to accelerate growth of the fastest-growing form of eukaryotic life to growth rates that are even faster, and may be of potential interest for single-cell protein production in industrial 'White' biotechnology processes.
Collapse
Affiliation(s)
- Philip Groeneveld
- Department of Molecular Cell Physiology & Mathematical Biochemistry, Netherlands Institute for Systems Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Rutgers M, Dam KV, Westerhoff HV. Control and Thermodynamics of Microbial Growth: Rational Tools for Bioengineering. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388559109040625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol 2008; 2008:597913. [PMID: 18629230 PMCID: PMC2447884 DOI: 10.1155/2008/597913] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/16/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023] Open
Abstract
The traditional experimental approaches used for changing the flux or the concentration of a particular metabolite of a metabolic pathway have been mostly based on the inhibition or over-expression of the presumed rate-limiting step. However, the attempts to manipulate a metabolic pathway by following such approach have proved to be unsuccessful. Metabolic Control Analysis (MCA) establishes how to determine, quantitatively, the degree of control that a given enzyme exerts on flux and on the concentration of metabolites, thus substituting the intuitive, qualitative concept of rate limiting step. Moreover, MCA helps to understand (i) the underlying mechanisms by which a given enzyme exerts high or low control and (ii) why the control of the pathway is shared by several pathway enzymes and transporters. By applying MCA it is possible to identify the steps that should be modified to achieve a successful alteration of flux or metabolite concentration in pathways of biotechnological (e.g., large scale metabolite production) or clinical relevance (e.g., drug therapy). The different MCA experimental approaches developed for the determination of the flux-control distribution in several pathways are described. Full understanding of the pathway properties when is working under a variety of conditions can help to attain a successful manipulation of flux and metabolite concentration.
Collapse
|
20
|
Bruggeman FJ, Rossell S, Van Eunen K, Bouwman J, Westerhoff HV, Bakker B. Systems biology and the reconstruction of the cell: from molecular components to integral function. Subcell Biochem 2007; 43:239-62. [PMID: 17953397 DOI: 10.1007/978-1-4020-5943-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Frank J Bruggeman
- BioCenter Amsterdam, Free University Amsterdam, Faculty of Earth and Life Sciences, Department of Molecular Cell Physiology, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Wang IN, Dykhuizen DE. VARIATION OF ENZYME ACTIVITIES AT A BRANCHED PATHWAY INVOLVED IN THE UTILIZATION OF GLUCONATE IN ESCHERICHIA COLI. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00607.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Quantifying and directing metabolite flux: Application to amino acid overproduction. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006. [DOI: 10.1007/bfb0102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
23
|
Pitchaimani K, Maheshwari R. Extreme nuclear disproportion and constancy of enzyme activity in a heterokaryon of Neurospora crassa. J Genet 2004; 82:1-6. [PMID: 14631094 DOI: 10.1007/bf02715873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterokaryons of Neurospora crassa were generated by transformation of multinucleate conidia of a histidine-3 auxotroph with his-3(+) plasmid. In one of the transformants, propagated on a medium with histidine supplementation, a gradual but drastic reduction occurred in the proportion of prototrophic nuclei that contained an ectopically integrated his-3(+) allele. This response was specific to histidine. The reduction in prototrophic nuclei was confirmed by several criteria: inoculum size test, hyphal tip analysis, genomic Southern analysis, and by visual change in colour of the transformant incorporating genetic colour markers. Construction and analyses of three-component heterokaryons revealed that the change in nuclear ratio resulted from interaction of auxotrophic nucleus with prototrophic nucleus that contained an ectopically integrated his-3(+) gene, but not with prototrophic nucleus that contained his-3(+) gene at the normal chromosomal location. The growth rate of heterokaryons and the activity of histidinol dehydrogenase - the protein encoded by the his-3(+) gene - remained unchanged despite prototrophic nuclei becoming very scarce. The results suggest that not all nuclei in the coenocytic fungal mycelium may be active simultaneously, the rare active nuclei being sufficient to confer the wild-type phenotype.
