1
|
Kopel B, Serino-Silva C, Jantsch RB, Sorila IC, Sant'Anna SS, Grego KF, Tanaka-Azevedo AM. Analysis of Naja kaouthia snake venom composition and in-vitro enzymatic activities of 29 specimens in captivity: Highlighting the importance of individual variation in venom pool production. Toxicon 2024; 252:108173. [PMID: 39542145 DOI: 10.1016/j.toxicon.2024.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Naja kaouthia is a medically important snake, widely distributed throughout Southeast Asia, with a diverse venom composition. N. kaouthia venom is subject to significant intraspecific variation, caused by several factors, such as the wide geographic distribution of the species, sexual and ontogenetic factors. However, individual variation is a factor that has only been studied with small sample size groups and/or with pooled samples. With this in mind, this study evaluates the composition and in-vitro enzymatic activities of 29 individual venom samples from specimens born in captivity, with a similar genetic background caused by inbreeding, using SDS-PAGE under reducing conditions, RP-HPLC profiles and enzymatic activities of PLA2, LAAO and proteolytic activity over azocasein. Even in this scenario, we were able to observe significant variations in abundance and activity of PLA2. Individual variations in LAAO activity, as well as a sexual dimorphism in which males present a significantly higher LAAO activity than females were observed. Phosphodiasterase and CRiSP abundance were also found and considered to have multiple effects in the clinical manifestations of envenomation by presenting synergistic effects with other proteins from N. kaouthia venom. The RP-HPLC profiles were better at detecting compositional differences than SDS-PAGE profiles and better correlated with enzymatic activities, being a better technique to screen variation profiles and reinforcing the importance of individual venom analysis prior to pooling.
Collapse
Affiliation(s)
- Beatriz Kopel
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | | | | | | | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | | | | |
Collapse
|
2
|
Dubovskii PV, Utkin YN. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins (Basel) 2024; 16:262. [PMID: 38922156 PMCID: PMC11209149 DOI: 10.3390/toxins16060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia;
| | | |
Collapse
|
3
|
The secretory phenotypes of envenomed cells: Insights into venom cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:193-230. [PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
Collapse
|
4
|
Hiu JJ, Yap MKK. The myth of cobra venom cytotoxin: More than just direct cytolytic actions. Toxicon X 2022; 14:100123. [PMID: 35434602 PMCID: PMC9011113 DOI: 10.1016/j.toxcx.2022.100123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
Cobra venom cytotoxin (CTX) is a non-enzymatic three-finger toxin that constitutes 40-60% of cobra venom. Thus, it plays an important role in the pathophysiology of cobra envenomation, especially in local dermonecrosis. The three-finger hydrophobic loops of CTX determine the cytotoxicity. Nevertheless, the actual mechanisms of cytotoxicity are not fully elucidated as they involve not only cytolytic actions but also intracellular signalling-mediated cell death pathways. Furthermore, the possible transition cell death pattern remains to be explored. The actual molecular mechanisms require further studies to unveil the relationship between different CTXs from different cobra species and cell types which may result in differential cell death patterns. Here, we discuss the biophysical interaction of CTX with the cell membrane involving four binding modes: electrostatic interaction, hydrophobic partitioning, isotropic phase, and oligomerisation. Oligomerisation of CTX causes pore formation in the membrane lipid bilayer. Additionally, the CTX-induced apoptotic pathway can be executed via death receptor-mediated extrinsic pathways and mitochondrial-mediated intrinsic pathways. We also discuss lysosomal-mediated necrosis and the occurrence of necroptosis following CTX action. Collectively, we provided an insight into concentration-dependent transition of cell death pattern which involves different mechanistic actions. This contributes a new direction for further investigation of cytotoxic pathways activated by the CTXs for future development of biotherapeutics targeting pathological effects caused by CTX.
