1
|
Yazdanbakhsh M, Phan C, William N, Acker JP. RBC subpopulations in RCCs affected by donor factors. Transfus Apher Sci 2024; 63:104010. [PMID: 39426025 DOI: 10.1016/j.transci.2024.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Understanding red blood cell (RBC) subpopulations is crucial for comprehending donor variability and enhancing transfusion outcomes. This review highlights the significance of RBC subpopulations, focusing on the properties of biologically young and old RBCs and underscores how donor variability impacts transfusion outcomes. The role of senescent RBCs in adverse transfusion reactions and the emerging significance of circulating erythroid cells (CECs) is discussed. RBC aging and the role of oxidative stress and aging mechanisms is highlighted. Changes in RBC flexibility, calcium homeostasis, band 3 protein modifications, membrane microvesiculation, 2,3-diphosphoglycerate (2,3-DPG) levels, and immunological markers like CD47 and CD55 contribute to RBC clearance and erythrophagocytosis. Also, methods of characterizing / separating of biologically young and old RBC subpopulations is introduced. This review emphasizes the importance of RBC subpopulations in understanding donor variability and improving transfusion outcomes.
Collapse
Affiliation(s)
- Mahsa Yazdanbakhsh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | - Celina Phan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Zhao Y, Cui Y, Ni W, Yu S, Pan D, Liu S, Jia Z, Gao Y, Zhao D, Liu M, Wang S. Ginseng total saponin improves red blood cell oxidative stress injury by regulating tyrosine phosphorylation and glycolysis in red blood cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155785. [PMID: 38823342 DOI: 10.1016/j.phymed.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Oxidative stress is the main cause of many diseases, but because of its complex pathogenic factors, there is no clear method for treating it. Ginseng total saponin (GTS) an important active ingredients in Panax ginseng C.A. Mey (PG) and has potential therapeutic ability for oxidative stress due to various causes. However, the molecular mechanism of GTS in the treating oxidative stress damage in red blood cells (RBCs) is still unclear. PURPOSE This study aimed to examine the protective effect of GTS on RBCs under oxidative stress damage and to determine its potential mechanism. METHODS The oxidative stress models of rat RBCs induced by hydrogen peroxide (H2O2) and exhaustive swimming in vivo and in vitro was used. We determined the cell morphology, oxygen carrying capacity, apoptosis, antioxidant capacity, and energy metabolism of RBCs. The effect of tyrosine phosphorylation (pTyr) of Band 3 protein on RBCs glycolysis was also examined. RESULTS GTS reduced the hemolysis of RBCs induced by H2O2 at the lowest concentration. Moreover, GTS effectively improved the morphology, enhanced the oxygen carrying capacity, and increased antioxidant enzyme activity, adenosine triphosphate (ATP) levels, and adenosine triphosphatase (ATPase) activity in RBCs. GTS also promoted the expression of membrane proteins in RBCs, inhibited pTyr of Band 3 protein, and further improved glycolysis, restoring the morphological structure and physiological function of RBCs. CONCLUSIONS This study shows, that GTS can protect RBCs from oxidative stress damage by improving RBCs morphology and physiological function. Changes in pTyr expression and its related pTyr regulatory enzymes before and after GTS treatment suggest that Band 3 protein is the main target of GTS in the treating endogenous and exogenous oxidative stress. Moreover, GTS can enhance the glycolytic ability of RBCs by inhibiting pTyr of Band 3 protein, thereby restoring the function of RBCs.
Collapse
Affiliation(s)
- Yuchu Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Yuan Cui
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Weifeng Ni
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Shiting Yu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Daian Pan
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Shichao Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Ziyi Jia
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Yanan Gao
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Meichen Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| |
Collapse
|
3
|
Proteomic Analysis of the Role of the Adenylyl Cyclase-cAMP Pathway in Red Blood Cell Mechanical Responses. Cells 2022; 11:cells11071250. [PMID: 35406814 PMCID: PMC8997765 DOI: 10.3390/cells11071250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Red blood cell (RBC) deformability is modulated by the phosphorylation status of the cytoskeletal proteins that regulate the interactions of integral transmembrane complexes. Proteomic studies have revealed that receptor-related signaling molecules and regulatory proteins involved in signaling cascades are present in RBCs. In this study, we investigated the roles of the cAMP signaling mechanism in modulating shear-induced RBC deformability and examined changes in the phosphorylation of the RBC proteome. We implemented the inhibitors of adenylyl cyclase (SQ22536), protein kinase A (H89), and phosphodiesterase (PDE) (pentoxifylline) to whole blood samples, applied 5 Pa shear stress (SS) for 300 s with a capillary tubing system, and evaluated RBC deformability using a LORRCA MaxSis. The inhibition of signaling molecules significantly deteriorated shear-induced RBC deformability (p < 0.05). Capillary SS slightly increased the phosphorylation of RBC cytoskeletal proteins. Tyrosine phosphorylation was significantly elevated by the modulation of the cAMP/PKA pathway (p < 0.05), while serine phosphorylation significantly decreased as a result of the inhibition of PDE (p < 0.05). AC is the core element of this signaling pathway, and PDE works as a negative feedback mechanism that could have potential roles in SS-induced RBC deformability. The cAMP/PKA pathway could regulate RBC deformability during capillary transit by triggering significant alterations in the phosphorylation state of RBCs.
Collapse
|
4
|
Ugurel E, Kisakurek ZB, Aksu Y, Goksel E, Cilek N, Yalcin O. Calcium/protein kinase C signaling mechanisms in shear-induced mechanical responses of red blood cells. Microvasc Res 2021; 135:104124. [PMID: 33359148 DOI: 10.1016/j.mvr.2020.104124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
Red blood cell (RBC) deformability has vital importance for microcirculation in the body, as RBCs travel in narrow capillaries under shear stress. Deformability can be defined as a remarkable cell ability to change shape in response to an external force which allows the cell to pass through the narrowest blood capillaries. Previous studies showed that RBC deformability could be regulated by Ca2+/protein kinase C (PKC) signaling mechanisms due to the phosphorylative changes in RBC membrane proteins by kinases and phosphatases. We investigated the roles of Ca2+/PKC signaling pathway on RBC mechanical responses and impaired RBC deformability under continuous shear stress (SS). A protein kinase C inhibitor Chelerythrine, a tyrosine phosphatase inhibitor Calpeptin, and a calcium channel blocker Verapamil were applied into human blood samples in 1 micromolar concentration. Samples with drugs were treated with or without 3 mM Ca2+. A shear stress at 5 Pa level was applied to each sample continuously for 300 s. RBC deformability was measured by a laser-assisted optical rotational cell analyzer (LORRCA) and was calculated as the change in elongation index (EI) of RBC upon a range of shear stress (SS, 0.3-50 Pa). RBC mechanical stress responses were evaluated before and after continuous SS through the parameterization of EI-SS curves. The drug administrations did not produce any significant alterations in RBC mechanical responses when they were applied alone. However, the application of the drugs together with Ca2+ substantially increased RBC deformability compared to calcium alone. Verapamil significantly improved Ca2+-induced impairments of deformability both before and after 5 Pa SS exposure (p < 0.0001). Calpeptin and Chelerythrine significantly ameliorated impaired deformability only after continuous SS (p < 0.05). Shear-induced improvements of deformability were conserved by the drug administrations although shear-induced deformability was impaired when the drugs were applied with calcium. The blocking of Ca2+ channel by Verapamil improved impaired RBC mechanical responses independent of the SS effect. The inhibition of tyrosine phosphatase and protein kinase C by Calpeptin and Chelerythrine, respectively, exhibited ameliorating effects on calcium-impaired deformability with the contribution of shear stress. The modulation of Ca2+/PKC signaling pathway could regulate the mechanical stress responses of RBCs when cells are under continuous SS exposure. Shear-induced improvements in the mechanical properties of RBCs by this signaling mechanism could facilitate RBC flow in the microcirculation of pathophysiological disorders, wherein Ca2+ homeostasis is disturbed and RBC deformability is reduced.
