1
|
Yu J, Tang H, Chen Y, Wang Z, Huang W, Zhou T, Wen B, Wang C, Gu S, Ni J, Tao J, Wang D, Lu J, Xie Q, Yao YF. Salmonella utilizes L-arabinose to silence virulence gene expression for accelerated pathogen growth within the host. Gut Microbes 2025; 17:2467187. [PMID: 39954030 PMCID: PMC11834461 DOI: 10.1080/19490976.2025.2467187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/11/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Carbon source is an important nutrient for bacteria to sustain growth and often acts as a signal that modulates virulence expression. L-arabinose is produced by plants and plays an important role in regulating the global gene expression of bacteria. Previously, we have shown that L-arabinose induces a more severe systemic infection in Salmonella-infected mice with normal microbiota, but does not affect the disease progression in mice with microbiota depleted by antibiotic treatment. The underlying mechanism remains elusive. In this study, we demonstrate that L-arabinose represses the expression of Salmonella type III secretion system 1 (T3SS-1) genes by negatively regulating the activity of the cyclic 3' 5'-AMP (cAMP)-cAMP receptor protein (CRP) complex. The cAMP-CRP complex can activate ribosome-associated inhibitor A, encoded by yfiA, to maintain the stability of HilD, a key transcriptional regulator of T3SS-1. L-arabinose supplementation promotes Salmonella initial bloom in the antibiotic-pretreated mouse gut and ultimately compensates for reduced virulence within the host. These results decipher the molecular mechanism by which cAMP-CRP directs regulatory changes of virulence in response to L-arabinose in Salmonella. It further implies that Salmonella exploits L-arabinose both as a nutrient and a regulatory signal to maintain a balance between growth and virulence within the host.
Collapse
Affiliation(s)
- Jingchen Yu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yana Chen
- Department of Pediatrics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingjie Wen
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyue Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Gu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai Key Laboratory of Emergency Prevention, Shanghai, China
| |
Collapse
|
2
|
Nguyen BD, Sintsova A, Schubert C, Sichert A, Scheidegger C, Näf J, Huttman J, Lentsch V, Keys T, Rutschmann C, Christen P, Kiefer P, Keller P, Barthel M, Cuenca M, Christen B, Sauer U, Slack E, Vorholt JA, Sunagawa S, Hardt WD. Salmonella Typhimurium screen identifies shifts in mixed-acid fermentation during gut colonization. Cell Host Microbe 2024; 32:1758-1773.e4. [PMID: 39293436 DOI: 10.1016/j.chom.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
How enteric pathogens adapt their metabolism to a dynamic gut environment is not yet fully understood. To investigate how Salmonella enterica Typhimurium (S.Tm) colonizes the gut, we conducted an in vivo transposon mutagenesis screen in a gnotobiotic mouse model. Our data implicate mixed-acid fermentation in efficient gut-luminal growth and energy conservation throughout infection. During initial growth, the pathogen utilizes acetate fermentation and fumarate respiration. After the onset of gut inflammation, hexoses appear to become limiting, as indicated by carbohydrate analytics and the increased need for gluconeogenesis. In response, S.Tm adapts by ramping up ethanol fermentation for redox balancing and supplying the TCA cycle with α-ketoglutarate for additional energy. Our findings illustrate how S.Tm flexibly adapts mixed fermentation and its use of the TCA cycle to thrive in the changing gut environment. Similar metabolic wiring in other pathogenic Enterobacteriaceae may suggest a broadly conserved mechanism for gut colonization.
Collapse
Affiliation(s)
- Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Christopher Schubert
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Andreas Sichert
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Clio Scheidegger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jana Näf
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland; Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Julien Huttman
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Verena Lentsch
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Tim Keys
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | | | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Miguelangel Cuenca
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Beat Christen
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland; Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Crozier L, Marshall J, Holmes A, Wright KM, Rossez Y, Merget B, Humphris S, Toth I, Jackson RW, Holden NJ. The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001070. [PMID: 34319868 PMCID: PMC8489885 DOI: 10.1099/mic.0.001070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
Arabinose is a major plant aldopentose in the form of arabinans complexed in cell wall polysaccharides or glycoproteins (AGP), but comparatively rare as a monosaccharide. l-arabinose is an important bacterial metabolite, accessed by pectolytic micro-organisms such as Pectobacterium atrosepticum via pectin and hemicellulose degrading enzymes. However, not all plant-associated microbes encode cell-wall-degrading enzymes, yet can metabolize l-arabinose, raising questions about their use of and access to the glycan in plants. Therefore, we examined l-arabinose metabolism in the food-borne pathogen Escherichia coli O157:H7 (isolate Sakai) during its colonization of plants. l-arabinose metabolism (araBA) and transport (araF) genes were activated at 18 °C in vitro by l-arabinose and expressed over prolonged periods in planta. Although deletion of araBAD did not impact the colonization ability of E. coli O157:H7 (Sakai) on spinach and lettuce plants (both associated with STEC outbreaks), araA was induced on exposure to spinach cell-wall polysaccharides. Furthermore, debranched and arabinan oligosaccharides induced ara metabolism gene expression in vitro, and stimulated modest proliferation, while immobilized pectin did not. Thus, E. coli O157:H7 (Sakai) can utilize pectin/AGP-derived l-arabinose as a metabolite. Furthermore, it differs fundamentally in ara gene organization, transport and regulation from the related pectinolytic species P. atrosepticum, reflective of distinct plant-associated lifestyles.
Collapse
Affiliation(s)
- Louise Crozier
- The James Hutton Institute, Cell & Molecular Sciences, Dundee, DD2 5DA, UK
| | | | - Ashleigh Holmes
- The James Hutton Institute, Cell & Molecular Sciences, Dundee, DD2 5DA, UK
| | | | - Yannick Rossez
- The James Hutton Institute, Cell & Molecular Sciences, Dundee, DD2 5DA, UK
- Université de Technologie de Compiègne, CNRS-FRE 3580, Centre de Recherche de Royallieu, 60203 COMPIEGNE CEDEX, France
| | - Bernhard Merget
- The James Hutton Institute, Cell & Molecular Sciences, Dundee, DD2 5DA, UK
| | - Sonia Humphris
- The James Hutton Institute, Cell & Molecular Sciences, Dundee, DD2 5DA, UK
| | - Ian Toth
- The James Hutton Institute, Cell & Molecular Sciences, Dundee, DD2 5DA, UK
| | - Robert Wilson Jackson
- School of Biological Sciences, The University of Reading, Reading, UK
- Birmingham Institute of Forest Research and School of Biosciences University of Birmingham, Birmingham B15 2TT, UK
| | - Nicola Jean Holden
- The James Hutton Institute, Cell & Molecular Sciences, Dundee, DD2 5DA, UK
- SRUC, Department of Rural Land Use, Aberdeen, AB21 9YA, UK
| |
Collapse
|
4
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
5
|
Fritz G, Walker N, Gerland U. Heterogeneous Timing of Gene Induction as a Regulation Strategy. J Mol Biol 2019; 431:4760-4774. [PMID: 31141707 DOI: 10.1016/j.jmb.2019.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
In response to environmental changes, cells often adapt by up-regulating genes to synthesize proteins that generate a benefit in the new environment. Several such cases of gene induction have been reported where the timing was heterogeneous, with some cells responding early and others responding late, although the microbial population was genetically homogeneous and the environment was well mixed. Here, we explore under which conditions heterogeneous timing of gene induction could be advantageous for the population as a whole. We base our study on a mathematical model that accounts for the cost of protein synthesis in terms of resources, which cells must provide immediately, whereas the associated benefit accumulates only slowly over the protein lifetime. Due to this delayed benefit, gene induction can be a risky investment, if resources are scarce and the environment fluctuates rapidly and unpredictably. Unprofitable gene induction then depletes the remaining limiting resource needed for maintenance of cell viability. We show that whenever gene induction is associated with a transient risk but beneficial in the long run, the stochastic timing of gene induction maximizes the reproductive success of a population. In particular, in an environment of stochastic periods of famine and feast, an optimum emerges from a trade-off between short-term growth, favoring rapid and homogeneous responses, and long-term survival, favoring a broadly heterogeneous response. Our analysis suggests that the optimal variability of induction times is just as large as the time required for the amortization of the initial investment into protein synthesis.