Collapse
Affiliation(s)
- Jia Jin Hiu
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
5
|
Impact of Naja nigricollis Venom on the Production of Methaemoglobin. Toxins (Basel) 2018; 10:toxins10120539. [PMID: 30558289 PMCID: PMC6316634 DOI: 10.3390/toxins10120539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Snakebite envenomation is an affliction currently estimated to be killing upwards of 100,000 people annually. Snakebite is associated with a diverse pathophysiology due to the magnitude of variation in venom composition that is observed worldwide. The haemolytic (i.e., lysis of red blood cells) actions of snake venoms are well documented, although the direct impact of venoms on haemoglobin is not fully understood. Here we report on the varied ability of a multitude of snake venoms to oxidise haemoglobin into methaemoglobin. Moreover, our results demonstrate that the venom of an elapid, the black necked spitting cobra, Naja nigricollis, oxidises oxyhaemoglobin (Fe2+) into methaemoglobin (Fe3+) in a time- and concentration-dependent manner that is unparalleled within the 47 viper and elapid venoms evaluated. The treatment of venom with a reducing agent, dithiothreitol (DTT) is observed to potentiate this effect at higher concentrations, and the use of denatured venom demonstrates that this effect is dependent upon the heat-sensitive proteinaceous elements of the venom. Together, our results suggest that Naja nigricollis venom appears to promote methaemoglobin production to a degree that is rare within the Elapidae family, and this activity appears to be independent of proteolytic activities of venom components on haemoglobin.
Collapse
|
6
|
Wang SZ, Qin ZH. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins (Basel) 2018; 10:E100. [PMID: 29495566 PMCID: PMC5869388 DOI: 10.3390/toxins10030100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH. Naja sputatrix Venom Preconditioning Attenuates Neuroinflammation in a Rat Model of Surgical Brain Injury via PLA2/5-LOX/LTB4 Cascade Activation. Sci Rep 2017; 7:5466. [PMID: 28710425 PMCID: PMC5511148 DOI: 10.1038/s41598-017-05770-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 01/30/2023] Open
Abstract
Inflammatory preconditioning is a mechanism in which exposure to small doses of inflammatory stimuli prepares the body against future massive insult by activating endogenous protective responses. Phospholipase A2/5-lipoxygenase/leukotriene-B4 (PLA2/5-LOX/LTB4) axis is an important inflammatory signaling pathway. Naja sputatrix (Malayan spitting cobra) venom contains 15% secretory PLA2 of its dry weight. We investigated if Naja sputatrix venom preconditioning (VPC) reduces surgical brain injury (SBI)-induced neuroinflammation via activating PLA2/5-LOX/LTB4 cascade using a partial frontal lobe resection SBI rat model. Naja sputatrix venom sublethal dose was injected subcutaneously for 3 consecutive days prior to SBI. We observed that VPC reduced brain edema and improved neurological function 24 h and 72 h after SBI. The expression of pro-inflammatory mediators in peri-resection brain tissue was reduced with VPC. Administration of Manoalide, a PLA2 inhibitor or Zileuton, a 5-LOX inhibitor with VPC reversed the protective effects of VPC against neuroinflammation. The current VPC regime induced local skin inflammatory reaction limited to subcutaneous injection site and elicited no other toxic effects. Our findings suggest that VPC reduces neuroinflammation and improves outcomes after SBI by activating PLA2/5-LOX/LTB4 cascade. VPC may be beneficial to reduce post-operative neuroinflammatory complications after brain surgeries.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Physiology, Jinan University School of Medicine, Guangzhou, Guangdong Province, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Lei Huang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Onat Akyol
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA.
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA.