Collapse
Affiliation(s)
- Elif Ugurel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | | | - Yasemin Aksu
- School of Medicine, Koç University, Istanbul, Turkey
| | - Evrim Goksel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Neslihan Cilek
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey; School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
5
|
Kesely K, Noomuna P, Vieth M, Hipskind P, Haldar K, Pantaleo A, Turrini F, Low PS. Identification of tyrosine kinase inhibitors that halt Plasmodium falciparum parasitemia. PLoS One 2020; 15:e0242372. [PMID: 33180822 PMCID: PMC7660480 DOI: 10.1371/journal.pone.0242372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/31/2020] [Indexed: 01/23/2023] Open
Abstract
Although current malaria therapies inhibit pathways encoded in the parasite’s genome, we have looked for anti-malaria drugs that can target an erythrocyte component because development of drug resistance might be suppressed if the parasite cannot mutate the drug’s target. In search for such erythrocyte targets, we noted that human erythrocytes express tyrosine kinases, whereas the Plasmodium falciparum genome encodes no obvious tyrosine kinases. We therefore screened a library of tyrosine kinase inhibitors from Eli Lilly and Co. in a search for inhibitors with possible antimalarial activity. We report that although most tyrosine kinase inhibitors exerted no effect on parasite survival, a subset of tyrosine kinase inhibitors displayed potent anti-malarial activity. Moreover, all inhibitors found to block tyrosine phosphorylation of band 3 specifically suppressed P. falciparum survival at the parasite egress stage of its intra-erythrocyte life cycle. Conversely, tyrosine kinase inhibitors that failed to block band 3 tyrosine phosphorylation but still terminated the parasitemia were observed to halt parasite proliferation at other stages of the parasite’s life cycle. Taken together these results suggest that certain erythrocyte tyrosine kinases may be important to P. falciparum maturation and that inhibitors that block these kinases may contribute to novel therapies for P. falciparum malaria.
Collapse
Affiliation(s)
- Kristina Kesely
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| | - Panae Noomuna
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| | - Michal Vieth
- Eli Lilly and Company, San Diego, CA, United States of America
| | - Philip Hipskind
- School of Medicine, Indiana University, Bloomington, IN, United States of America.,Clinical Pharmacology R2 402 MDEP, Indianapolis, IN, United States of America
| | - Kasturi Haldar
- Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, United States of America
| | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
6
|
Reticulocyte and red blood cell deformation triggers specific phosphorylation events. Blood Adv 2020; 3:2653-2663. [PMID: 31506283 DOI: 10.1182/bloodadvances.2019000545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
The capacity to undergo substantial deformation is a defining characteristic of the red blood cell (RBC), facilitating transit through the splenic interendothelial slits and microvasculature. Establishment of this remarkable property occurs during a process of reticulocyte maturation that begins with egress through micron-wide pores in the bone marrow and is completed within the circulation. The requirement to undertake repeated cycles of deformation necessitates that both reticulocytes and erythrocytes regulate membrane-cytoskeletal protein interactions in order to maintain cellular stability. In the absence of transcriptional activity, modulation of these interactions in RBCs is likely to be achieved primarily through specific protein posttranslational modifications, which at present remain undefined. In this study, we use high-throughput methods to define the processes that underlie the response to deformation and shear stress in both reticulocytes and erythrocytes. Through combination of a bead-based microsphiltration assay with phosphoproteomics we describe posttranslational modification of RBC proteins associated with deformation. Using microsphiltration and microfluidic biochip-based assays, we explore the effect of inhibiting kinases identified using this dataset. We demonstrate roles for GSK3 and Lyn in capillary transit and maintenance of membrane stability following deformation and show that combined inhibition of these kinases significantly decreases reticulocyte capacity to undergo repeated deformation. Finally, we derive a comprehensive and integrative phosphoproteomic dataset that provides a valuable resource for further mechanistic dissection of the molecular pathways that underlie the RBC's response to mechanical stimuli and for the study of reticulocyte maturation.
Collapse
|
7
|
Activation of Tyrosine Phosphorylation Signaling in Erythrocytes of Patients with Alzheimer's Disease. Neuroscience 2020; 433:36-41. [PMID: 32156551 DOI: 10.1016/j.neuroscience.2020.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia affecting older people. The identification of biomarkers is increasingly important and would be crucial for future therapy. Here, we demonstrated that in AD erythrocytes: (i) the anion transporter band3 is highly phosphorylated; (ii) the lyn kinase is phosphorylated and activated; (iii) the tyrosine phosphatase activity is downregulated, with a significant inverse correlation between band3 phosphorylation and disease progression, as revealed by Mini Mental State Examination score. Finally, we showed that in normal erythrocytes, treated in vitro with Aβ1-42 peptide, both band3 phosphorylation and lyn activation occurs. These results suggest that modulation of tyrosine phosphorylation signaling may be evaluated as a potential peripheral marker in AD.
