1
|
Pellegrino R, Blasi F, Angelini P, Ianni F, Alabed HBR, Emiliani C, Venanzoni R, Cossignani L. LC/MS Q-TOF Metabolomic Investigation of Amino Acids and Dipeptides in Pleurotus ostreatus Grown on Different Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10371-10382. [PMID: 35944091 PMCID: PMC9413224 DOI: 10.1021/acs.jafc.2c04197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 05/13/2023]
Abstract
The well-established correlation between diet and health arouses great interest in seeking new health-promoting functional foods that may contribute to improving health and well-being. Herein, the metabolomic investigation of Pleurotus ostreatus samples grown on two different substrates (black poplar wood logs, WS, and lignocellulosic byproducts, LcS) revealed the high potential of such a mushroom as a source of bioactive species. The liquid chromatography/mass spectrometry combined with quadrupole time-of-flight (LC/MS Q-TOF) analysis allowed the identification of essential and nonessential amino acids along with the outstanding presence of dipeptides. Multivariate statistical models highlighted important differences in the expression of both classes of compounds arising from the growth of P. ostreatus strains on WS and LcS. The former, in particular, was correlated to an increased expression of carnitine-based amino acid derivatives and proline-based dipeptides. This finding may represent a potential strategy to drive the expression of bioactive compounds of interest to obtain enriched mushrooms or useful functional ingredients from them.
Collapse
Affiliation(s)
| | - Francesca Blasi
- Department
of Pharmaceutical Sciences, University of
Perugia, 06126 Perugia, Italy
| | - Paola Angelini
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department
of Pharmaceutical Sciences, University of
Perugia, 06126 Perugia, Italy
| | - Husam B. R. Alabed
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Carla Emiliani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Roberto Venanzoni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department
of Pharmaceutical Sciences, University of
Perugia, 06126 Perugia, Italy
- Center
for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of
Perugia, Sant’Andrea
delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
2
|
Dörner S, Rogge K, Fricke J, Schäfer T, Wurlitzer JM, Gressler M, Pham DNK, Manke DR, Chadeayne AR, Hoffmeister D. Genetic Survey of Psilocybe Natural Products. Chembiochem 2022; 23:e202200249. [PMID: 35583969 PMCID: PMC9400892 DOI: 10.1002/cbic.202200249] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Psilocybe magic mushrooms are best known for their main natural product, psilocybin, and its dephosphorylated congener, the psychedelic metabolite psilocin. Beyond tryptamines, the secondary metabolome of these fungi is poorly understood. The genomes of five species (P. azurescens, P. cubensis, P. cyanescens, P. mexicana, and P. serbica) were browsed to understand more profoundly common and species-specific metabolic capacities. The genomic analyses revealed a much greater and yet unexplored metabolic diversity than evident from parallel chemical analyses. P. cyanescens and P. mexicana were identified as aeruginascin producers. Lumichrome and verpacamide A were also detected as Psilocybe metabolites. The observations concerning the potential secondary metabolome of this fungal genus support pharmacological and toxicological efforts to find a rational basis for yet elusive phenomena, such as paralytic effects, attributed to consumption of some magic mushrooms.
Collapse
Affiliation(s)
- Sebastian Dörner
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Kai Rogge
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Janis Fricke
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Tim Schäfer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Jacob M. Wurlitzer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Duyen N. K. Pham
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | - David R. Manke
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | | | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
3
|
Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids 2022; 54:687-719. [PMID: 35192062 DOI: 10.1007/s00726-022-03136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/01/2022]
Abstract
Naturally occurring secondary amino acids, with proline as the main representative, contain an alpha-imino group in a cycle that is typically four-, five-, and six-membered. The unique ring structure exhibits exceptional properties-conformational rigidity, chemical stability, and specific roles in protein structure and folding. Many proline analogues have been used as valuable compounds for the study of metabolism of both prokaryotic and eukaryotic cells and for the synthesis of compounds with desired biological, pharmaceutical, or industrial properties. The D-forms of secondary amino acids play different roles in living organisms than the L-forms. They have different metabolic pathways, biological, physiological, and pharmacological effects, they can be indicators of changes and also serve as biomarkers of diseases. In the scientific literature, the number of articles examining D-amino acids in biological samples is increasing. The review summarises information on the occurrence and importance of D- and L-secondary amino acids-azetidic acid, proline, hydroxyprolines, pipecolic, nipecotic, hydroxypipecolic acids and related peptides containing these D-AAs, as well as the main analytical methods (mostly chromatographic) used for their enantiomeric determination in different matrices (biological samples, plants, food, water, and soil).