| |
Collapse
|
8
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
9
|
Chen YJ, Tsai CY, Hu WP, Chang LS. DNA Aptamers against Taiwan Banded Krait α-Bungarotoxin Recognize Taiwan Cobra Cardiotoxins. Toxins (Basel) 2016; 8:toxins8030066. [PMID: 26959062 PMCID: PMC4810211 DOI: 10.3390/toxins8030066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
Bungarus multicinctus α-bungarotoxin (α-Bgt) and Naja atra cardiotoxins (CTXs) share a common structural scaffold, and their tertiary structures adopt three-fingered loop motifs. Four DNA aptamers against α-Bgt have been reported previously. Given that the binding of aptamers with targeted proteins depends on structural complementarity, in this study, we investigated whether DNA aptamers against α-Bgt could also recognize CTXs. It was found that N.atra cardiotoxin 3 (CTX3) reduced the electrophoretic mobility of aptamers against α-Bgt. Analysis of the changes in the fluorescence intensity of carboxyfluorescein-labeled aptamers upon binding toxin molecules revealed that CTX3 and α-Bgt could bind the tested aptamers. Moreover, the aptamers inhibited the membrane-damaging activity and cytotoxicity of CTX3. In addition to CTX3, other N. atra CTX isotoxins also bound to the aptamer against α-Bgt. Taken together, our data indicate that aptamers against α-Bgt show cross-reactivity with CTXs. The findings that aptamers against α-Bgt also suppress the biological activities of CTX3 highlight the potential utility of aptamers in regard to the broad inhibition of snake venom three-fingered proteins.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Chia-Yu Tsai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Wan-Ping Hu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
10
|
Suzuki-Matsubara M, Athauda SBP, Suzuki Y, Matsubara K, Moriyama A. Comparison of the primary structures, cytotoxicities, and affinities to phospholipids of five kinds of cytotoxins from the venom of Indian cobra, Naja naja. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:158-64. [PMID: 26456928 DOI: 10.1016/j.cbpc.2015.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022]
Abstract
The molecular mechanism underlying the hemolytic and cytolytic processes of cobra cytotoxins (CTXs) is not yet fully elucidated. To examine this, we analyzed the amino acid sequences, hemolytic and cytotoxic activities, and affinities to phospholipids of the five major CTXs purified from the venom of Indian cobra, Naja naja. CTX2, CTX7, and CTX8 belonged to S-type, and CTX9 and CTX10 to P-type. Comparisons of CTX7 with CTX8 and CTX9 with CTX10 revealed similar primary structures and hemolytic and cytolytic activities. CTX2, whose primary structure was rather different from the others, showed several times weaker hemolytic and cytolytic biological activities than the others. The comparison of CTX2 with CTX7 suggested the importance of Lys30 in loop II for the strong hemolytic and cytolytic activities of S-type CTXs. Cloning of 12 CTX cDNAs from the Naja naja venom cDNA library revealed that 18 out of 23 substitutions found in CTX cDNAs were nonsynonymous. This clearly indicated the accelerated evolution of CTX genes. Multiple sequence alignment of 51 kinds of CTX cDNAs and calculations of nonsynonymous and synonymous substitutions indicated that the codons coding the three loops' regions, which may interact with the hydrophobic tails of phospholipids, have undergone an accelerated evolution. In contrast, the codons coding for amino acid residues considered to participate in the recognition and binding of the hydrophilic head groups of phospholipids, eight Cys residues, and those likely stabilizing β core structure, were all conserved.
Collapse
Affiliation(s)
- Mieko Suzuki-Matsubara
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan.
| | - Senarath B P Athauda
- Department of Biochemistry, Faculty of Medicine, Peradeniya University, Peradeniya, Sri Lanka
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan
| | - Kazumi Matsubara
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan
| | - Akihiko Moriyama
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan
| |
Collapse
|
11
|
Chen L, Huang GZ. Poisoning by toxic animals in China—18 autopsy case studies and a comprehensive literature review. Forensic Sci Int 2013; 232:e12-23. [DOI: 10.1016/j.forsciint.2013.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
12
|
Abstract
Venoms and toxins are of significant interest due to their ability to cause a wide range of pathophysiological conditions that can potentially result in death. Despite their wide distribution among plants and animals, the biochemical pathways associated with these pathogenic agents remain largely unexplored. Impoverished and underdeveloped regions appear especially susceptible to increased incidence and severity due to poor socioeconomic conditions and lack of appropriate medical treatment infrastructure. To facilitate better management and treatment of envenomation victims, it is essential that the biochemical mechanisms of their action be elucidated. This review aims to characterize downstream envenomation mechanisms by addressing the major neuro-, cardio-, and hemotoxins as well as ion-channel toxins. Because of their use in folk and traditional medicine, the biochemistry behind venom therapy and possible implications on conventional medicine will also be addressed.