Collapse
|
8
|
Yastrebova ES, Konokhova AI, Strokotov DI, Karpenko AA, Maltsev VP, Chernyshev AV. Proposed Dynamics of CDB3 Activation in Human Erythrocytes by Nifedipine Studied with Scanning Flow Cytometry. Cytometry A 2019; 95:1275-1284. [PMID: 31750613 DOI: 10.1002/cyto.a.23918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Nifedipine is calcium channels and pumps blocker widely used in medicine. However, mechanisms of nifedipine action in blood are not clear. In particular, the influence of nifedipine on erythrocytes is far from completely understood. In this work, applying scanning flow cytometry, we observed experimentally for the first time the dynamics behind a significant increase of HCO3 - /Cl- transmembrane exchange rate of CDB3 (main anion exchanger, AE1, Band 3, SLC4A1) of human erythrocytes in the presence of nifedipine in blood. It was found that the rate of CDB3 activation is not limited by the rate of nifedipine binding and/or Ca2+ transport. In order to explain the experimental data, we suggested a kinetic model assuming that the rate of CDB3 activation is limited by the dynamics of the balance between two intracellular processes (1) the activation of CDB3 limited by its interaction with intracellular Ca2+ , and (2) the spontaneous deactivation of CDB3. Thus the use of scanning flow cytometry allowed to clarify quantitatively the molecular kinetic mechanism of nifedipine action on human erythrocytes. In particular, the efficiency (~30) and rates of activation (~0.3 min-1 ) and deactivation (~10-3 min-1 ) of CDB3 in human erythrocytes was evaluated for two donors. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ekaterina S Yastrebova
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia.,Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Rechkunovskaya 15, 630055, Novosibirsk, Russia
| | - Anastasiya I Konokhova
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk, 630090, Russia.,Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Rechkunovskaya 15, 630055, Novosibirsk, Russia
| | - Dmitry I Strokotov
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk, 630090, Russia.,Novosibirsk State Medical University, Krasny Prospect 52, Novosibirsk, 630091, Russia
| | - Andrei A Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Rechkunovskaya 15, 630055, Novosibirsk, Russia
| | - Valeri P Maltsev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia.,Novosibirsk State Medical University, Krasny Prospect 52, Novosibirsk, 630091, Russia
| | - Andrei V Chernyshev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| |
Collapse
|
9
|
Zhao Y, Wang X, Noviana M, Hou M. Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim Biophys Sin (Shanghai) 2018; 50:621-634. [PMID: 29860301 DOI: 10.1093/abbs/gmy055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) appears to be involved in virtually every aspect of cardiovascular biology. Most attention has been focused on the role of endothelial-derived NO in basal blood flow regulation by relaxing vascular smooth muscle; however, it is now known that NO derived from red blood cells (RBCs) plays a fundamental role in vascular homeostasis by enhancing oxygen (O2) release at the cellular and physiological level. Hypoxia is an often seen problem in diverse conditions; systemic adaptations to hypoxia permit people to adjust to the hypoxic environment at high altitudes and to disease processes. In addition to the cardiopulmonary and hematologic adaptations that support systemic O2 delivery in hypoxia, RBCs assist through newly described NO-based mechanisms, in line with their vital role in O2 transport and delivery. Furthermore, to increase the local blood flow in proportion to metabolic demand, NO regulates membrane mechanical properties thereby modulating RBC deformability and O2 carrying-releasing function. In this review article, we focus on the effect of NO bioactivity on RBC-based mechanisms that regulate blood flow and RBC deformability. RBC adaptations to hypoxia are summarized, with particular attention to NO-dependent S-nitrosylation of membrane proteins and hemoglobin (S-nitrosohemoglobin). The NO/S-nitrosylation/RBC vasoregulatory cascade contributes fundamentally to the molecular understanding of the role of NO in human adaptation to hypoxia and may inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Milody Noviana
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Man Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol 2018; 9:656. [PMID: 29910743 PMCID: PMC5992676 DOI: 10.3389/fphys.2018.00656] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Deformability is an essential feature of blood cells (RBCs) that enables them to travel through even the smallest capillaries of the human body. Deformability is a function of (i) structural elements of cytoskeletal proteins, (ii) processes controlling intracellular ion and water handling and (iii) membrane surface-to-volume ratio. All these factors may be altered in various forms of hereditary hemolytic anemia, such as sickle cell disease, thalassemia, hereditary spherocytosis and hereditary xerocytosis. Although mutations are known as the primary causes of these congenital anemias, little is known about the resulting secondary processes that affect RBC deformability (such as secondary changes in RBC hydration, membrane protein phosphorylation, and RBC vesiculation). These secondary processes could, however, play an important role in the premature removal of the aberrant RBCs by the spleen. Altered RBC deformability could contribute to disease pathophysiology in various disorders of the RBC. Here we review the current knowledge on RBC deformability in different forms of hereditary hemolytic anemia and describe secondary mechanisms involved in RBC deformability.
Collapse
Affiliation(s)
- Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zürich, Switzerland
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Saldanha C, Freitas T, Silva-Herdade AS. Timolol effects on erythrocyte deformability and nitric oxide metabolism. Clin Hemorheol Microcirc 2018; 69:165-173. [PMID: 29630536 DOI: 10.3233/ch-189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Timolol maleate is a compound used in treatment for reducing increased intra-ocular pressure by limiting aqueous humor production. Decreased erythrocyte deformability (ED), increased activity of erythrocyte acetylcholinesterase (AChE), increased values of nitrosoglutathione (GSNO) and nitic oxide (NO) and decreased plasma levels of NO metabolites, were described in primary open angle glaucoma patients. In healthy human red blood cells (RBCs), timolol is an inhibitor of AChE and induces NO efflux and GSNO efflux from that blood component in lower concentration than those obtained in presence of the natural AChE substrate, acetylcholine (ACh). The signal transduction pathway in RBCs described for NO in dependence of AChE-ACh active complex involves Gi protein, protein tyrosine kinase (PTK like Syk and p53/56Lyn), protein tyrosine phosphatase (PTP) and adenylyl cyclase (AC).The aim of this in vitro study was to verify the effect of timolol maleate in ED, NO efflux and NO derivatives molecules (NOx) like nitrite (NO2-), nitrate (NO3-, peroxynitrite (-ONOO) and GSNO under the presence of PTK, PTP, AC and guanylyl cyclase (GC) enzyme proteins inhibitors.Blood samples from healthy donors were each one divided and were performed aliquots in absence (control aliquots) and presence of timolol or timolol plus each inhibitor and Gi protein uncoupling. No significant differences in erythrocyte NO efflux, GSNO, peroxynitrite, nitrite and nitrate concentrations in response to timolol when compared with the untreated blood samples aliquots were obtained.It was observed an increase in erythrocyte deformability at high shear stresses induced by the simultaneous presence of timolol and band 3 protein dephosphorylation by PTK syk inhibitor. No significant differences where verified in peroxynitrite levels in the blood aliquots in presence of timolol plus each enzyme inhibitor and Gi protein uncoupling in relation to the control aliquots. No variation of GSNO concentration occurs under the presence of timolol and AMGT (PTK lyn inhibitor) besides the significant higher values observed with each one of the other inhibitors. Nitrate concentration increases significantly in all aliquots with timolol plus each one of the inhibitors. The same was observe with nitrite levels with exception of the aliquots with timolol plus AMGT or timolol plus Gi protein uncoupling showing no significant values in relation to the control aliquots.Besides the changes in NO derivative molecules and NO efflux from RBCs obtained in this study with blood samples of healthy donors under the effect of timolol plus each inhibitor of the proteins participants in NO signal transduction mechanism, further analogue studies must be promoted with blood samples of patients with glaucoma or any other inflammatory vascular disease.