Collapse
Affiliation(s)
- Georg Fritz
- LOEWE Center for Synthetic Microbiology & Department of Physics, Marburg, Germany.
| | - Noreen Walker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ulrich Gerland
- Physik Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
6
|
Kawaguchi H, Yoshihara K, Hara KY, Hasunuma T, Ogino C, Kondo A. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose. Microb Cell Fact 2018; 17:76. [PMID: 29773073 PMCID: PMC5956887 DOI: 10.1186/s12934-018-0927-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
Background l-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to d-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as d-glucose, leading to a preferential utilization of d-glucose over pentoses. In order to simultaneously utilize both d-glucose and l-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Results Corynebacterium glutamicum ATCC 31831 utilized d-glucose and l-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized d-glucose over l-arabinose at a high concentration (15 g/L each), although l-arabinose and d-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for d-glucose and l-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of l-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of d-glucose and l-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized d-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of l-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of d-glucose and l-arabinose. Conclusions Metabolome analysis identified potential bottlenecks in d-glucose and l-arabinose metabolism and was then applied to the following rational metabolic engineering. Manipulation of only two genes enabled simultaneous utilization of d-glucose and l-arabinose at the same rate in metabolically engineered C. glutamicum. This is the first report of rational metabolic design and engineering for simultaneous hexose and pentose utilization without inactivating the phosphotransferase system. Electronic supplementary material The online version of this article (10.1186/s12934-018-0927-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kumiko Yoshihara
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kiyotaka Y Hara
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
7
|
Lind PA, Arvidsson L, Berg OG, Andersson DI. Variation in Mutational Robustness between Different Proteins and the Predictability of Fitness Effects. Mol Biol Evol 2017; 34:408-418. [PMID: 28025272 DOI: 10.1093/molbev/msw239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Random mutations in genes from disparate protein classes may have different distributions of fitness effects (DFEs) depending on different structural, functional, and evolutionary constraints. We measured the fitness effects of 156 single mutations in the genes encoding AraC (transcription factor), AraD (enzyme), and AraE (transporter) used for bacterial growth on l-arabinose. Despite their different molecular functions these genes all had bimodal DFEs with most mutations either being neutral or strongly deleterious, providing a general expectation for the DFE. This contrasts with the unimodal DFEs previously obtained for ribosomal protein genes where most mutations were slightly deleterious. Based on theoretical considerations, we suggest that the 33-fold higher average mutational robustness of ribosomal proteins is due to stronger selection for reduced costs of translational and transcriptional errors. Whereas the large majority of synonymous mutations were deleterious for ribosomal proteins genes, no fitness effects could be detected for the AraCDE genes. Four mutations in AraC and AraE increased fitness, suggesting that slightly advantageous mutations make up a significant fraction of the DFE, but that they often escape detection due to the limited sensitivity of commonly used fitness assays. We show that the fitness effects of amino acid substitutions can be predicted based on evolutionary conservation, but those weakly deleterious mutations are less reliably detected. This suggests that large-effect mutations and the fraction of highly deleterious mutations can be computationally predicted, but that experiments are required to characterize the DFE close to neutrality, where many mutations ultimately fixed in a population will occur.
Collapse
Affiliation(s)
- Peter A Lind
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Lars Arvidsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Piepenbreier H, Fritz G, Gebhard S. Transporters as information processors in bacterial signalling pathways. Mol Microbiol 2017; 104:1-15. [DOI: 10.1111/mmi.13633] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Hannah Piepenbreier
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Susanne Gebhard
- Milner Centre for Evolution, Department of Biology and Biochemistry; University of Bath; UK
| |
Collapse
|
9
|
Niyas AMM, Eiteman MA. Phosphatases and phosphate affect the formation of glucose from pentoses in Escherichia coli. Eng Life Sci 2017; 17:579-584. [PMID: 32624803 DOI: 10.1002/elsc.201600177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022] Open
Abstract
Metabolically engineered Escherichia coli MEC143 with deletions of the ptsG, manZ, glk, pfkA, and zwf genes converts pentoses such as arabinose and xylose into glucose, with the dephosphorylation of glucose-6-phosphate serving as the final step. To determine which phosphatase mediates this conversion, we examined glucose formation from pentoses in strains containing knockouts of six different phosphatases singly and in combination. Deletions of single phosphatases and combinations of multiple phosphatases did not eliminate the accumulation of glucose from xylose or arabinose. Overexpression of one phosphatase, haloacid dehalogenase-like phosphatase 12 coded by the ybiV gene, increased glucose yield significantly from 0.26 to 0.30 g/g (xylose) and from 0.32 to 0.35 g/g (arabinose). Growing cells under phosphate-limited steady-state conditions increased the glucose yield to 0.39 g glucose/g xylose, but did not affect glucose yield from arabinose (0.31 g/g). No single phosphatase is exclusively responsible for the conversion of glucose-6-phosphate to glucose in E. coli MEC143. Phosphate-limited conditions are indeed able to enhance glucose formation in some cases, with this effect likely influenced by the different phosphate demands when E. coli metabolizes different carbon sources.
Collapse
Affiliation(s)
- Afaq M M Niyas
- College of Engineering University of Georgia Athens GA USA
| | - Mark A Eiteman
- College of Engineering University of Georgia Athens GA USA
| |
Collapse
|
10
|
Marschall L, Sagmeister P, Herwig C. Tunable recombinant protein expression in E. coli: promoter systems and genetic constraints. Appl Microbiol Biotechnol 2017; 101:501-512. [PMID: 27999902 PMCID: PMC5566544 DOI: 10.1007/s00253-016-8045-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Tuning of transcription is a promising strategy to overcome challenges associated with a non-suitable expression rate like outgrowth of segregants, inclusion body formation, metabolic burden and inefficient translocation. By adjusting the expression rate-even on line-to purposeful levels higher product titres and more cost-efficient production processes can be achieved by enabling culture long-term stability and constant product quality. Some tunable systems are registered for patents or already commercially available. Within this contribution, we discuss the induction mechanisms of various Escherichia coli inherent promoter systems with respect to their tunability and review studies using these systems for expression tuning. According to the current level of knowledge, some promoter systems were successfully used for expression tuning, and in some cases, analytical evidence on single-cell level is still pending. However, only a few studies using tunable strains apply a suitable process control strategy. So far, expression tuning has only gathered little attention, but we anticipate that expression tuning harbours great potential for enabling and optimizing the production of a broad spectrum of products in E. coli.