Collapse
|
13
|
Nguyen TTN, Folch B, Létourneau M, Vaudry D, Truong NH, Doucet N, Chatenet D, Fournier A. Cardiotoxin-I: an unexpectedly potent insulinotropic agent. Chembiochem 2012; 13:1805-12. [PMID: 22807058 DOI: 10.1002/cbic.201200081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Indexed: 12/17/2022]
Abstract
Insulin secretion from pancreatic β-cells is a complex process, involving the integration and interaction of multiple external and internal stimuli, in which glucose plays a major role. Understanding the physiology leading to insulin release is a crucial step toward the identification of new targets. In this study, we evaluated the presence of insulinotropic metabolites in Naja kaouthia snake venom. Only one fraction, identified as cardiotoxin-I (CTX-I) was able to induce insulin secretion from INS-1E cells without affecting cell viability and integrity, as assessed by MTT and LDH assays. Interestingly, CTX-I was also able to stimulate insulin secretion from INS-1E cells even in the absence of glucose. Although cardiotoxins have been characterized as potent hemolytic agents and vasoconstrictors, CTX-I was unable to induce direct hemolysis of human erythrocytes or to induce potent vasoconstriction. As such, this newly identified insulin-releasing toxin will surely enrich the pool of existing tools to study β-cell physiology or even open a new therapeutic avenue.
Collapse
Affiliation(s)
- Thi Tuyet Nhung Nguyen
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, Québec H7V 1B7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
de Roodt AR, Lago NR, Stock RP. Myotoxicity and nephrotoxicity by Micrurus venoms in experimental envenomation. Toxicon 2012; 59:356-64. [DOI: 10.1016/j.toxicon.2011.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022]
|
15
|
Dhananjaya BL, D'Souza CJM. The pharmacological role of phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to release of purines - a multitoxin. Basic Clin Pharmacol Toxicol 2010; 108:79-83. [PMID: 21156030 DOI: 10.1111/j.1742-7843.2010.00630.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Snake venom components, acting in concert in the prey, cause their immobilization and initiate digestion. To achieve this, several hydrolytic enzymes of snake venom have evolved to interfere in various physiological processes, which are well defined. However, hydrolytic enzymes such as phosphatases (acid and alkaline phosphomonoesterases) are less studied and their pharmacological role in venoms is not clearly defined. Also, they show overlapping substrate specificities and have other common biochemical properties causing uncertainty about their identity in venoms. The near-ubiquitous distribution of these enzymes in venoms, suggests a significant role for these enzymes in envenomation. It appears that these enzymes may play a central role in liberating purines (mainly adenosine) - a multitoxin and through the action of purines help in prey immobilization. However, apart from this, these enzymes could also possess other pharmacological activities as venom enzymes have been evolved to interfere in diverse physiological processes. This has not been verified by pharmacological studies using purified enzymes. Further research is needed to biologically characterize these enzymes in snake venoms, such that their role in venom is clearly established.
Collapse
|
16
|
Dhananjaya BL, D Souza CJM. An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. BIOCHEMISTRY (MOSCOW) 2010; 75:1-6. [PMID: 20331418 DOI: 10.1134/s0006297910010013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we have compiled the data on pharmacological activities associated with endogenous purine release related enzymes-nucleases (DNases, RNases, and phosphodiesterases). The results of studies on toxic effects of these enzymes, emphasizing the future directions in this field, are summarized. One of the major problems facing toxicologists is the identification and characterization of specific venom nucleases since they share similar substrate specificities and biochemical properties. In this review, we have attempted to clarify some of the discrepancies about these enzymes. Further, we have tried to correlate the existence of nuclease enzymes in relation to endogenous release of purines, a multitoxin, during snake envenomation, and we also discuss the possible actions of purines. We hope that this review will stimulate renewed interest among toxicologists to biologically characterize these enzymes and elucidate their role in envenomation.