Collapse
Affiliation(s)
- Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, Lisbon, Portugal
| | - Teresa Freitas
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, Lisbon, Portugal
| | - Ana Santos Silva-Herdade
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Al-Hatamleh MAI, Baig AA, Simbak NB, Nadeem MI, Khan SU, Ariff TM. Molecular Modulation of Stress Induced to Abnormal Haematological Indices in Medical Students, Malaysian Perspective. Pak J Biol Sci 2017; 20:478-488. [PMID: 30187724 DOI: 10.3923/pjbs.2017.478.488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Medical students in Malaysia and globally were considered among the most exposure groups in the community to stress due to several sources. The most significant and severe sources of stress in medical students is an academic sources, includes a lot of exams/tests, lack of time and facilities for entertainment, stay in a hostel, high parental expectations and vastness of syllabus, in addition to emotional problems and others personal sources. Stress is a very important issue that leads to a worsening of health problems. Stress develops in the body and leads to oxidative stress which in turn leads to a disorder in the whole body. Oxidative stress may lead to abnormal haematological indices elevated white blood cells (WBCs) count. Oxidative stress can lead to massive destruction of red blood cells (RBCs). The brain and the gastrointestinal system (GI) are intimately connected as one system. The brain has a direct impact on the GI tract. A stressful brain can send signals to the gut, just as a troubled intestine can send signals to the brain. Therefore, stress can be the cause of block the breakdown and assimilation of food for energy and nutriment. This malabsorption can then lead to a reciprocal negative effect to the stress and can be another cause of anaemia through malabsorption minerals and vitamins that are to erythropoiesis. So, stress can be one of the leading causes of anaemia among medical students. Stress is a chronic epidemic in the most medical students and can directly affect how well body works. This review article discovers the effect of stress in medical students that can be effect on their studies and further create researcher's interest to generate database that help to reduce stress response and bring about the empowerment of balanced life among Malaysian medical students besides the increasing level of health and academic performance.
Collapse
|
13
|
Saldanha C. Human Erythrocyte Acetylcholinesterase in Health and Disease. Molecules 2017; 22:E1499. [PMID: 28885588 PMCID: PMC6151671 DOI: 10.3390/molecules22091499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 01/11/2023] Open
Abstract
The biochemical properties of erythrocyte or human red blood cell (RBC) membrane acetylcholinesterase (AChE) and its applications on laboratory class and on research are reviewed. Evidence of the biochemical and the pathophysiological properties like the association between the RBC AChE enzyme activity and the clinical and biophysical parameters implicated in several diseases are overviewed, and the achievement of RBC AChE as a biomarker and as a prognostic factor are presented. Beyond its function as an enzyme, a special focus is highlighted in this review for a new function of the RBC AChE, namely a component of the signal transduction pathway of nitric oxide.
Collapse
Affiliation(s)
- Carlota Saldanha
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
14
|
The Effect of Sepsis on the Erythrocyte. Int J Mol Sci 2017; 18:ijms18091932. [PMID: 28885563 PMCID: PMC5618581 DOI: 10.3390/ijms18091932] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022] Open
Abstract
Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.
Collapse
|
15
|
Understanding quasi-apoptosis of the most numerous enucleated components of blood needs detailed molecular autopsy. Ageing Res Rev 2017; 35:46-62. [PMID: 28109836 DOI: 10.1016/j.arr.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Erythrocytes are the most numerous cells in human body and their function of oxygen transport is pivotal to human physiology. However, being enucleated, they are often referred to as a sac of molecules and their cellularity is challenged. Interestingly, their programmed death stands a testimony to their cell-hood. They are capable of self-execution after a defined life span by both cell-specific mechanism and that resembling the cytoplasmic events in apoptosis of nucleated cells. Since the execution process lacks the nuclear and mitochondrial events in apoptosis, it has been referred to as quasi-apoptosis or eryptosis. Several studies on molecular mechanisms underlying death of erythrocytes have been reported. The data has generated a non-cohesive sketch of the process. The lacunae in the present knowledge need to be filled to gain deeper insight into the mechanism of physiological ageing and death of erythrocytes, as well as the effect of age of organism on RBCs survival. This would entail how the most numerous cells in the human body die and enable a better understanding of signaling mechanisms of their senescence and premature eryptosis observed in individuals of advanced age.
Collapse
|
16
|
Short-Term Effects of Chlorpromazine on Oxidative Stress in Erythrocyte Functionality: Activation of Metabolism and Membrane Perturbation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2394130. [PMID: 27579150 PMCID: PMC4992801 DOI: 10.1155/2016/2394130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
Abstract
The purpose of this paper is to focus on the short-term effects of chlorpromazine on erythrocytes because it is reported that the drug, unstable in plasma but more stable in erythrocytes, interacts with erythrocyte membranes, membrane lipids, and hemoglobin. There is a rich literature about the side and therapeutic effects or complications due to chlorpromazine, but most of these studies explore the influence of long-term treatment. We think that evaluating the short-term effects of the drug may help to clarify the sequence of chlorpromazine molecular targets from which some long-term effects derive. Our results indicate that although the drug is primarily intercalated in the innermost side of the membrane, it does not influence band 3 anionic flux, lipid peroxidation, and protein carbonylation processes. On the other hand, it destabilizes and increases the autooxidation of haemoglobin, induces activation of caspase 3, and, markedly, influences the ATP and reduced glutathione levels, with subsequent exposure of phosphatidylserine at the erythrocyte surface. Overall our observations on the early stage of chlorpromazine influence on erythrocytes may contribute to better understanding of new and interesting characteristics of this compound improving knowledge of erythrocyte metabolism.
Collapse
|
17
|
Tikhomirova IA, Muravyov AV, Petrochenko EP, Kislov NV, Cheporov SV, Peganova EV. Alteration of red blood cell microrheology by anti-tumor chemotherapy drugs. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747815050153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Band 3 Erythrocyte Membrane Protein Acts as Redox Stress Sensor Leading to Its Phosphorylation by p (72) Syk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6051093. [PMID: 27034738 PMCID: PMC4806680 DOI: 10.1155/2016/6051093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
Abstract
In erythrocytes, the regulation of the redox sensitive Tyr phosphorylation of band 3 and its functions are still partially defined. A role of band 3 oxidation in regulating its own phosphorylation has been previously suggested. The current study provides evidences to support this hypothesis: (i) in intact erythrocytes, at 2 mM concentration of GSH, band 3 oxidation, and phosphorylation, Syk translocation to the membrane and Syk phosphorylation responded to the same micromolar concentrations of oxidants showing identical temporal variations; (ii) the Cys residues located in the band 3 cytoplasmic domain are 20-fold more reactive than GSH; (iii) disulfide linked band 3 cytoplasmic domain docks Syk kinase; (iv) protein Tyr phosphatases are poorly inhibited at oxidant concentrations leading to massive band 3 oxidation and phosphorylation. We also observed that hemichromes binding to band 3 determined its irreversible oxidation and phosphorylation, progressive hemolysis, and serine hyperphosphorylation of different cytoskeleton proteins. Syk inhibitor suppressed the phosphorylation of band 3 also preventing serine phosphorylation changes and hemolysis. Our data suggest that band 3 acts as redox sensor regulating its own phosphorylation and that hemichromes leading to the protracted phosphorylation of band 3 may trigger a cascade of events finally leading to hemolysis.