Collapse
Affiliation(s)
- Lukas Marschall
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna, Austria.
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna University of Technology, Gumpendorferstrasse 1a/166-4, A-1060, Vienna, Austria.
| |
Collapse
|
11
|
Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metab Eng 2016; 38:285-292. [DOI: 10.1016/j.ymben.2016.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 11/21/2022]
|
12
|
Häkkinen A, Ribeiro AS. Characterizing rate limiting steps in transcription from RNA production times in live cells. Bioinformatics 2016; 32:1346-52. [PMID: 26722120 DOI: 10.1093/bioinformatics/btv744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Single-molecule measurements of live Escherichia coli transcription dynamics suggest that this process ranges from sub- to super-Poissonian, depending on the conditions and on the promoter. For its accurate quantification, we propose a model that accommodates all these settings, and statistical methods to estimate the model parameters and to select the relevant components. RESULTS The new methodology has improved accuracy and avoids overestimating the transcription rate due to finite measurement time, by exploiting unobserved data and by accounting for the effects of discrete sampling. First, we use Monte Carlo simulations of models based on measurements to show that the methods are reliable and offer substantial improvements over previous methods. Next, we apply the methods on measurements of transcription intervals of different promoters in live E. coli, and show that they produce significantly different results, both in low- and high-noise settings, and that, in the latter case, they even lead to qualitatively different results. Finally, we demonstrate that the methods can be generalized for other similar purposes, such as for estimating gene activation kinetics. In this case, the new methods allow quantifying the inducer uptake dynamics as opposed to just comparing them between cases, which was not previously possible. We expect this new methodology to be a valuable tool for functional analysis of cellular processes using single-molecule or single-event microscopy measurements in live cells. AVAILABILITY AND IMPLEMENTATION Source code is available under Mozilla Public License at http://www.cs.tut.fi/%7Ehakkin22/censored/ CONTACT andre.ribeiro@tut.fi or andre.sanchesribeiro@tut.fi SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Antti Häkkinen
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, P.O. box 553, 33101, Tampere, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, P.O. box 553, 33101, Tampere, Finland
| |
Collapse
|
13
|
Abstract
The acetone–butanol–ethanol fermentation of solventogenic clostridia was operated as a successful, worldwide industrial process during the first half of the twentieth century, but went into decline for economic reasons. The recent resurgence in interest in the fermentation has been due principally to the recognised potential of butanol as a biofuel, and development of reliable molecular tools has encouraged realistic prospects of bacterial strains being engineered to optimise fermentation performance. In order to minimise costs, emphasis is being placed on waste feedstock streams containing a range of fermentable carbohydrates. It is therefore important to develop a detailed understanding of the mechanisms of carbohydrate uptake so that effective engineering strategies can be identified. This review surveys present knowledge of sugar uptake and its control in solventogenic clostridia. The major mechanism of sugar uptake is the PEP-dependent phosphotransferase system (PTS), which both transports and phosphorylates its sugar substrates and plays a central role in metabolic regulation. Clostridial genome sequences have indicated the presence of numerous phosphotransferase systems for uptake of hexose sugars, hexose derivatives and disaccharides. On the other hand, uptake of sugars such as pentoses occurs via non-PTS mechanisms. Progress in characterization of clostridial sugar transporters and manipulation of control mechanisms to optimise sugar fermentation is described.
Collapse
Affiliation(s)
- Wilfrid J Mitchell
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
14
|
Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli. Appl Environ Microbiol 2015; 81:3387-94. [PMID: 25746993 DOI: 10.1128/aem.04058-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/02/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway.
Collapse
|
15
|
Huang L, Pu Y, Yang X, Zhu X, Cai J, Xu Z. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol 2015; 199:55-61. [PMID: 25687103 DOI: 10.1016/j.jbiotec.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Transcriptional engineering has received significant attention for improving strains by modulating the behavior of transcription factors, which could be used to reprogram a series of gene transcriptions and enable multiple simultaneous modifications at the genomic level. In this study, engineering of the cAMP receptor protein (CRP) was explored with the aim of subtly balancing entire pathway networks and potentially improving lycopene production without significant genetic intervention in other pathways. Amino acid mutations were introduced to CRP by error-prone PCR, and three variants (mcrp26, mcrp159 and mcrp424) with increased lycopene productivity were screened. Combinations of three point mutations were then created via site-directed mutagenesis. The best mutant gene (mcrp26) was integrated into the genome of E. coli BW25113-BIE to replace the wild-type crp gene (MT-1), which resulted in a higher lycopene production (18.49mg/g DCW) compared to the original strain (WT). The mutant strain MT-1 was further investigated in a 10-L bench-top fermentor with a lycopene yield of 128mg/l at 20h, approximately 25% higher than WT. DNA microarray analyses showed that 396 genes (229 up-regulated and 167 down-regulated) were differentially expressed in the mutant MT-1 compared to WT. Finally, the introduction of the mutant crp gene (mcrp26) increased β-carotene production in E. coli. This is the first report of improving the phenotype for metabolite overproduction in E. coli using a CRP engineering strategy.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yue Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiuliang Yang
- Shangdong Jincheng Biopharmaceutical Corporation Limited, Zibo, China
| | - Xiangcheng Zhu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, China
| | - Jin Cai
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Fritz G, Megerle JA, Westermayer SA, Brick D, Heermann R, Jung K, Rädler JO, Gerland U. Single cell kinetics of phenotypic switching in the arabinose utilization system of E. coli. PLoS One 2014; 9:e89532. [PMID: 24586851 PMCID: PMC3935871 DOI: 10.1371/journal.pone.0089532] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/22/2014] [Indexed: 12/05/2022] Open
Abstract
Inducible switching between phenotypes is a common strategy of bacteria to adapt to fluctuating environments. Here, we analyze the switching kinetics of a paradigmatic inducible system, the arabinose utilization system in E. coli. Using time-lapse fluorescence microscopy of microcolonies in a microfluidic chamber, which permits sudden up- and down-shifts in the inducer arabinose, we characterize the single-cell gene expression dynamics of the araBAD operon responsible for arabinose degradation. While there is significant, inducer-dependent cell-to-cell variation in the timing of the on-switching, the off-switching triggered by sudden removal of arabinose is homogeneous and rapid. We find that rapid off-switching does not depend on internal arabinose degradation. Because the system is regulated via the internal arabinose level sensed by AraC, internal arabinose must be rapidly depleted by leakage or export from the cell, or by degradation via a non-canonical pathway. We explored whether the poorly characterized membrane protein AraJ, which is part of the arabinose regulon and has been annotated as a possible arabinose efflux protein, is responsible for rapid depletion. However, we find that AraJ is not essential for rapid switching to the off-state. We develop a mathematical model for the arabinose system, which quantitatively describes both the heterogeneous on-switching and the homogeneous off-switching. The model also predicts that mutations which disrupt the positive feedback of internal arabinose on the production of arabinose uptake proteins change the heterogeneous on-switching behavior into a homogeneous, graded response. We construct such a mutant and confirm the graded response experimentally. Taken together, our results indicate that the physiological switching behavior of this sugar utilization system is asymmetric, such that off-switching is always rapid and homogeneous, while on-switching is slow and heterogeneously timed at sub-saturating inducer levels.