Collapse
Affiliation(s)
- B L Dhananjaya
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore, 570006, India
| | | |
Collapse
|
17
|
Dhananjaya BL, D'Souza CJM. The pharmacological role of nucleotidases in snake venoms. Cell Biochem Funct 2010; 28:171-7. [DOI: 10.1002/cbf.1637] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Differential binding to phospholipid bilayers modulates membrane-damaging activity of Naja naja atra cardiotoxins. Toxicon 2009; 54:321-8. [DOI: 10.1016/j.toxicon.2009.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/16/2009] [Accepted: 04/16/2009] [Indexed: 11/21/2022]
|
19
|
Wong OF, Hin-Tat F, Shing-Kit-Tommy L, Ka-Keung L, Chak-Wah K, Simpson ID. A preliminary survey of Hong Kong snake shops and the potential snake bite risks for the healthcare system. Trans R Soc Trop Med Hyg 2009; 103:931-6. [DOI: 10.1016/j.trstmh.2009.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 11/28/2022] Open
|
20
|
Chiou YL, Kao PH, Liu WH, Lin SR, Chang LS. Roles of lysine residues and N-terminal alpha-amino group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipid vesicles. Toxicon 2009; 55:256-64. [PMID: 19647762 DOI: 10.1016/j.toxicon.2009.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/28/2022]
Abstract
In contrast to a slight increase in activity toward phosphatidylcholine (EYPC)/dimyristoyl phosphatidic acid (DMPA) vesicles, guanidination of Naja naja atra cardiotoxin 3 (CTX3) and selective trinitrophenylation of N-terminal alpha-amino group enhanced notably membrane-damaging activity on EYPC/egg yolk sphingomyelin (EYSM) vesicles. Chemically modified CTX3 showed a reduction in its hemolytic activity and cytotoxicity. These reflected that membrane-damaging activity of CTX3 was affected by phospholipid compositions. Phospholipid-binding capability and oligomeric assembly upon binding with lipid vesicles did not closely correlate with membrane-damaging potency of native and modified CTX3. Moreover, different topographical contacts and distinctive modes for the binding of CTX3 and its modified derivatives with anionic phospholipid vesicles (EYPC/DMPA) and zwitterionic phospholipid vesicles (EYPC/EYSM) were observed. Compared with in the case of EYPC/DMPA, the interaction between CTX molecules and EYPC/EYSM was drastically reduced by increasing salt concentration and heparin. Taken together, our data indicate that guanidination of Lys residues and trinitrophenylation of alpha-amino group alter differently the interacted modes upon absorption on anionic phospholipid vesicles and zwitterionic phospholipid vesicles. The findings also suggest that positively charged residues of CTX3 play a distinctive role in damaging anionic and zwitterionic phospholipid vesicles.
Collapse
Affiliation(s)
- Yi-Ling Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Kao PH, Lin SR, Wu MJ, Chang LS. Membrane-bound conformation and phospholipid components modulate membrane-damaging activity of Taiwan cobra cardiotoxins. Toxicon 2009; 53:512-8. [DOI: 10.1016/j.toxicon.2009.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Kao PH, Wu MJ, Chang LS. Membrane-bound conformation of Naja nigricollis toxin gamma affects its membrane-damaging activity. Toxicon 2008; 53:342-8. [PMID: 19101582 DOI: 10.1016/j.toxicon.2008.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 11/02/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
Abstract
To address whether the conformational events associated with the absorption of Naja nigricollis toxin gamma on water-lipid interface plays a vital role in its membrane-damaging activity, the present study is carried out. Membrane-damaging activity of toxin gamma on 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/1, 2-dimyristoyl-phosphatidic acid (DMPA) vesicles was approximately 13-fold of that on 1, 2-dipalmitoyl-phosphatidylcholine (DPPC)/DMPA vesicles, while the binding affinity of toxin gamma for POPC/DMPA was twofold of that for DPPC/DMPA. Time-resolved fluorescence, acrylamide quenching and Fourier transform infrared spectra showed that POPC/DMPA-bound toxin gamma and DPPC/DMPA-bound toxin gamma did not adopt the same conformation. Moreover, geometrical arrangement of toxin gamma in contact with POPC/DMPA vesicles was different from that with DPPC/DMPA vesicles as evidenced by N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-phosphatidylcholine fluorescence enhancement and cross-linking of membrane-bound toxin gamma. Taken together, our data show that different membrane packing densities arising from phospholipid acyl chain affect membrane-bound conformation of toxin gamma, thus changing its membrane-damaging activity.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, No 70, Lien-Hai Road, Kaohsiung 804, Taiwan, ROC
| | | | | |
Collapse
|
23
|