Collapse
|
19
|
Tang F, Ren Y, Wang R, Lei X, Deng X, Zhao Y, Chen D, Wang X. Ankyrin exposure induced by activated protein kinase C plays a potential role in erythrophagocytosis. Biochim Biophys Acta Gen Subj 2015; 1860:120-8. [PMID: 26498044 DOI: 10.1016/j.bbagen.2015.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/03/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND In physiological and pathological conditions activated protein kinace C (PKC) has been observed in the erythrocytes. Externalization of ankyrin followed by Arg-Gly-Asp (RGD)/integrin recognition also triggers erythrophagocytosis. In the present study, to test whether activated PKC is associated with ankyrin exposure in erythrophagocytosis. METHODS Phorbol 12-myristate-13-acetate (PMA)-induced PKC activation and ankyrin phosphorylation were tested, and under different treatment conditions the subpopulation of erythrocytes with ankyrin exposure and the levels of intracellular calcium were analyzed by flow cytometry. RESULTS Results showed that treatment of erythrocytes with PMA in a calcium-containing buffer led to ankyrin exposure. In the absence of extracellular calcium, no ankyrin exposure was observed. PKC inhibition with calphostin C, a blocker of the PMA binding site, completely prevented the calcium entry, protein phosphorylation and ankyrin exposure. PKC inhibition with chelerythrine chloride, an inhibitor of the active site, diminished the level of ankyrin-exposing cells and ankyrin phosphorylation; however it even led to a higher percentage of cells with increased levels of calcium than with PMA treatment alone. Although PKC was activated and ankyrin phosphorylation occurred, no ankyrin exposure was observed in the absence of extracellular calcium. CONCLUSION Analyses of results suggested that PMA induces calcium influx into the erythrocytes, leading to the activation of calcium-dependent enzymes and the phosphorylation of membrane proteins, ultimately inducing ankyrin exposure and erythrophagocytosis. This study may provide insights into the molecular mechanisms of removing aged or diseased erythrocytes.
Collapse
Affiliation(s)
- Fuzhou Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yang Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Ruofeng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Xiaofeng Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Xueru Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
20
|
Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol 2015; 6:226-239. [PMID: 26285072 PMCID: PMC4543215 DOI: 10.1016/j.redox.2015.07.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies.
Collapse
Affiliation(s)
- S Voskou
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Antalya, Turkey
| | - P Fanis
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Phylactides
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - M Kleanthous
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
21
|
Shimo H, Arjunan SNV, Machiyama H, Nishino T, Suematsu M, Fujita H, Tomita M, Takahashi K. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes. PLoS Comput Biol 2015; 11:e1004210. [PMID: 26046580 PMCID: PMC4457884 DOI: 10.1371/journal.pcbi.1004210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. In order to maintain a steady internal environment, our bodies must be able to specifically recognize old and damaged red blood cells (RBCs), and remove them from the circulation in a timely manner. Clusters of membrane protein band 3, which form in response to elevated oxidative damage, serve as essential molecular markers that initiate this cell removal process. However, little is known about the details of how these clusters are formed and how their properties change under different conditions. To understand these mechanisms in detail, we developed a computational model that enables the prediction of the time course profiles of metabolic intermediates, as well as the visualization of the resulting band 3 distribution during oxidative treatment. Our model predictions were in good agreement with previous published experimental data, and provided predictive insights on the key factors of cluster formation. Furthermore, simulation experiments of the effects of multiple oxidative pulses and cytoskeletal defect using the model also suggested that clustering is enhanced under such conditions. Analyses using our model can provide hypotheses and suggest experiments to aid the understanding of the physiology of anemia-associated RBC disorders, and optimization of quality control of RBCs in stored blood.
Collapse
Affiliation(s)
- Hanae Shimo
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Department of Biochemistry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | | | - Hiroaki Machiyama
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Taiko Nishino
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hideaki Fujita
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Koichi Takahashi
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- * E-mail:
| |
Collapse
|
22
|
Zhirnov VV, Iakovenko IN. The osmotic resistance, and zeta potential responses of human erythrocytes to transmembrane modification of Ca2+ fluxes in the presence of the imposed low rate radiation field of 90Sr. Int J Radiat Biol 2014; 91:117-26. [PMID: 25084838 DOI: 10.3109/09553002.2014.950716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the effects of the imposed low dose rate ionizing field on membrane stability of human erythrocytes under modulation of transmembrane exchange of Ca(2+). MATERIALS AND METHODS Osmotic resistance of human erythrocytes was determined by a measure of haemoglobin released from erythrocytes when placed in a medium containing serial dilutions of Krebs isotonic buffer. The zeta potential as indicator of surface membrane potential was calculated from value of the cellular electrophoretic mobility. The irradiation of erythrocyte suspensions carried out by applying suitable aliquots of (90)Sr in incubation media. RESULTS Irradiation of human erythrocytes by (90)Sr (1.5-15.0 μGy·h(-1)) induced a reversible increase of hyposmotic hemolysis and negative charge value on the outer membrane surface as well as changed responses these parameters to modification of Ca(2+) fluxes with calcimycin and nitrendipine. CONCLUSIONS Findings indicate that the low dose rate radionuclides ((90)Sr) field modifies both Ca(2+)-mediated, and Ca(2+)-independent cellular signalling regulating mechanical stability of erythrocyte membrane. A direction of that modification presumably depends on the initial structure of membranes, and it is determined by the quality and quantitative parameters of changes in membrane structure caused by concrete operable factors.
Collapse
Affiliation(s)
- Victor V Zhirnov
- Department of Cell Signal Systems, Institute of Bioorganic and Petroleum Chemistry, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | | |
Collapse
|
23
|
C4d deposits on the surface of RBCs in trauma patients and interferes with their function. Crit Care Med 2014; 42:e364-72. [PMID: 24448198 DOI: 10.1097/ccm.0000000000000231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Complement system is activated in patients with trauma. Although complement activation is presumed to contribute to organ damage and constitutional symptoms, little is known about the involved mechanisms. Because complement components may deposit on RBCs, we asked whether complement deposits on the surface of RBC in trauma and whether such deposition alters RBC function. DESIGN A prospective experimental study. SETTING Research laboratory. SUBJECTS Blood samples collected from 42 trauma patients and 21 healthy donors. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS RBC and sera were collected from trauma patients and control donors. RBCs from trauma patients (n = 40) were found to display significantly higher amounts of C4d on their surface by flow cytometry compared with RBCs from control (n = 17) (p < 0.01). Increased amounts of iC3b were found in trauma sera (n = 27) (vs 12 controls, p < 0.01) by enzyme-linked immunosorbent assay. Incubation of RBC from universal donors (type O, Rh negative) with trauma sera (n = 10) promoted C4d deposition on their surface (vs six controls, p< 0.05). Complement-decorated RBC (n = 6) displayed limited their deformability (vs six controls, p < 0.05) in two-dimensional microchannel arrays. Incubation of RBC with trauma sera (n = 10) promoted the phosphorylation of band 3, a cytoskeletal protein important for the function of the RBC membrane (vs eight controls, p < 0.05), and also accelerated calcium influx (n = 9) and enhanced nitric oxide production (n = 12) (vs four and eight controls respectively, p < 0.05) in flow cytometry. CONCLUSIONS Our study found the presence of extensive complement activation in trauma patients and presents new evidence in support of the hypothesis that complement activation products deposit on the surface of RBC. Such deposition could limit RBC deformability and promote the production of nitric oxide. Our findings suggest that RBC in trauma patients malfunctions, which may explain organ damage and constitutional symptoms that is not accounted for otherwise by previously known pathophysiologic mechanisms.