Collapse
Affiliation(s)
- Georg Fritz
- Arnold Sommerfeld Center for Theoretical Physics and CeNS, Ludwig- Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science (CiPSM) at the Department of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Judith A. Megerle
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sonja A. Westermayer
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Delia Brick
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ralf Heermann
- Center for Integrated Protein Science (CiPSM) at the Department of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science (CiPSM) at the Department of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Joachim O. Rädler
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Gerland
- Arnold Sommerfeld Center for Theoretical Physics and CeNS, Ludwig- Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
17
|
Mäkelä J, Kandhavelu M, Oliveira SMD, Chandraseelan JG, Lloyd-Price J, Peltonen J, Yli-Harja O, Ribeiro AS. In vivo single-molecule kinetics of activation and subsequent activity of the arabinose promoter. Nucleic Acids Res 2013; 41:6544-52. [PMID: 23644285 PMCID: PMC3711423 DOI: 10.1093/nar/gkt350] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using a single-RNA detection technique in live Escherichia coli cells, we measure, for each cell, the waiting time for the production of the first RNA under the control of PBAD promoter after induction by arabinose, and subsequent intervals between transcription events. We find that the kinetics of the arabinose intake system affect mean and diversity in RNA numbers, long after induction. We observed the same effect on Plac/ara-1 promoter, which is inducible by arabinose or by IPTG. Importantly, the distribution of waiting times of Plac/ara-1 is indistinguishable from that of PBAD, if and only if induced by arabinose alone. Finally, RNA production under the control of PBAD is found to be a sub-Poissonian process. We conclude that inducer-dependent waiting times affect mean and cell-to-cell diversity in RNA numbers long after induction, suggesting that intake mechanisms have non-negligible effects on the phenotypic diversity of cell populations in natural, fluctuating environments.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Laboratory of Biosystem Dynamics, Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, FI-33101 Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yildirim N. Mathematical modeling of the low and high affinity arabinose transport systems in Escherichia coli. MOLECULAR BIOSYSTEMS 2012; 8:1319-24. [PMID: 22314998 DOI: 10.1039/c2mb05352g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mathematical model was developed for the low and high affinity arabinose transport systems in E. coli. The model is a system of three ordinary differential equations and takes the dynamics of mRNAs for the araE and araFGH proteins and the internal arabinose into account. Special attention was paid to estimate the model parameters from the literature. Our analysis and simulations suggest that the high affinity transport system helps the low affinity transport system to respond to high concentration of extracellular arabinose faster, whereas the high affinity transport system responds to a small amount of extracellular arabinose. Steady state analysis of the model also predicts that there is a regime for the extracellular concentration of arabinose where the arabinose system can show bistable behavior.
Collapse
Affiliation(s)
- Necmettin Yildirim
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA.
| |
Collapse
|
19
|
Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 2010; 85:471-80. [PMID: 19838697 DOI: 10.1007/s00253-009-2292-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 01/04/2023]
Abstract
There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.
Collapse
|
20
|
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 2009; 75:3419-29. [PMID: 19346355 PMCID: PMC2687266 DOI: 10.1128/aem.02912-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 03/26/2009] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum ATCC 31831 grew on l-arabinose as the sole carbon source at a specific growth rate that was twice that on d-glucose. The gene cluster responsible for l-arabinose utilization comprised a six-cistron transcriptional unit with a total length of 7.8 kb. Three l-arabinose-catabolizing genes, araA (encoding l-arabinose isomerase), araB (l-ribulokinase), and araD (l-ribulose-5-phosphate 4-epimerase), comprised the araBDA operon, upstream of which three other genes, araR (LacI-type transcriptional regulator), araE (l-arabinose transporter), and galM (putative aldose 1-epimerase), were present in the opposite direction. Inactivation of the araA, araB, or araD gene eliminated growth on l-arabinose, and each of the gene products was functionally homologous to its Escherichia coli counterpart. Moreover, compared to the wild-type strain, an araE disruptant exhibited a >80% decrease in the growth rate at a lower concentration of l-arabinose (3.6 g liter(-1)) but not at a higher concentration of l-arabinose (40 g liter(-1)). The expression of the araBDA operon and the araE gene was l-arabinose inducible and negatively regulated by the transcriptional regulator AraR. Disruption of araR eliminated the repression in the absence of l-arabinose. Expression of the regulon was not repressed by d-glucose, and simultaneous utilization of l-arabinose and d-glucose was observed in aerobically growing wild-type and araR deletion mutant cells. The regulatory mechanism of the l-arabinose regulon is, therefore, distinct from the carbon catabolite repression mechanism in other bacteria.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | | | | | | | | |
Collapse
|
21
|
Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J 2008; 95:2103-15. [PMID: 18469087 DOI: 10.1529/biophysj.107.127191] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The arabinose utilization system of Escherichia coli displays a stochastic all-or-nothing response at intermediate levels of arabinose, where the population divides into a fraction catabolizing the sugar at a high rate (on-state) and a fraction not utilizing arabinose (off-state). Here we study this decision process in individual cells, focusing on the dynamics of the transition from the off- to the on-state. Using quantitative time-lapse microscopy, we determine the time delay between inducer addition and fluorescence onset of a GFP reporter. Through independent characterization of the GFP maturation process, we can separate the lag time caused by the reporter from the intrinsic activation time of the arabinose system. The resulting distribution of intrinsic time delays scales inversely with the external arabinose concentration, and is compatible with a simple stochastic model for arabinose uptake. Our findings support the idea that the heterogeneous timing of gene induction is causally related to a broad distribution of uptake proteins at the time of sugar addition.
Collapse
|
22
|
Differential selectivity of the Escherichia coli cell membrane shifts the equilibrium for the enzyme-catalyzed isomerization of galactose to tagatose. Appl Environ Microbiol 2008; 74:2307-13. [PMID: 18263746 DOI: 10.1128/aem.02691-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.