Collapse
|
24
|
Hütter R, Niederberger P. Biochemical pathways and mechanisms nitrogen, amino acid, and carbon metabolism. Biotechnol Adv 2003; 1:179-91. [PMID: 14540890 DOI: 10.1016/0734-9750(83)90587-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For both nitrogen and carbon metabolism there exist specific regulatory mechanisms to enable cells to assimilate a wide variety of nitrogen and carbon sources. Superimposed are regulatory circuits, the so called nitrogen and carbon catabolite regulation, to allow for selective use of "rich" sources first and "poor" sources later. Evidence points to the importance of specific regulatory mechanisms for short term adaptations, while generalized control circuits are used for long term modulation of nitrogen and carbon metabolism. Similarly a variety of regulatory mechanisms operate in amino acid metabolism. Modulation of enzyme activity and modulation of enzyme levels are the outstanding regulatory mechanisms. In prokaryotes, attenuation and repressor/operator control are predominant, besides a so called "metabolic control" which integrates amino acid metabolism into the overall nutritional status of the cells. In eukaryotic cells compartmentation of amino acid metabolites as well as of part of the pathways becomes an additional regulatory factor; pathway specific controls seem to be rare, but a complex regulatory network, the "general control of amino acid biosynthesis", coordinates the synthesis of enzymes of a number of amino acid biosynthetic pathways.
Collapse
Affiliation(s)
- R Hütter
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
25
|
Kohn MC. Use of sensitivity analysis to assess reliability of metabolic and physiological models. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2002; 22:623-631. [PMID: 12088237 DOI: 10.1111/0272-4332.00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Because ethical considerations often preclude directly determining the human health effects of treatments or interventions by experimentation, such effects are estimated by extrapolating reactions predicted from animal experiments. Under such conditions, it must be demonstrated that the reliability of the extrapolated predictions is not excessively affected by inherent data limitations and other components of model specification. This is especially true of high-level models composed of ad hoc algebraic equations whose parameters do not correspond to specific physical properties or processes. Models based on independent experimental data restricting the numerical space of parameters that do represent actual physical properties can be represented at a more detailed level. Sensitivities of the computed trajectories to parameter variations permit more detailed attribution of uncertainties in the predictions to these low-level properties. S-systems, in which parameters are estimated empirically, and physiological models, whose parameters can be estimated accurately from independent data, are used to illustrate the applicability of trajectory sensitivity analysis to lower-level models.
Collapse
Affiliation(s)
- Michael C Kohn
- Laboratory of Computational Biology and Risk Analysis, National Institute for Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
26
|
Wang IN, Dykhuizen DE. Variation of enzyme activities at a branched pathway involved in the utilization of gluconate in Escherichia coli. Evolution 2001; 55:897-908. [PMID: 11430650 DOI: 10.1554/0014-3820(2001)055[0897:voeaaa]2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Twenty-four strains of Escherichia coli from the ECOR collection were characterized for growth rate in gluconate minimal salts medium and for Vmax and Km of the three enzymes (gluconokinase, 6-phosphogluconate dehydrogenase, and 6-phosphogluconate dehydratase) that form a branch point for the utilization of gluconate. A total of 11 characters--growth rate, three Vmax values, four Km values, and three Vmax/Km values--were determined for these 24 ECOR strains. Most of the characters were normally distributed. Statistical tests showed that growth rate is significantly less variable than enzyme activities. Also, analyses of variance showed significant differences among strains and among the extant five genetic groups of E. coli for the characters measured. A Mantel test showed that, for some characters, closely related strains shared similar character values. Two hypotheses regarding the relationships between growth rate and enzyme activity and between various enzyme activities were tested. None of the expected correlations between growth rate and enzyme activity or between enzyme activities was detected. The results were discussed in terms of metabolic control analysis and neutral theory.
Collapse
Affiliation(s)
- I N Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843, USA.
| | | |
Collapse
|
27
|
Fridlyand LE, Scheibe R. Regulation in metabolic systems under homeostatic flux control. Arch Biochem Biophys 2000; 374:198-206. [PMID: 10666298 DOI: 10.1006/abbi.1999.1621] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The general properties of metabolic systems under homeostatic flux control are analyzed. It is shown that the main characteristic point for an enzyme in such a system is a sharp transition from limitation outside the system to limitation by some enzyme inside the system. A method for the quantitative treatment of the experimental dependence of metabolic flux on enzyme content is presented. The conception of "nonlimiting," "near-limiting," and "limiting" enzymes is developed for these systems. It is pointed out that reactions close to a thermodynamic equilibrium under normal conditions can considerably limit the homeostatic fluxes. The rules for regulation of fluxes in such systems are illustrated by the data obtained for transgenic plants with reduced activities of some Calvin-cycle enzymes and further examples. A comparison is made between the developed quantitative description of metabolic fluxes under homeostatic flux control and the methods of metabolic control analysis.