Collapse
|
24
|
Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol 2014; 5:84. [PMID: 24616707 PMCID: PMC3937982 DOI: 10.3389/fphys.2014.00084] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/12/2014] [Indexed: 01/17/2023] Open
Abstract
Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.
Collapse
Affiliation(s)
- Joy G Mohanty
- Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging Baltimore, MD, USA
| | - Enika Nagababu
- Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging Baltimore, MD, USA
| | - Joseph M Rifkind
- Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging Baltimore, MD, USA
| |
Collapse
|
25
|
Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol 2013; 4:387. [PMID: 24399969 PMCID: PMC3872327 DOI: 10.3389/fphys.2013.00387] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/09/2013] [Indexed: 01/17/2023] Open
Abstract
This review focuses on the analysis and evaluation of the diverse senescence markers suggested to prime red blood cells (RBC) for clearance in humans. These tags develop in the course of biochemical and structural alterations accompanying RBC aging, as the decrease of activities of multiple enzymes, the gradual accumulation of oxidative damage, the loss of membrane in form of microvesicles, the redistribution of ions and alterations in cell volume, density, and deformability. The actual tags represent the penultimate galactosyl residues, revealed by desialylation of glycophorins, or the aggregates of the anion exchanger (band 3 protein) to which anti-galactose antibodies bind in the first and anti-band 3 naturally occurring antibodies (NAbs) in the second case. While anti-band 3 NAbs bind to the carbohydrate-free portion of band 3 aggregates in healthy humans, induced anti-lactoferrin antibodies bind to the carbohydrate-containing portion of band 3 and along with anti-band 3 NAbs may accelerated clearance of senescent RBC in patients with anti-neutrophil cytoplasmic antibodies (ANCA). Exoplasmically accessible phosphatidylserine (PS) and the alterations in the interplay between CD47 on RBC and its receptor on macrophages, signal regulatory protein alpha (SIRPalpha protein), were also reported to induce erythrocyte clearance. We discuss the relevance of each mechanism and analyze the strength of the data.
Collapse
Affiliation(s)
- Hans U Lutz
- Department of Biology, Institute of Biochemistry ETH Zurich, Zurich, Switzerland
| | - Anna Bogdanova
- Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. RECENT ADVANCES The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. CRITICAL ISSUES The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. FUTURE DIRECTIONS The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, Baltimore, MD 21224, USA.
| | | |
Collapse
|
27
|
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells-a perilous balance. Int J Mol Sci 2013; 14:9848-72. [PMID: 23698771 PMCID: PMC3676817 DOI: 10.3390/ijms14059848] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is a universal signalling molecule involved in regulating cell cycle and fate, metabolism and structural integrity, motility and volume. Like other cells, red blood cells (RBCs) rely on Ca2+ dependent signalling during differentiation from precursor cells. Intracellular Ca2+ levels in the circulating human RBCs take part not only in controlling biophysical properties such as membrane composition, volume and rheological properties, but also physiological parameters such as metabolic activity, redox state and cell clearance. Extremely low basal permeability of the human RBC membrane to Ca2+ and a powerful Ca2+ pump maintains intracellular free Ca2+ levels between 30 and 60 nM, whereas blood plasma Ca2+ is approximately 1.8 mM. Thus, activation of Ca2+ uptake has an impressive impact on multiple processes in the cells rendering Ca2+ a master regulator in RBCs. Malfunction of Ca2+ transporters in human RBCs leads to excessive accumulation of Ca2+ within the cells. This is associated with a number of pathological states including sickle cell disease, thalassemia, phosphofructokinase deficiency and other forms of hereditary anaemia. Continuous progress in unravelling the molecular nature of Ca2+ transport pathways allows harnessing Ca2+ uptake, avoiding premature RBC clearance and thrombotic complications. This review summarizes our current knowledge of Ca2+ signalling in RBCs emphasizing the importance of this inorganic cation in RBC function and survival.
Collapse
Affiliation(s)
- Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Asya Makhro
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| |
Collapse
|
28
|
Ficarra S, Russo A, Stefanizzi F, Mileto M, Barreca D, Bellocco E, Laganà G, Leuzzi U, Giardina B, Galtieri A, Tellone E. Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact. J Membr Biol 2011; 242:31-9. [DOI: 10.1007/s00232-011-9374-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
29
|
Aging and death signalling in mature red cells: from basic science to transfusion practice. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2010; 8 Suppl 3:s39-47. [PMID: 20606748 DOI: 10.2450/2010.007s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
De Franceschi L, Biondani A, Carta F, Turrini F, Laudanna C, Deana R, Brunati AM, Turretta L, Iolascon A, Perrotta S, Elson A, Bulato C, Brugnara C. PTPepsilon has a critical role in signaling transduction pathways and phosphoprotein network topology in red cells. Proteomics 2008; 8:4695-708. [PMID: 18924107 PMCID: PMC3008556 DOI: 10.1002/pmic.200700596] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Indexed: 12/31/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. Here, we report that red blood cells (RBCs) from mice lacking PTPepsilon (Ptpre(-/-)) exhibit (i) abnormal morphology; (ii) increased Ca(2+)-activated-K(+) channel activity, which was partially blocked by the Src family kinases (SFKs) inhibitor PP1; and (iii) market perturbation of the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating an alteration of RBC signal transduction pathways. Using the signaling network computational analysis of the Tyr-phosphoproteomic data, we identified seven topological clusters. We studied cluster 1 containing Fyn, SFK, and Syk another tyrosine kinase. In Ptpre(-/-)mouse RBCs, the activity of Fyn was increased while Syk kinase activity was decreased compared to wild-type RBCs, validating the network computational analysis, and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology.
Collapse
Affiliation(s)
- Lucia De Franceschi
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AHJ, Khoo KH, Meng TC. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 2008; 283:35265-72. [PMID: 18840608 DOI: 10.1074/jbc.m805287200] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation mediated by cellular nitric oxide (NO) plays a primary role in executing biological functions in cGMP-independent NO signaling. Although S-nitrosylation appears similar to Cys oxidation induced by reactive oxygen species, the molecular mechanism and biological consequence remain unclear. We investigated the structural process of S-nitrosylation of protein-tyrosine phosphatase 1B (PTP1B). We treated PTP1B with various NO donors, including S-nitrosothiol reagents and compound-releasing NO radicals, to produce site-specific Cys S-nitrosylation identified using advanced mass spectrometry (MS) techniques. Quantitative MS showed that the active site Cys-215 was the primary residue susceptible to S-nitrosylation. The crystal structure of NO donor-reacted PTP1B at 2.6 A resolution revealed that the S-NO state at Cys-215 had no discernible irreversibly oxidized forms, whereas other Cys residues remained in their free thiol states. We further demonstrated that S-nitrosylation of the Cys-215 residue protected PTP1B from subsequent H(2)O(2)-induced irreversible oxidation. Increasing the level of cellular NO by pretreating cells with an NO donor or by activating ectopically expressed NO synthase inhibited reactive oxygen species-induced irreversible oxidation of endogenous PTP1B. These findings suggest that S-nitrosylation might prevent PTPs from permanent inactivation caused by oxidative stress.