Collapse
|
23
|
Flores S, Flores N, de Anda R, González A, Escalante A, Sigala JC, Gosset G, Bolívar F. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis. J Mol Microbiol Biotechnol 2006; 10:51-63. [PMID: 16491026 DOI: 10.1159/000090348] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The physiological role of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) has been studied in Escherichia coli. It has been shown that it directly or indirectly regulates the activity of most catabolic genes involved in carbohydrate transport. Accordingly, strains lacking PTS have pleiotropic phenotypes and are impaired in their capacity to grow on glucose and other PTS sugars. We have previously reported the characterization of a mutant harboring a pts operon deletion (PB11) which, as expected, showed a severe reduction of its growth capacity when incubated on glucose as carbon source, as compared to that of the isogenic wild-type strain. These observations corroborate that PTS is the main determinant of the capacity to grow on glucose and confirm the existence of other systems that allow glucose utilization although at a reduced level. To explore the physiological state and the metabolic pathways involved in glucose utilization in a pts(-) background, we analyzed the global transcriptional response of the PB11 mutant when growing in minimal medium with glucose as carbon source. Genome-wide transcriptional analysis using microarrays revealed that, under this condition, expression of several genes related to carbon transport and metabolism was upregulated, as well as that of genes encoding transporters for certain nucleotides, nitrogen, phosphorus and sulfur sources. In addition, upregulation of rpoS and several genes transcribed by this sigma subunit was detected. These results indicate that the reduced capacity of glucose utilization present in the PB11 strain induces a general nutrient-scavenging response and this behavior is not dependent on a functional PTS. This condition is responsible of the utilization of secondary carbon sources in the presence of glucose.
Collapse
Affiliation(s)
- Salvador Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
25
|
Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 2004; 186:7593-600. [PMID: 15516572 PMCID: PMC524897 DOI: 10.1128/jb.186.22.7593-7600.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During anaerobic growth of bacteria, organic intermediates of metabolism, such as pyruvate or its derivatives, serve as electron acceptors to maintain the overall redox balance. Under these conditions, the ATP needed for cell growth is derived from substrate-level phosphorylation. In Escherichia coli, conversion of glucose to pyruvate yields 2 net ATPs, while metabolism of a pentose, such as xylose, to pyruvate only yields 0.67 net ATP per xylose due to the need for one (each) ATP for xylose transport and xylulose phosphorylation. During fermentative growth, E. coli produces equimolar amounts of acetate and ethanol from two pyruvates, and these reactions generate one additional ATP from two pyruvates (one hexose equivalent) while still maintaining the overall redox balance. Conversion of xylose to acetate and ethanol increases the net ATP yield from 0.67 to 1.5 per xylose. An E. coli pfl mutant lacking pyruvate formate lyase cannot convert pyruvate to acetyl coenzyme A, the required precursor for acetate and ethanol production, and could not produce this additional ATP. E. coli pfl mutants failed to grow under anaerobic conditions in xylose minimal medium without any negative effect on their survival or aerobic growth. An ackA mutant, lacking the ability to generate ATP from acetyl phosphate, also failed to grow in xylose minimal medium under anaerobic conditions, confirming the need for the ATP produced by acetate kinase for anaerobic growth on xylose. Since arabinose transport by AraE, the low-affinity, high-capacity, arabinose/H+ symport, conserves the ATP expended in pentose transport by the ABC transporter, both pfl and ackA mutants grew anaerobically with arabinose. AraE-based xylose transport, achieved after constitutively expressing araE, also supported the growth of the pfl mutant in xylose minimal medium. These results suggest that a net ATP yield of 0.67 per pentose is only enough to provide for maintenance energy but not enough to support growth of E. coli in minimal medium. Thus, pyruvate formate lyase and acetate kinase are essential for anaerobic growth of E. coli on xylose due to energetic constraints.
Collapse
Affiliation(s)
- Adnan Hasona
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
26
|
Büttner M, Sauer N. Monosaccharide transporters in plants: structure, function and physiology. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:263-74. [PMID: 10748259 DOI: 10.1016/s0005-2736(00)00143-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Monosaccharide transport across the plant plasma membrane plays an important role both in lower and higher plants. Algae can switch between phototrophic and heterotrophic growth and utilize organic compounds, such as monosaccharides as additional or sole carbon sources. Higher plants represent complex mosaics of phototrophic and heterotrophic cells and tissues and depend on the activity of numerous transporters for the correct partitioning of assimilated carbon between their different organs. The cloning of monosaccharide transporter genes and cDNAs identified closely related integral membrane proteins with 12 transmembrane helices exhibiting significant homology to monosaccharide transporters from yeast, bacteria and mammals. Structural analyses performed with several members of this transporter superfamily identified protein domains or even specific amino acid residues putatively involved in substrate binding and specificity. Expression of plant monosaccharide transporter cDNAs in yeast cells and frog oocytes allowed the characterization of substrate specificities and kinetic parameters. Immunohistochemical studies, in situ hybridization analyses and studies performed with transgenic plants expressing reporter genes under the control of promoters from specific monosaccharide transporter genes allowed the localization of the transport proteins or revealed the sites of gene expression. Higher plants possess large families of monosaccharide transporter genes and each of the encoded proteins seems to have a specific function often confined to a limited number of cells and regulated both developmentally and by environmental stimuli.
Collapse
Affiliation(s)
- M Büttner
- Lehrstuhl Botanik II, Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | | |
Collapse
|
27
|
Botero LM, Al-Niemi TS, McDermott TR. Characterization of two inducible phosphate transport systems in Rhizobium tropici. Appl Environ Microbiol 2000; 66:15-22. [PMID: 10618197 PMCID: PMC91779 DOI: 10.1128/aem.66.1.15-22.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (P(i)). To better understand phosphorus movement between the bacteroid and the host plant, P(i) transport was characterized in R. tropici. We observed two P(i) transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The K(m) and V(max) values for the low-affinity system were estimated to be 34 +/- 3 microM P(i) and 118 +/- 8 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively, and the K(m) and V(max) values for the high-affinity system were 0.45 +/- 0.01 microM P(i) and 86 +/- 5 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively. Both systems were inducible by P(i) starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but P(i) transport through both systems was eliminated by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide; the P(i) transport rate was correlated with the intracellular ATP concentration. Also, P(i) movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both P(i) transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.
Collapse
Affiliation(s)
- L M Botero
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
28
|
Ferenci T. Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP. FEMS Microbiol Rev 1996; 18:301-17. [PMID: 8703508 DOI: 10.1111/j.1574-6976.1996.tb00246.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Free-living bacteria are expert in adapting to variations in nutrient availability, often using an array of transport systems of different affinities to scavenge for particular substrates (multiport). This review concentrates on the regulation of expression of different transporters contributing to multiport in response to varying nutrient levels. A novel mechanism of controlling bacterial transport affinity under sugar limitation is described. In particular, switching from glucose-rich to glucose-limited conditions results in Escherichia coli orchestrating outer membrane changes as well as the induction of a periplasmic binding protein-dependent (ABC-type) transport system. The changes leading to the high affinity transport pathway are directed towards uptake of rapidly utilisable concentrations and are optimal close to 10-6 M medium glucose. High affinity transport is absent under both glucose-rich 'feast' and glucose-starved 'famine' conditions hence high affinity transporters are not simply repressed by excess nutrient. Rather, the improvement in glucose scavenging involves induction of genes in 2 distinct regulons (mgl/gal and mal/lamB) through synthesis of 2 different endogenous inducer molecules (galactose, maltotriose). Endoinducer levels are tightly controlled by extracellular glucose concentration at different glucose-limited growth rates. Aside from endoinducers, the elevated intracellular level of cAMP plays a role in induction of the high-affinity pathway but cAMP-mediated relief from catabolite repression is not itself sufficient for high affinity transport. In contrast to the repressive role of glucose when present at millimolar concentrations, micromolar glucose also leads to the induction of transport systems for other sugars, further broadening the scavenging potential of nutrient-limited bacteria for other substrates.