Collapse
Affiliation(s)
- L E Fridlyand
- Institute of Experimental Botany, Academy of Sciences of Belarus, Skorina St. 27, Minsk, 220072, Belarus
| | | |
Collapse
|
28
|
Kholodenko BN, Westerhoff HV, Schwaber J, Cascante M. Engineering a living cell to desired metabolite concentrations and fluxes: pathways with multifunctional enzymes. Metab Eng 2000; 2:1-13. [PMID: 10935931 DOI: 10.1006/mben.1999.0132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With molecular genetics enabling modulation of the concentrations of cellular enzymes, metabolic engineering becomes limited by the question of which modulations of the enzyme concentrations are required to bring about a desired pattern of cellular metabolism. In an earlier paper (Kholodenko et al. (1998). Biotechnol. Bioeng. 59, 239-247) we derived a method to determine the required modulations. This method, however, cannot be immediately applied to cellular pathways with enzymes catalyzing more than one step in metabolism (multifunctional enzymes). In the present paper we show to which extent the presence of multifunctional enzymes limits biotechological ambitions, which one might otherwise pursue in vain. In particular, it is impossible to change the concentration of a single intermediate and leave the rest of metabolism unperturbed if that intermediate interacts directly with a multifunctional enzyme. The analytical machinery of Metabolic Control Analysis is used to relate the desired and ensuing changes in the metabolic pattern. An explicit solution to this problem of engineering metabolism is then given in the form of a single matrix equation.
Collapse
Affiliation(s)
- B N Kholodenko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
29
|
|
30
|
Nielsen J. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. Biochem J 1997; 321 ( Pt 1):133-8. [PMID: 9003411 PMCID: PMC1218046 DOI: 10.1042/bj3210133] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction affinity. This parameter can often be determined from experiments in vitro. The methodology is applicable only to the analysis of simple two-step pathways, but in many cases larger pathways can be lumped into two overall conversions. In cases where this cannot be done it is necessary to apply an extension of the thermokinetic description of reaction rates to include the influence of effectors. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can be much more widely applied, although it was originally based on linearized kinetics. The methodology of determining elasticity coefficients directly from pool levels is illustrated with an analysis of the first two steps of the biosynthetic pathway of penicillin. The results compare well with previous findings based on a kinetic analysis.
Collapse
Affiliation(s)
- J Nielsen
- Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
31
|
Kholodenko BN, Molenaar D, Schuster S, Heinrich R, Westerhoff HV. Defining control coefficients in non-ideal metabolic pathways. Biophys Chem 1995; 56:215-26. [PMID: 17023325 DOI: 10.1016/0301-4622(95)00039-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1994] [Revised: 01/17/1995] [Accepted: 02/08/1995] [Indexed: 11/16/2022]
Abstract
The extent to which an enzyme controls a flux has been defined as the effect on that flux of a small modulation of the activity of that enzyme divided by the magnitude of the modulation. We here show that in pathways with metabolic channelling or high enzyme concentrations and conserved moieties involving both enzymic and non-enzymic species, this definition is ambiguous; the magnitude of the corresponding flux control coefficient depends on how the enzyme activity is modulated. This is illustrated with two models of biochemically relevant pathways, one in which dynamic metabolite channelling plays a role, and one with a moiety-conserved cycle. To avoid such ambiguity, we view biochemical pathways in a more detailed manner, i.e., as a network of elemental steps. We define 'elemental control coefficients' in terms of the effect on a flux of an equal modulation of the forward and reverse rate constant of any such elemental step (which may correspond to transitions between enzyme states). This elemental control coefficient is independent of the method of modulation. We show how metabolic control analysis can proceed when formulated in terms of the elemental control coefficients and how the traditional control coefficients are related to these elemental control coefficients. An 'impact' control coefficient is defined which quantifies the effect of an activation of all elemental processes in which an enzyme is involved. It equals the sum of the corresponding elemental control coefficients. In ideal metabolic pathways this impact control coefficient reduces to the traditional flux control coefficient. Differences between the traditional control coefficients are indicative of non-ideality of a metabolic pathway, i.e. of channelling or high enzyme concentrations.