Collapse
Affiliation(s)
- Yi-Yun Chen
- Institute of Biological Chemistry, National Core Facility for Proteomics Research, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Williamson RC, Brown ACN, Mawby WJ, Toye AM. Human kidney anion exchanger 1 localisation in MDCK cells is controlled by the phosphorylation status of two critical tyrosines. J Cell Sci 2008; 121:3422-32. [PMID: 18827007 DOI: 10.1242/jcs.035584] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important question in renal physiology is how the alpha-intercalated cells of the kidney regulate the distribution of the basolateral kidney anion exchanger 1 (kAE1) according to systemic acid-base status. Previous work using a MDCKI model system demonstrated that kAE1 basolateral targeting requires an N-terminal determinant and a critical C-terminal tyrosine (Y904). Here, we show that the N-terminal determinant is residue Y359, because a Y359A substitution mutant was mistargeted to the apical membrane. Further determinants might exist because a range of N-terminal kAE1 truncations that contained Y359 were incorrectly targeted to the TGN. Y359 and Y904 in kAE1 are phosphorylated upon pervanadate treatment and this phosphorylation is sensitive to specific Src kinase family inhibitors. We tested a range of stimuli on this model system and only the application of high nonphysiological concentrations of extracellular bicarbonate, and to a lesser extent hypertonicity or hyperosmolarity, induced tyrosine phosphorylation of kAE1. Treatment with pervanadate caused internalisation of kAE1 from the plasma membrane, but treatment with high concentrations of bicarbonate did not, because of the hypertonicity of the solution. We propose that alpha-intercalated cells control the distribution of kAE1 by reversible phosphorylation of tyrosine residues Y359 and Y904.
Collapse
Affiliation(s)
- Rosalind C Williamson
- University of Bristol, Department of Biochemistry, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
33
|
Omodeo-Salè F, Cortelezzi L, Riva E, Vanzulli E, Taramelli D. Modulation of glyceraldehyde 3 phosphate dehydrogenase activity and tyr-phosphorylation of Band 3 in human erythrocytes treated with ferriprotoporphyrin IX. Biochem Pharmacol 2007; 74:1383-9. [PMID: 17714694 DOI: 10.1016/j.bcp.2007.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/05/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
Erythrocyte glyceraldehyde-3-phosphate dehydrogenase (G3PD), is a glycolytic enzyme normally inhibited upon binding to the anion transporter Band 3 and activated when free in the cytosol. We have previously reported that ferric protoporphyrin IX (FP) enhances G3PD activity in human erythrocytes (RBC). This could be due to two mechanisms considered in this work: Band 3 tyrosine phosphorylation or oxidative damage of specific G3PD binding sites in the membrane. In both cases binding of G3PD to the membrane would be prevented, leading to the enhancement of G3PD activity. Here, we show that FP induces a dose- and time-dependent phosphorylation of tyrosine 8 and 21 of Band 3, as confirmed by the recruitment of SHP2 phosphatase to the membrane. It appears that Band 3 phosphorylation is due to the oxidation of critical sulfydryl groups of a membrane phosphatase (PTP). Data on membrane localization, Mg2+ dependence, sensitivity to thiol oxidizing agents and protection by N-acetylcysteine (NAC) and DTT strongly suggest the involvement of PTP1B, the major PTP of human RBC associated to and acting on Band 3. However, FP activates G3PD even when Band 3 phosphorylation is inhibited, therefore phosphorylation is not the mechanism underlying G3PD activation by FP. The capacity of NAC of counteracting the stimulatory activity of FP, supports the hypothesis that FP might induce the oxidative damage of specific G3PD binding sites in the membrane, causing the displacement of the enzyme into the cytosol and/or the release from its binding site and therefore its activation.
Collapse
Affiliation(s)
- Fausta Omodeo-Salè
- Institute of General Physiology and Biochemistry G. Esposito, University of Milan, via Trentacoste 2, 20134 Milan, Italy.
| | | | | | | | | |
Collapse
|
34
|
Condon MR, Feketova E, Machiedo GW, Deitch EA, Spolarics Z. Augmented erythrocyte band-3 phosphorylation in septic mice. Biochim Biophys Acta Mol Basis Dis 2007; 1772:580-6. [PMID: 17382523 PMCID: PMC1892314 DOI: 10.1016/j.bbadis.2007.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/29/2007] [Accepted: 02/12/2007] [Indexed: 11/16/2022]
Abstract
Infection-induced RBC dysfunction has been shown to play a role in the modulation of host response to injury and infection. The underlying biochemical mechanisms are not known. This study investigated alterations in RBC band-3 phosphorylation status and its relationship to anion exchange activity in vitro as well as under in vivo septic conditions induced by cecal ligation and puncture (CLP) in mice. Pervanadate treatment in vitro increased band-3 tyrosine phosphorylation that was accompanied by decreased RBC deformability and anion exchange activity. Following sepsis, band-3 tyrosine phosphorylation in whole RBC ghosts as well as in cytoskeleton-bound or soluble RBC protein fractions were elevated as compared to controls. Although anion exchange activity was similar in RBCs from septic and control animals, band-3 interaction with eosin-5-maleimide (EMA), which binds to band-3 lysine moieties, was increased in cells from septic animals as compared to controls, indicating that sepsis altered band 3 organization within the RBC membrane. Since glucose-6-phosphate dehydrogenase is a major antioxidant enzyme in RBC, in order to assess the potential role of oxidative stress in band-3 tyrosine phosphorylation, sepsis-induced RBC responses were also compared between WT and (G6PD) mutant animals (20% of normal G6PD activity). Band-3 membrane content and EMA staining were elevated in G6PD mutant mice compared to WT under control non-septic conditions. Following sepsis, G6PD mutant animals showed lessened responses in band-3 tyrosine phosphorylation and EMA staining compared to WT. RBC anion exchange activity was similar between mutant and WT animals under all tested conditions. In summary, these studies indicate that sepsis results in elevated band-3 tyrosine phosphorylation and alters band-3 membrane organization without grossly affecting RBC anion exchange activity. The observations also suggest that factors other than oxidative stress are responsible for the sepsis-induced increase in RBC band-3 tyrosine phosphorylation.
Collapse
Affiliation(s)
- Michael R Condon
- Surgical Services, VA New Jersey Health Care System, East Orange, NJ 07018, USA
| | | | | | | | | |
Collapse
|
35
|
Barvitenko NN, Adragna NC, Weber RE. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 2005; 15:1-18. [PMID: 15665511 DOI: 10.1159/000083634] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2004] [Indexed: 11/19/2022] Open
Abstract
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate.