Collapse
Affiliation(s)
- T Ferenci
- Department of Microbiology G08, University of Sydney, NSW, Australia.
| |
Collapse
|
29
|
Shatwell KP, Charalambous BM, McDonald TP, Henderson PJ. Cloning, sequencing, and expression of the araE gene of Klebsiella oxytoca 8017, which encodes arabinose-H+ symport activity. J Bacteriol 1995; 177:5379-80. [PMID: 7665532 PMCID: PMC177339 DOI: 10.1128/jb.177.18.5379-5380.1995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Southern analysis of the genomic DNA from species of the family Enterobacteriaceae, using a probe derived from the Escherichia coli araE gene, which encodes an arabinose-H+ symporter, detected araE in Salmonella, Citrobacter, Klebsiella, and Enterobacter spp. The Klebsiella oxytoca araE gene was cloned, sequenced, and expressed to compare its properties with those of araE from E. coli.
Collapse
Affiliation(s)
- K P Shatwell
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
30
|
|
31
|
Walmsley AR, Petro KR, Henderson PJ. Equilibrium and transient kinetic studies of the binding of cytochalasin B to the L-arabinose-H+ symport protein of Escherichia coli. Determination of the sugar binding specificity of the L-arabinose-H+ symporter. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:43-54. [PMID: 8344284 DOI: 10.1111/j.1432-1033.1993.tb18005.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The kinetics of the binding of cytochalasin B to the L-arabinose-H+ symport protein of Escherichia coli have been investigated, using a strain that over-produces the symport protein in the cytoplasmic membrane. Equilibrium binding studies revealed a single set of binding sites (2.9-8.9 nmol/mg protein) with a Kd of 0.7-1.0 microM at 22 degrees C. It proved possible to follow the transient kinetics of cytochalasin B binding by measuring the changes in the fluorescence of the L-arabinose-H+ symporter upon binding the ligand, by stopped-flow fluorescence spectroscopy. The association and dissociation rate constants thus determined were confirmed by rapid filtration measurements, using [3H]cytochalasin B, yielding values of 4.5-6.5 microM-1.s-1 and 4-5 s-1, respectively, consistent with Kd values obtained by measuring equilibrium binding of [3H]cytochalasin B by dialysis at 22 degrees C. Titration of the protein fluorescence with cytochalasin B yielded a similar binding site concentration and Kd value to those obtained in equilibrium binding studies. All the measurements of binding site concentration are consistent with a stoichiometry of 1 mol cytochalasin B binding sites/mol L-arabinose-H+ symport protein. Inhibition of both the rate and equilibrium binding of cytochalasin B by sugars indicated the following order of substrate binding 5-thio-D-glucose > D-fucose > L-arabinose > 6-deoxy-6-fluoro-D-galactose > D-xylose approximately 6-deoxy-D-glucose > D-galactose > D-glucose > D-ribose. Neither D-arabinose nor L-fucose had any significant inhibitory effect upon cytochalasin B binding.
Collapse
Affiliation(s)
- A R Walmsley
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, England
| | | | | |
Collapse
|
32
|
Strobel HJ. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola. Arch Microbiol 1993; 159:465-71. [PMID: 8484709 DOI: 10.1007/bf00288595] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plant cell wall polysaccharides are primarily composed of hexose or hexose derivatives, but a significant fraction is hemicellulose which contains pentose sugars. Prevotella ruminicola B14, a predominant ruminal bacterium, simultaneously metabolized pentoses and glucose or maltose, but the organism preferentially fermented pentoses over cellobiose and preferred xylose to sucrose. Xylose and arabinose transport at either low (2 microM) or high (1 mM) substrate concentrations were observed only in the presence of sodium and if oxygen was excluded during the harvest and assay procedures. An artificial electrical potential (delta psi) or chemical gradient of sodium (delta pNa) drove transport in anaerobically prepared membrane vesicles. Because (i) transport was electrogenic, (ii) a delta pNa drove uptake, and (iii) the number of sodium binding sites was approximately 1, it appeared that P. ruminicola possessed pentose/sodium support mechanisms for the transport of arabinose and xylose at low substrate concentrations. Pentose uptake exhibited a low affinity for xylose or arabinose (> 300 microM), and transport of xylose exhibited bi-phasic kinetics which suggested that a second sodium-dependent xylose transport system was present. Little study has been made on solute transport by Prevotella (Bacteroides) species and this work represents the first use of isolated membrane vesicles from these organisms.
Collapse
Affiliation(s)
- H J Strobel
- Department of Animal Sciences, University of Kentucky, Lexington 40546-0215
| |
Collapse
|
33
|
Muiry JA, Gunn TC, McDonald TP, Bradley SA, Tate CG, Henderson PJ. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae. Biochem J 1993; 290 ( Pt 3):833-42. [PMID: 8384447 PMCID: PMC1132357 DOI: 10.1042/bj2900833] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. An alkaline pH change occurred when L-rhamnose, L-mannose or L-lyxose was added to L-rhamnose-grown energy-depleted suspensions of strains of Escherichia coli. This is diagnostic of sugar-H+ symport activity. 2. L-Rhamnose, L-mannose and L-lyxose were inducers of the sugar-H+ symport and of L-[14C]rhamnose transport activity. L-Rhamnose also induced the biochemically and genetically distinct L-fucose-H+ symport activity in strains competent for L-rhamnose metabolism. 3. Steady-state kinetic measurements showed that L-mannose and L-lyxose were competitive inhibitors (alternative substrates) for the L-rhamnose transport system, and that L-galactose and D-arabinose were competitive inhibitors (alternative substrates) for the L-fucose transport system. Additional measurements with other sugars of related structure defined the different substrate specificities of the two transport systems. 4. The relative rates of H+ symport and of sugar metabolism, and the relative values of their kinetic parameters, suggested that the physiological role of the transport activity was primarily for utilization of L-rhamnose, not for L-mannose or L-lyxose. 5. L-Rhamnose transport into subcellular vesicles of E. coli was dependent on respiration, was optimal at pH 7, and was inhibited by protonophores and ionophores. It was insensitive to N-ethylmaleimide or cytochalasin B. 6. L-Rhamnose, L-mannose and L-lyxose each elicited an alkaline pH change when added to energy-depleted suspensions of L-rhamnose-grown Salmonella typhimurium LT2, Klebsiella pneumoniae, Klebsiella aerogenes, Erwinia carotovora carotovora and Erwinia carotovora atroseptica. The relative rates of subsequent acidification varied, depending on both the organism and the sugar. L-Fucose promoted an alkaline pH change in all the L-rhamnose-induced organisms except the Erwinia species. No L-rhamnose-H+ symport occurred in any organism grown on L-fucose. 7. All these results showed that L-rhamnose transport into the micro-organisms occurred by a system different from that for L-fucose transport. Both systems are energized by the trans-membrane electrochemical gradient of protons. 8. Neither steady-state kinetic measurements nor binding-protein assays revealed the existence of a second L-rhamnose transport system in E. coli.