Collapse
Affiliation(s)
- B N Kholodenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia
| | | | | | | | | |
Collapse
|
32
|
Westerhoff HV. Henrik Kacser (1918–1995): metabolism of control. Trends Biotechnol 1995. [DOI: 10.1016/s0167-7799(00)88956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Wijker JE, Jensen PR, Snoep JL, Vaz Gomes A, Guiral M, Jongsma AP, de Waal A, Hoving S, van Dooren S, van der Weijden CC. Energy, control and DNA structure in the living cell. Biophys Chem 1995; 55:153-65. [PMID: 7632875 DOI: 10.1016/0301-4622(94)00148-d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Maintenance (let alone growth) of the highly ordered living cell is only possible through the continuous input of free energy. Coupling of energetically downhill processes (such as catabolic reactions) to uphill processes is essential to provide this free energy and is catalyzed by enzymes either directly or via "storage" in an intermediate high energy form, i.e., high ATP/ADP ratio or H+ ion gradient. Although maintenance of a sufficiently high ATP/ADP ratio is essential to overcome the thermodynamic burden of uphill processes, it is not clear to what degree enzymes that control this ratio also control cell physiology. Indeed, in the living cell homeostatic control mechanisms might exist for the free-energy transduction pathways so as to prevent perturbation of cellular function when the Gibbs energy supply is compromised. This presentation addresses the extent to which the intracellular ATP level is involved in the control of cell physiology, how the elaborate control of cell function may be analyzed theoretically and quantitatively, and if this can be utilized selectively to affect certain cell types.
Collapse
Affiliation(s)
- J E Wijker
- Department of Microbiology, Technical University of Denmark, Lyngby
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thomas S, Moniz-Barreto JP, Fell DA, Woods JH, Poolman MG. Reply from E-D. Schulze. Trends Ecol Evol 1995; 10:245. [DOI: 10.1016/0169-5347(95)91049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Kholodenko BN, Westerhoff HV. How to reveal various aspects of regulation in group-transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00013-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Abstract
Various factors appear to control muscle energetics, often in conjunction. This calls for a quantitative approach of the type provided by Metabolic Control Analysis for intermediary metabolism and mitochondrial oxidative phosphorylation. To the extent that direct transfer of high energy phosphates and spatial organization plays a role in muscle energetics however, the standard Metabolic Control Theory does not apply, neither do its theorems regarding control. This paper develops the Control Theory that does apply to the muscle system. It shows that direct transfer of high energy phosphates bestows a system with enhanced control: the sum of the control exerted by the participating enzymes on the flux of free energy from the mitochondrial matrix to the actinomyosin may well exceed the 100% mandatory for ideal metabolic pathways. It is also shown how sequestration of high energy phosphates may allow for negative control on pathway flux. The new control theory gives method functionally to diagnose the extent to which channelling and metabolite sequestration occur.
Collapse
Affiliation(s)
- B N Kholodenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
37
|
Kholodenko BN, Westerhoff HV, Puigjaner J, Cascante M. Control in channelled pathways. A matrix method calculating the enzyme control coefficients. Biophys Chem 1995; 53:247-58. [PMID: 17020850 DOI: 10.1016/0301-4622(94)00104-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1994] [Accepted: 08/02/1994] [Indexed: 11/24/2022]
Abstract
The usual equations expressing the enzyme control coefficients (quantitative indicators of 'global' control properties of a pathway) via the elasticity coefficients (reflecting local kinetic properties of an enzyme reaction), cannot be applied to a variety of 'non-ideal' pathways, in particular to pathways with metabolic channelling. Here we show that the relationship between the control and elasticity coefficients can be obtained by considering such a metabolic pathway as a network of elemental chemical conversions (steps). To calculate the control coefficients of enzymes one should first determine the elasticity coefficients of such elemental steps and then take their appropriate combinations. Although the method is illustrated for a channelled pathway it can be used for any non-ideal pathway including those with high enzyme concentrations where the sequestration of metabolites by enzymes cannot be neglected.