Collapse
Affiliation(s)
- Nadezhda N Barvitenko
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | | | |
Collapse
|
36
|
Ciana A, Minetti G, Balduini C. Phosphotyrosine phosphatases acting on band 3 in human erythrocytes of different age: PTP1B processing during cell ageing. Bioelectrochemistry 2005; 62:169-73. [PMID: 15039022 DOI: 10.1016/j.bioelechem.2003.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 07/25/2003] [Accepted: 07/30/2003] [Indexed: 10/26/2022]
Abstract
The phosphorylation of tyrosine residues of human red blood cell (RBC) band 3 is regulated in vivo by constitutively active tyrosine-kinases (PTKs) and phosphotyrosine-phosphatases (PTPs), identified so far as, respectively, p72(syk) and p56/53(lyn), and PTP1B and SHPTP-2. Tyr-phosphorylation of band 3 increases upon reduction of cell volume as in hypertonic media or during Ca(2+)-induced membrane vesiculation. We show here that old RBCs display higher Tyr-phosphorylation levels of band 3 than younger cells under hypertonic conditions, at least in part due to the reduced cell volume of old RBCs, a condition of lowered threshold for activation of volume-sensitive PTKs. We have also analysed the membrane-bound PTP activity and the relative abundance of PTP1B (as the main membrane-associated PTP) in RBCs of different age. Immunodetection of PTP1B in purified ghost membranes revealed that the catalytic, N-terminal domain of the PTP is partially cleaved, in an age-dependent manner, from the membrane-bound domain, and it is lost during the preparation of ghost membranes. This suggests that erythrocytes may undergo in vivo activation of the Ca(2+)-dependent calpain system that proteolytically regulates PTP1B activity, as already documented for other cell types. On the other hand, the assay of the PTP activity that remains associated with the membranes of RBCs of different age indicated that the PTP undergoes oxidative inactivation that can be further differentiated into reversible and irreversible components.
Collapse
Affiliation(s)
- Annarita Ciana
- Università di Pavia, Dipartimento di Biochimica "A. Castellani", Sezione di Scienze, via Bassi, 21, 27100 Pavia, Italy
| | | | | |
Collapse
|
37
|
Teti D, Crupi M, Busá M, Valenti A, Loddo S, Mondello M, Romano L. Chemical and pathological oxidative influences on band 3 protein anion-exchanger. Cell Physiol Biochem 2005; 16:77-86. [PMID: 16121036 DOI: 10.1159/000087734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The erythrocyte is a cell exposed to a high level of oxygen pressure and to oxidative chemical agents. This stress involves SH-groups oxidation, cell shrinkage by activation of K-Cl co-transport (KCC) and elevation of the band 3 tyrosine phosphorylation level. The aim of our study was to test whether oxidative stress could influence band 3-mediated anion transport in human red blood cells. METHODS To evaluate this hypothesis, normal and pathological (glucose 6 phosphate dehydrogenase (G6PDH) defficient) erythrocytes were treated with known sulphydryl-blocking or thiol-oxidizing agents, such as N-ethylmaleimide (NEM), azodicarboxylic acid bis[dimethylamide] (diamide), orthovanadate, Mg2+ and tested for sulphate (SO4-) uptake, K+ efflux, G6PDH activity and glutathione (GSH) concentration. RESULTS In normal red blood cells, the rate constants of SO4- uptake decreased by about 28 % when cells were incubated with NEM, diamide and orthovanadate. In G6PDH-deficient red blood cells, in which oxidative stress occurs naturally, the rate constant of sulphate uptake was decreased by about 40% that of normal red cells. Addition of oxidizing and phosphatase inhibitor agents to pathological erythrocytes further decreased anion transport. In contrast, G6PDH activity was increased under oxidative stress in normal as well as in pathological cells and was lower in the presence of exogenous Mg2+ in parallel to a significant increase in sulphate transport. In both cells, the oxidizing agents increased K+ efflux with depletion of GSH. CONCLUSION The data are discussed in light of the possible opposite effects exerted by oxidative agents and Mg2+ on KCC and on the protein tyrosine kinase (PTK)-protein tyrosine phosphatase (PTP) equilibrium. The decreased sulphate uptake observed in the experimental and pathological conditions could be due to band 3 SH-groups oxidation or to oxidative stress-induced K-Cl symport-mediated cell shrinkage with concomitant band 3 tyrosine phosphorylation.
Collapse
Affiliation(s)
- Diana Teti
- Department of Experimental Pathology and Microbiology, Section of Experimental Pathology, Faculty of Medicine and Surgery, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Ebel H, Kreis R, Günther T. Regulation of Na+/Mg2+ antiport in rat erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:150-60. [PMID: 15328047 DOI: 10.1016/j.bbamem.2004.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 05/10/2004] [Indexed: 01/19/2023]
Abstract
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.
Collapse
Affiliation(s)
- H Ebel
- Campus Benjamin Franklin, Institut für Klinische Physiologie, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, D-12200, Germany.
| | | | | |
Collapse
|
39
|
Minetti G, Ciana A, Balduini C. Differential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes. Biochem J 2004; 377:489-97. [PMID: 14527338 PMCID: PMC1223870 DOI: 10.1042/bj20031401] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 10/06/2003] [Indexed: 01/02/2023]
Abstract
One of the most intensively studied post-translational modifications of erythrocyte proteins is the phosphorylation of tyrosine residues of band 3, which is strictly regulated in vivo by PTKs (protein-tyrosine kinases) and PTPs (protein-phosphotyrosine phosphatases). Two PTKs (p72(syk) and p56/53(lyn)) and two PTP activities (PTP1B and SHPTP-2) have been immunologically identified so far in mature human erythrocytes. We have shown previously that band 3 undergoes tyrosine phosphorylation upon a decrease in cell volume, as occurs when erythrocytes treated with Ca(2+)/Ca(2+) ionophore (A23187) lose KCl and release microvesicles. Similar levels of band 3 tyrosine phosphorylation in vesicles and in the parent cells are induced by this treatment. However, we have found that tyrosine phosphorylation of band 3 in vesicles is more stable than in whole erythrocytes. Examination of how the identified PTPs and PTKs are partitioned between the vesicles and the remnant cells during vesiculation reveals that PTP1B, unlike the PTKs, is retained entirely in the parent cell compartment. Since a tight association between PTP1B and band 3 has been documented previously, we have investigated the partitioning of PTP1B and band 3 between the membrane and the membrane-skeletal fractions prepared from resting or Ca(2+)/A23187-treated cells. Our results rule out the possibility that the preferential retention of PTP1B within the cell was due to an increase in the amount of membrane-skeleton-associated band 3 (and of PTP1B) during the release of spectrin-free vesicles, suggesting a more complex modality of interaction of PTP1B with band 3 in the erythrocyte membrane. Analysis of erythrocytes of different cell ages revealed that PTP1B, unlike the other enzymes examined, was quantitatively conserved during erythrocyte aging. This suggests important roles for the down-regulation of tyrosine phosphorylation of band 3 in erythrocyte physiology, and for vesiculation as a mechanism of human erythrocyte senescence.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Università di Pavia, Dipartimento di Biochimica A. Castellani, Sezione di Scienze, via Bassi 21, I-27100 Pavia, Italy.
| | | | | |
Collapse
|