Collapse
Affiliation(s)
- J A Muiry
- Department of Biochemistry, University of Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
34
|
Chapter 6 Mechanisms of active and passive transport in a family of homologous sugar transporters found in both prokaryotes and eukaryotes. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
35
|
Sugar—Cation Symport Systems in Bacteria. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0074-7696(08)62676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
|
36
|
Abstract
There is a symbiotic relationship between the evolution of fundamental theory and the winning of experimentally-based knowledge. The impact of the General Chemiosmotic Theory on our understanding of the nature of membrane transport processes is described and discussed. The history of experimental studies on transport catalysed by ionophore antibiotics and the membrane proteins of mitochondria and bacteria are used to illustrate the evolution of knowledge and theory. Recent experimental approaches to understanding the lactose-H+ symport protein of Escherichia coli and other sugar porters are described to show that the lack of experimental knowledge of the three-dimensional structures of the proteins currently limits the development of theories about their molecular mechanism of translocation catalysis.
Collapse
|
37
|
Cairns M, McDonald T, Horne P, Henderson P, Baldwin S. Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter of Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92958-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Wadzinski BE, Shanahan MF, Seamon KB, Ruoho AE. Localization of the forskolin photolabelling site within the monosaccharide transporter of human erythrocytes. Biochem J 1990; 272:151-8. [PMID: 2264820 PMCID: PMC1149670 DOI: 10.1042/bj2720151] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical and proteolytic digestion of intact erythrocyte glucose transporter as well as purified transporter protein has been used to localize the derivatization site for the photoaffinity agent 3-[125I]iodo-4-azido-phenethylamino-7-O-succinyldeacetylforskol in [( 125I]IAPS-forskolin). Comparison of the partial amino acid sequence of the labelled 18 kDa tryptic fragment with the known amino acid sequence for the HepG2 glucose transporter confirmed that the binding site for IAPS-forskolin is between the amino acid residues Glu254 and Tyr456. Digestion of intact glucose transporter with Pronase suggests that this site is within the membrane bilayer. Digestion of labelled transporter with CNBr generated a major radiolabelled fragment of Mr approximately 5800 putatively identified as residues 365-420. Isoelectric focusing of Staphylococcus aureus V8 proteinase-treated purified labelled tryptic fragment identified two peptides which likely correspond to amino acid residues 360-380 and 381-393. The common region for these radiolabelled peptides is the tenth putative transmembrane helix of the erythrocyte glucose transporter, comprising amino acid residues 369-389. Additional support for this conclusion comes from studies in which [125I]APS-forskolin was photoincorporated into the L-arabinose/H(+)-transport protein of Escherichia coli. Labelling of this transport protein was protected by both cytochalasin B and D-glucose. The region of the erythrocyte glucose transporter thought to be derivatized with IAPS-forskolin contains a tryptophan residue (Trp388) that is conserved in the sequence of the E. coli arabinose-transport protein.
Collapse
Affiliation(s)
- B E Wadzinski
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706
| | | | | | | |
Collapse
|
39
|
Abstract
The cell membranes of various bacteria contain proton-linked transport systems for D-xylose, L-arabinose, D-galactose, D-glucose, L-rhamnose, L-fucose, lactose, and melibiose. The melibiose transporter of E. coli is linked to both Na+ and H+ translocation. The substrate and inhibitor specificities of the monosaccharide transporters are described. By locating, cloning, and sequencing the genes encoding the sugar/H+ transporters in E. coli, the primary sequences of the transport proteins have been deduced. Those for xylose/H+, arabinose/H+, and galactose/H+ transport are homologous to each other. Furthermore, they are just as similar to the primary sequences of the following: glucose transport proteins found in a Cyanobacterium, yeast, alga, rat, mouse, and man; proteins for transport of galactose, lactose, or maltose in species of yeast; and to a developmentally regulated protein of Leishmania for which a function is not yet established. Some of these proteins catalyze facilitated diffusion of the sugar without cation transport. From the alignments of the homologous amino acid sequences, predictions of common structural features can be made: there are likely to be twelve membrane-spanning alpha-helices, possibly in two groups of six; there is a central hydrophilic region, probably comprised largely of alpha-helix; the highly conserved amino acid residues (40-50 out of 472-522 total) form discrete patterns or motifs throughout the proteins that are presumably critical for substrate recognition and the molecular mechanism of transport. Some of these features are found also in other transport proteins for citrate, tetracycline, lactose, or melibiose, the primary sequences of which are not similar to each other or to the homologous series of transporters. The glucose/Na+ transporter of rabbit and man is different in primary sequence to all the other sugar transporters characterized, but it is homologous to the proline/Na+ transporter of E. coli, and there is evidence for its structural similarity to glucose/H+ transporters in Plants. In vivo and in vitro mutagenesis of the lactose/H+ and melibiose/Na+ (H+) transporters of E. coli has identified individual amino acid residues alterations of which affect sugar and/or cation recognition and parameters of transport. Most of the bacterial transport proteins have been identified and the lactose/H+ transporter has been purified. The directions of future investigations are discussed.
Collapse
Affiliation(s)
- P J Henderson
- Department of Biochemistry, University of Cambridge, United Kingdom
| |
Collapse
|
40
|
Ames GF, Mimura CS, Shyamala V. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. FEMS Microbiol Rev 1990; 6:429-46. [PMID: 2147378 DOI: 10.1111/j.1574-6968.1990.tb04110.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial periplasmic transport systems are complex permeases composed of a soluble substrate-binding receptor and a membrane-bound complex containing 2-4 proteins. Recent developments have clearly demonstrated that these permeases are energized by the hydrolysis of ATP. Several in vitro systems have allowed a detailed study of the essential parameters functioning in these permeases. Several of the component proteins have been shown to interact with each other and the actual substrate for the transport process has been shown to be the liganded soluble receptor. The affinity of this substrate for the membrane complex is approximately 10 microM. The involvement of ATP in energy coupling is mediated by one of the proteins in the membrane complex. For each specific permease, this protein is a member of a family of conserved proteins which bind ATP. The similarity between the members of this family is high and extends itself beyond the consensus motifs for ATP binding. Interestingly, over the last few years, several eukaryotic membrane-bound proteins have been discovered which bear a high level of homology to the family of the conserved components of bacterial periplasmic permeases. Most of these proteins are known to, or can be inferred to participate in a transport process, such as in the case of the multidrug resistance protein (MDR), the STE6 gene product of yeast, and possibly the cystic fibrosis protein. This homology suggests a similarity in the mechanism of action and possibly a common evolutionary origin. This exciting development will stimulate progress in both the prokaryotic and eukaryotic areas of research by the use of overlapping procedures and model building. We propose that this universal class of permeases be called 'Traffic ATPases' to distinguish them from other types of transport systems, and to highlight their involvement in the transport of a vast variety of substrates in either direction relative to the cell interior and their use of ATP as energy source.