Collapse
Affiliation(s)
- B N Kholodenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russian Federation
| | | | | | | |
Collapse
|
38
|
Abstract
The fitnesses conferred by seven lactose operons, which had been transduced into a common genetic background from natural isolates of Escherichia coli, were determined during competition for growth rate-limiting quantities of galactosyl-glycerol, a naturally occurring galactoside. The fitnesses of these same operons have been previously determined on lactose and three artificial galactosides, lactulose, methyl-galactoside and galactosyl-arabinose. Analysis suggests that although marked genotype by environment interactions occur, changes in the fitness rankings are rare. The relative activities of the beta-galactosidases and the permeases were determined on galactosyl-glycerol, lactose, lactulose and methyl-galactoside. Both enzymes display considerable kinetic variation. The beta-galactosidase alleles provide no evidence for genotype by environment interactions at the level of enzyme activity. The permease alleles display genotype by environment interactions with a few causing changes in activity rankings. The contributions to fitness made by the permeases and the beta-galactosidases were partitioned using metabolic control analysis. Most of the genotype by environment interaction at the level of fitness is generated by changes in the distribution of control among steps in the pathway, particularly at the permease where large control coefficients ensure that its kinetic variation has marked fitness effects. Indeed, changes in activity rankings at the permease account for the few changes in fitness rankings. In contrast, the control coefficients of the beta-galactosidase are sufficiently small that its kinetic variation is in, or close to, the neutral limit. The selection coefficients are larger on the artificial galactosides because the control coefficients of the permease and beta-galactosidase are larger. The flux summation theorem requires that control coefficients associated with other steps in the pathway must be reduced, implying that the selection at these steps will be less intense on the artificial galactosides. This suggests that selection intensities need not be greater in novel environments.
Collapse
Affiliation(s)
- A M Dean
- Department of Biological Chemistry, University of Health Sciences, Chicago Medical School, Illinois 60064-3095
| |
Collapse
|
39
|
|
40
|
Metabolic Control Analysis in Theory and Practice. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1569-2558(08)60247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Small JR, Kacser H. A method for increasing the concentration of a specific internal metabolite in steady-state systems. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:649-56. [PMID: 8001581 DOI: 10.1111/j.1432-1033.1994.tb20092.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An approach is described by which it is possible to increase the concentration of any internal metabolite without affecting the concentrations of other metabolites and fluxes in the organism. This approach requires the manipulation of only a limited number of enzyme activities. The method shows which enzymes to manipulate and the extent of the manipulation required to achieve a given increase in a chosen metabolite. A case study involving tryptophan overproduction in Saccharomyces cerevisae is given as a practical example of how this method could be used.
Collapse
Affiliation(s)
- J R Small
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Scotland
| | | |
Collapse
|
42
|
Letellier T, Heinrich R, Malgat M, Mazat JP. The kinetic basis of threshold effects observed in mitochondrial diseases: a systemic approach. Biochem J 1994; 302 ( Pt 1):171-4. [PMID: 8068003 PMCID: PMC1137205 DOI: 10.1042/bj3020171] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Threshold effects in the expression of metabolic diseases have often been observed in mitochondrial pathologies, i.e. the clinical demonstration of the disease appears only when the activity of a step has been reduced to a rather low level. We show experimentally that an inhibition of cytochrome c oxidase activity by cyanide, simulating a defect in this step, leads to a decrease in mitochondrial respiration which then exhibits a threshold behaviour similar to that observed in mitochondrial diseases. We discuss this behaviour in terms of metabolic control theory and construct a mathematical model simulating this behaviour.
Collapse
|
43
|
Kholodenko BN, Cascante M, Westerhoff HV. Control theory of metabolic channelling. Mol Cell Biochem 1994; 133-134:313-31. [PMID: 7808462 DOI: 10.1007/bf01267963] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Various factors appear to control muscle energetics, often in conjunction. This calls for a quantitative approach of the type provided by Metabolic Control Analysis for intermediary metabolism and mitochondrial oxidative phosphorylation. To the extent that direct transfer of high energy phosphates and spatial organization plays a role in muscle energetics however, the standard Metabolic Control Theory does not apply, neither do its theorems regarding control. This chapter develops the Control Theory that does apply to the muscle system. It shows that direct transfer of high energy phosphates bestows a system with enhanced control: the sum of the control exerted by the participating enzymes on the flux of free energy form the mitochondrial matrix to the actinomyosin may well exceed the 100% mandatory for ideal metabolic pathways. It is also shown how sequestration of high energy phosphates may allow for negative control on pathway flux. The new control theory gives methods functionally to diagnose the extent to which channelling and metabolite sequestration occur.