Chen KC, Chiou YL, Kao PH, Lin SR, Chang LS. Taiwan cobra cardiotoxins induce apoptotic death of human neuroblastoma SK-N-SH cells mediated by reactive oxygen species generation and mitochondrial depolarization. Toxicon 2008; 51:624-34. [DOI: 10.1016/j.toxicon.2007.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/25/2007] [Accepted: 11/29/2007] [Indexed: 11/15/2022]
|
24
|
Toh TB, Chen MJ, Armugam A, Peng ZF, Li QT, Jeyaseelan K, Cheung NS. Antioxidants: promising neuroprotection against cardiotoxin-4b-induced cell death which triggers oxidative stress with early calpain activation. Toxicon 2007; 51:964-73. [PMID: 18377942 DOI: 10.1016/j.toxicon.2007.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 11/25/2022]
Abstract
Cardiotoxin-4b (CTX-4b), isolated from Naja naja sputatrix venom, shows lethality in several cell types. Employing murine primary cortical neurons, this study was undertaken to investigate the molecular mechanisms of CTX-4b in the induction of neuronal death. CTX-4b induced a dose- and time-dependent neuronal death. Strong induction of calpains as early as 4h post-CTX-4b 75 nM treatment was detected in neurons with negligible caspase 3 activation. For the first time in cultured murine primary cortical neurons, it was noted that CTX-4b-mediated cell death triggered oxidative stress with an increase in reactive oxygen species (ROS) levels, and that application of antioxidants showed effective attenuation of cell death. Taken together, these results indicate that CTX-4b-mediated neuronal death is associated with (i) early calpain activation and (ii) oxidative stress. Most importantly, antioxidants have proved to be a promising therapeutic avenue against CTX-4b-induced neuronal death.
Collapse
Affiliation(s)
- Tan Boon Toh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen KC, Kao PH, Lin SR, Chang LS. The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect. Toxicon 2007; 50:816-24. [PMID: 17714752 DOI: 10.1016/j.toxicon.2007.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 11/20/2022]
Abstract
In order to dissect out whether multiple activities of cardiotoxins (CTXs) are connected, to some extent, with each other, studies on reduced and S-carboxyamidomethylated (Rcam) Naja naja atra CTX3 were carried out in the present study. Although both CTX3 and Rcam-CTX3 induced apoptotic death of PC-3 cells as evidenced by propodium iodide/annexin V double staining, degradation of procaspases and DNA fragmentation, the cytotoxicity of Rcam-CTX3 was mostly 100-fold lower than that noted with native toxin. However, Rcam-CTX3 retained approximately 38% of the membrane-damaging activity of native toxin as revealed by the decrease in calcein self-quenching from phospholipid vesicles. These results are likely to reflect that the mechanism of cytotoxicity by CTX3 is not heavily dependent on its membrane-perturbing effect, and suggest that the structural elements within CTX3 responsible for the two activities are probably separated.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | |
Collapse
|
26
|
Koh DI, Armugam A, Jeyaseelan K. Sputa nerve growth factor forms a preferable substitute to mouse 7S-beta nerve growth factor. Biochem J 2005; 383:149-58. [PMID: 15225125 PMCID: PMC1134053 DOI: 10.1042/bj20040569] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 06/28/2004] [Accepted: 06/30/2004] [Indexed: 11/17/2022]
Abstract
The NGF (nerve growth factor) from Naja sputatrix has been purified by gel filtration followed by reversed-phase HPLC. The protein showed a very high ability to induce neurite formation in PC12 cells relative to the mouse NGF. Two cDNAs encoding isoforms of NGF have been cloned and an active recombinant NGF, sputa NGF, has been produced in Escherichia coli as a His-tagged fusion protein. Sputa NGF has been found to be non-toxic under both in vivo and in vitro conditions. The induction of neurite outgrowth by this NGF has been found to involve the high-affinity trkA-p75NTR complex of receptors. The pro-survival mechanism of p75NTR has been mediated by the activation of nuclear factor kappaB gene by a corresponding down-regulation of inhibitory kappaB gene. Real-time PCR and protein profiling (by surface-enhanced laser-desorption-ionization time-of-flight) have confirmed that sputa NGF up-regulates the expression of the endogenous NGF in PC12 cells. Preliminary microarray analysis has also shown that sputa NGF is capable of promoting additional beneficial effects such as the up-regulation of arginine vasopressin receptor 1A, voltage-dependent T-type calcium channel. Hence, sputa NGF forms a new and useful NGF.
Collapse
Affiliation(s)
- Dawn C.-I. Koh
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - A. Armugam
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - K. Jeyaseelan
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- To whom correspondence should be addressed (email )
| |
Collapse
|