Collapse
Affiliation(s)
- G F Ames
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
41
|
Higgins CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR, Gallagher MP. Binding protein-dependent transport systems. J Bioenerg Biomembr 1990; 22:571-92. [PMID: 2229036 DOI: 10.1007/bf00762962] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial binding protein-dependent transport systems are the best characterized members of a superfamily of transporters which are structurally, functionally, and evolutionary related to each other. These transporters are not only found in bacteria but also in yeasts, plants, and animals including man, and include both import and export systems. Although any single system is relatively specific, different systems handle very different substrates which can be inorganic ions, amino acids, sugars, large polysaccharides, or even proteins. Some are of considerable medical importance, including Mdr, the protein responsible for multidrug resistance in human tumors, and the product of the cystic fibrosis locus. In this article we review the current state of knowledge on the structure and function of the protein components of these transporters, the mechanism by which transport is mediated, and the role of ATP in the transport process.
Collapse
Affiliation(s)
- C F Higgins
- ICRF Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, England
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- G F Ames
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
43
|
Affiliation(s)
- C F Higgins
- ICRF Laboratories, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
44
|
Celis RT. Mutant of Escherichia coli K-12 with defective phosphorylation of two periplasmic transport proteins. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Gallagher MP, Pearce SR, Higgins CF. Identification and localization of the membrane-associated, ATP-binding subunit of the oligopeptide permease of Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:133-41. [PMID: 2651120 DOI: 10.1111/j.1432-1033.1989.tb14623.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The OppF protein, a component of the oligopeptide permease of Salmonella typhimurium, is an ATP-binding protein and is believed to couple ATP hydrolysis to the transport process. This protein is an example of a large family of closely related proteins which couple ATP to a variety of different biological processes. The oppF gene has been cloned and sequenced. In order to identify and characterize its protein product we overproduced the protein from the cloned gene. Anti-OppF antibodies were raised against a synthetic peptide. Using these antibodies as a probe we identified OppF in wild-type and overproducing strains. Protease accessibility studies showed the protein to be a peripheral membrane protein located on the cytoplasmic side of the inner membrane. These findings have general implications for the organization and function of this class of prokaryotic and eukaryotic transport system.
Collapse
Affiliation(s)
- M P Gallagher
- Department of Biochemistry, University of Dundee, Scotland
| | | | | |
Collapse
|
46
|
Maiden MC, Jones-Mortimer MC, Henderson PJ. The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68433-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Abstract
Bacterial periplasmic transport systems are complex, multicomponent permeases, present in Gram-negative bacteria. Many such permeases have been analyzed to various levels of detail. A generalized picture has emerged indicating that their overall structure consists of four proteins, one of which is a soluble periplasmic protein that binds the substrate and the other three are membrane bound. The liganded periplasmic protein interacts with the membrane components, which presumably form a complex, and which by a series of conformational changes allow the formation of an entry pathway for the substrate. The two extreme alternatives for such pathway involve either the formation of a nonspecific hydrophilic pore or the development of a ligand-binding site(s) on the membrane-bound complex. One of the membrane-bound components from each system constitutes a family of highly homologous proteins containing sequence domains characteristic of nucleotide-binding sites. Indeed, in several cases, they have been shown to bind ATP, which is thus postulated to be involved in the energy-coupling mechanism. Interestingly, eukaryotic proteins homologous to this family of proteins have been identified (mammalian mdr genes and Drosophila white locus), thus indicating that they perform a universal function, presumably related to energy coupling in membrane-related processes. The mechanism of energy coupling in periplasmic permeases is discussed.
Collapse
Affiliation(s)
- G F Ames
- Department of Biochemistry, University of California, Berkeley 94720
| |
Collapse
|
48
|
Bradley SA, Tinsley CR, Muiry JA, Henderson PJ. Proton-linked L-fucose transport in Escherichia coli. Biochem J 1987; 248:495-500. [PMID: 2829831 PMCID: PMC1148569 DOI: 10.1042/bj2480495] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Addition of L-fucose to energy-depleted anaerobic suspensions of Escherichia coli elicited an uncoupler-sensitive alkaline pH change diagnostic of L-fucose/H+ symport activity. 2. L-Galactose or D-arabinose were also substrates, but not inducers, for the L-fucose/H+ symporter. 3. L-Fucose transport into subcellular vesicles was dependent upon respiration, displayed a pH optimum of about 5.5, and was inhibited by protonophores and ionophores. 4. These results showed that L-fucose transport into E. coli was energized by the transmembrane electrochemical gradient of protons. 5. Neither steady state kinetic measurements nor assays of L-fucose binding to periplasmic proteins revealed the existence of a second L-fucose transport system.
Collapse
Affiliation(s)
- S A Bradley
- Department of Biochemistry, University of Cambridge, U.K
| | | | | | | |
Collapse
|
49
|
Pastakia KB, Dwyer DM. Identification and characterization of a ribose transport system in Leishmania donovani promastigotes. Mol Biochem Parasitol 1987; 26:175-81. [PMID: 3123926 DOI: 10.1016/0166-6851(87)90141-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A transport system for ribose in Leishmania donovani promastigotes was identified and characterized by measuring the uptake of radioisotope-labeled ribose. The pentoses arabinose, 2-deoxyribose and xylose inhibited ribose uptake, whereas hexoses (glucose, alpha-methylglucoside, thioglucose, galactose, lactose, maltose, mannose), adenosine, and proline did not inhibit uptake, indicating that the transporter exhibited substrate specificity. Intracellular ribose exchanged with 2-deoxyribose. Uptake of ribose showed saturation kinetics with an apparent Km = 2 mM and Vmax = 11 nmol (mg protein)-1 min-1. Both N-ethylmaleimide and p-hydroxymercuribenzoate inhibited ribose uptake which was prevented by dithiothreitol. The uncoupling agents 2,4-dinitrophenol and carbonylcyanide p-(trifluoromethoxy)phenylhydrazone and a variety of inhibitors of energy-driven transport had no significant effect on ribose uptake. Following transport, the intracellular ribose pool contained two-thirds of the sugar in the phosphorylated form and one-third in the neutral form. These cumulative results indicate that a specific carrier mediates ribose uptake via a facilitated diffusion system in L. donovani promastigotes.
Collapse
Affiliation(s)
- K B Pastakia
- Immunology and Cell Biology Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | | |
Collapse
|
50
|
Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ. Mammalian and bacterial sugar transport proteins are homologous. Nature 1987; 325:641-3. [PMID: 3543693 DOI: 10.1038/325641a0] [Citation(s) in RCA: 329] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The uptake of a sugar across the boundary membrane is a primary event in the nutrition of most cells, but the hydrophobic nature of the transport proteins involved makes them difficult to characterize. Their amino-acid sequences can, however, be determined by cloning and sequencing the corresponding gene (or complementary DNA). We have determined the sequences of the arabinose-H+ and xylose-H+ membrane transport proteins of Escherichia coli. They are homologous with each other and, unexpectedly, with the glucose transporters of human hepatoma and rat brain cells. All four proteins share similarities with the E. coli citrate transporter. Comparisons of their sequences and hydropathic profiles yield insights into their structure, functionally important residues and possible evolutionary relationships. There is little apparent homology with the lactose-H+ (LacY) or melibiose-Na+ (MelB) transport proteins of E. coli.
Collapse
|