Collapse
Affiliation(s)
- B N Kholodenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
44
|
Abstract
The evolutionary problem of selection in temporally variable environments is addressed by investigating a metabolic model describing the approach to steady state of a flux emanating from a simple linear pathway of unsaturated enzymes catalyzing reversible monomolecular reactions. Analysis confirms previous claims that steps having no influence on the steady state flux may influence transient behavior, and that enzymes immune to natural selection at steady state may become subject to selection when fitness is a function of individual transient metabolic events. Indeed, calculations show that the beta-galactosidase of Escherichia coli, which exerts a negligible effect on the steady state lactose flux, controls the approach to steady state. However, after 6 sec the lactose flux is within 0.1% of steady state, and so an ever changing environment must be invoked to continually expose beta-galactosidase to selection. Analysis of the metabolic model undergoing multiple transient events reveals that fitness differences remain unaffected if enzyme activities remain constant and become minimized if enzyme activities differ among environments. Until suitable data become available, claims that metabolic behavior away from steady state necessarily exposes a far greater proportion of allozymes to natural selection should be treated with great skepticism.
Collapse
Affiliation(s)
- A M Dean
- Department of Biological Chemistry, University of Health Sciences, Chicago Medical School, Illinois 60064-3095
| |
Collapse
|
45
|
Cornish-Bowden A, Hofmeyr JH. Determination of control coefficients in intact metabolic systems. Biochem J 1994; 298 ( Pt 2):367-75. [PMID: 8135743 PMCID: PMC1137949 DOI: 10.1042/bj2980367] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The control structure of a metabolic system can in principle be determined without the need for purification of the component enzymes and study of their kinetic properties, provided that their activities can be perturbed by amounts sufficient to produce measurable changes in the steady-state variables, i.e. the fluxes through the system and the concentrations of the intermediates. Each perturbation is characterized in terms of the co-response coefficients of all pairs of variables, i.e. the slopes of the lines produced when the logarithm of one variable is plotted against the logarithm of another, both varying in response to the same perturbation. If all the co-response coefficients are assembled into a matrix, the inverse of this matrix can be transformed into a matrix containing all the component elasticities, which can be inverted to provide the complete matrix of control coefficients. In a simple three-enzyme pathway studied, the analysis proves not to require unrealistically high accuracy in the original co-response measurements: even with errors with standard deviation +/- 5.77 degrees in the angles to the horizontal of the lines in the co-response plots (equivalent at best to errors of +/- 20% in the corresponding co-response coefficients), the final control coefficient matrix may be adequate for assessing the control structure of the system. Examination of literature data from studies of mitochondrial respiration and of gluconeogenesis indicates that considerably higher precision than this is achievable.
Collapse
Affiliation(s)
- A Cornish-Bowden
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Marseille, France
| | | |
Collapse
|
46
|
Sola M, Salto R, Oliver F, Gutiérrez M, Vargas A. Effects of AMP and fructose 2,6-bisphosphate on fluxes between glucose 6-phosphate and triose-phosphate in renal cortical extracts. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
Taylor RW, Birch-Machin MA, Bartlett K, Turnbull DM. Succinate-cytochrome c reductase: assessment of its value in the investigation of defects of the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1181:261-5. [PMID: 8391327 DOI: 10.1016/0925-4439(93)90030-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Defects of the respiratory chain are important causes of human disease and one of the most commonly used assays in the investigation of these patients is the measurement of succinate-cytochrome c reductase. However, this assay measures several components of the respiratory chain and the ability to detect a partial defect in one enzyme complex will depend on the amount of control exerted by that enzyme step on overall electron flux. We show that measurement of succinate-cytochrome c reductase activity may fail to detect partial defects of complex III and therefore is of limited diagnostic value in the identification of complex III defects. However, complex II is a major point of control of flux through succinate-cytochrome reductase and it is likely that measurement of the latter will detect defects of complex II.
Collapse
Affiliation(s)
- R W Taylor
- Department of Child Health and Clinical Biochemistry, Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
48
|
Small JR, Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:613-24. [PMID: 8477732 DOI: 10.1111/j.1432-1033.1993.tb17801.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This first paper in a series investigates the problem of predicting and analysing the effects of large changes in enzyme activities or external nutrients/effectors on metabolic fluxes. We introduce the concept of a deviation index, D, which gives a measure of the relative change in a metabolic variable (e.g. flux) due to a large (non-infinitesimal) relative change in a parameter (e.g. enzyme). Using simplifying kinetic assumptions we have found, for an unbranched metabolic chain, a direct relationship between deviation indices and flux control coefficients. This relationship provides a method to estimate flux control coefficients using a single large change in enzyme activity. We also provide a method of predicting the effects of, for example, DNA manipulation or other techniques for enzyme activity/concentration changes on metabolic fluxes. Up-modulations of single enzymes rarely produce significant changes in fluxes. We show that combined changes of activity of a group of enzymes will produce a more than 'additive' response. We provide a method of predicting the effects of these combined changes, given either the flux control coefficients of the group of enzymes or the effects on the flux of changing the enzymes individually. A similar analysis is carried out for large changes in external nutrients or effectors. These amplification factors, f, give experimentally accessible estimates of the expected changes in metabolic variables. We provide three 'case studies' to illustrate our results.
Collapse
Affiliation(s)
- J R Small
- Department of Genetics, University of Edinburgh, Scotland
| | | |
Collapse
|
49
|
Small JR, Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. Assessment of the general non-linear case. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:625-40. [PMID: 8477733 DOI: 10.1111/j.1432-1033.1993.tb17802.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We extend the analysis of unbranched chains (preceding paper) to large parameter changes in branched systems using linear kinetic assumptions. More complex relationships between flux control coefficients and deviation indices are established. In particular, the deviation index in such systems depends on more than one control coefficient as well as on the magnitude of the enzyme change. Non-additivity of the indices is the general rule. Combined changes of groups of enzymes, whether co-ordinate or not, have also been formulated. Control coefficients can be estimated from a small number of independent large-change experiments. Alternatively, the amplification factors can be calculated given the knowledge of the control coefficients. A 'case study' using published data is presented. The movement of intermediate metabolites as a consequence of large parameter changes can be dealt with in a similar manner. Experimental methods for showing the admissibility of assuming the simplifying assumptions used are summarised. Some simulation studies show possible limits of the application of the approach and some aspects of the general, non-linear, case are discussed. It is concluded that, although metabolic systems are in principle non-linear, many behave, in practice, as quasi-linear systems. The relationships established between deviation indices and control coefficients therefore provide a practical way of predicting the effects of large-scale changes in parameters for many metabolic systems.
Collapse
Affiliation(s)
- J R Small
- Department of Genetics, University of Edinburgh, Scotland
| | | |
Collapse
|
50
|
Jensen PR, Westerhoff HV, Michelsen O. The use of lac-type promoters in control analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:181-91. [PMID: 8425528 DOI: 10.1111/j.1432-1033.1993.tb19885.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For control analysis, it is necessary to modulate the activity of an enzyme around its normal level and measure the changes in steady-state fluxes or concentrations. We describe an improved method for effecting the modulation, as elaborated for Escherichia coli. The chromosomal gene, encoding the enzyme of interest, is put under the control of a lacUV5 or a tacI promoter. The alternative use of the two promoters leads to an expression range which should make it suitable for the use in control analysis of many enzymes. The lacUV5 promoter should be used when the wild-type expression level is low, the tacI promoter when the latter is high. The endogenous lac operon is placed under the control of a second copy of the lacUV5 promoter and a lacY7am mutation (eliminating lactose permease, the transport system for the inducer isopropyl-thio-beta-D- galactoside) is introduced. The method was demonstrated experimentally by constructing E. coli strains, in which the chromosomal atp operon is transcribed from the lacUV5 and the tacI promoter. We measured the concentration of the c subunit of H(+)-ATPase, and found that the expression of this enzyme could be modulated between non-detectable levels and up to five times the wild-type level. Thus, in the absence of inducer, no expression of atp genes could be detected when the atp operon was controlled by the lacUV5 promoter, and we estimate that the expression was less than 0.0025 times the wild-type level. We show that the introduction of a lacY mutation facilitated the attainment of steady induction levels of partially induced cells. The mutation also reduced positive cooperativity in the dependence of expression on the concentration of isopropyl-thio-beta-D-galactoside (the inducer) and shifted the concentration of inducer needed for half maximum induction to higher values. These properties should facilitate the experimental modulation of the enzyme activity by varying the concentration of the inducer.
Collapse
Affiliation(s)
- P R Jensen
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | |
Collapse
|