Collapse
|
4
|
Zhang Y, Xiao G. Chemical synthesis of TMG-chitotriomycin. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
6
|
Chen L, Zhu L, Chen J, Chen W, Qian X, Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J Enzyme Inhib Med Chem 2021; 35:1937-1943. [PMID: 33167737 PMCID: PMC7655067 DOI: 10.1080/14756366.2020.1837123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glycoside hydrolase family 18 (GH18) chitinases play an important role in various organisms ranging from bacteria to mammals. Chitinase inhibitors have potential applications as pesticides, fungicides, and anti-asthmatics. Berberine, a plant-derived isoquinoline alkaloid, was previously reported to inhibit against various GH18 chitinases with only moderate Ki values ranging between 20 and 70 μM. In this report, we present for the first time the berberine-complexed crystal structure of SmChiB, a model GH18 chitinase from the bacterium Serratia marcescens. Based on the berberine-binding mode, a hydrophobic cavity-based optimisation strategy was developed to increase their inhibitory activity. A series of berberine derivatives were designed and synthesised, and their inhibitory activities against GH18 chitinases were evaluated. The compound 4c showed 80-fold-elevated inhibitory activity against SmChiB and the human chitinase hAMCase with Ki values at the sub-micromolar level. The mechanism of improved inhibitory activities was proposed. This work provides a new strategy for developing novel chitinase inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jinli Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
8
|
Yang H, Qi H, Hao Z, Shao X, Liu T, Yang Q, Qian X. Thiazolylhydrazone dervatives as inhibitors for insect N-acetyl-β-d-hexosaminidase and chitinase. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
10
|
Effect of Active Site Pocket Structure Modification of d-Stereospecific Amidohydrolase on the Recognition of Stereospecific and Hydrophobic Substrates. Mol Biotechnol 2018; 60:690-697. [DOI: 10.1007/s12033-018-0104-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Dong Y, Jiang X, Liu T, Ling Y, Yang Q, Zhang L, He X. Structure-Based Virtual Screening, Compound Synthesis, and Bioassay for the Design of Chitinase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3351-3357. [PMID: 29554796 DOI: 10.1021/acs.jafc.8b00017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chitinases play a vital part in the molting phase of insect pests. Inhibiting their activities by the use of drug-like small chemical molecules is thought to be an efficient strategy in pesticide design and development. On the basis of the crystal structure of OfChtI, a chitinase indispensable for the molting of the insect pest Ostrinia furnacalis (Asian corn borer), here we report a chemical fragment and five variant compounds as inhibitors of OfChtI obtained from a library of over 200 000 chemicals by a structure-based-virtual-screening approach. The compounds were synthesized with high atom economy and tested for their OfChtI-inhibitory activities in a bioassay. Compound 3 showed preferential inhibitory activity with a Ki value of 1.5 μΜ against OfChtI. Analysis of the structure-activity relationships of the compounds provided insight into their interactions with the enzyme active site, which may inform future work in improving the potencies of their inhibitory activities.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xi Jiang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Yun Ling
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Qing Yang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Li Zhang
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xiongkui He
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
12
|
Jiang X, Kumar A, Liu T, Zhang KYJ, Yang Q. A Novel Scaffold for Developing Specific or Broad-Spectrum Chitinase Inhibitors. J Chem Inf Model 2016; 56:2413-2420. [PMID: 28024404 DOI: 10.1021/acs.jcim.6b00615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chitinases play important roles in pathogen invasion, arthropod molting, plant defense, and human inflammation. Inhibition of the activity of a typical chitinase by small molecules is of significance in drug development and biological research. On the basis of a recent reported crystal structure of OfChtI, the insect chitinase derived from the pest Ostrinia furnacalis, we computationally identified 17 compounds from a library of over 4 million chemicals by two rounds virtual screening. Among these, three compounds from one chemical class inhibited the activity of OfChtI with single-digit-micromolar IC50 values, and one compound from another chemical class exhibited a broad inhibitory activity not only toward OfChtI but also toward bacterial, fungal, and human chitinases. A new scaffold was discovered, and a structure-inhibitory activity relationship was proposed. This work may provide a novel starting point for the development of specific or broad-spectrum chitinase inhibitors.
Collapse
Affiliation(s)
- Xi Jiang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024, China
| | - Ashutosh Kumar
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN , 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tian Liu
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024, China
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN , 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Qing Yang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| |
Collapse
|
13
|
Sugawara A, Maita N, Gouda H, Yamamoto T, Hirose T, Kimura S, Saito Y, Nakano H, Kasai T, Nakano H, Shiomi K, Hirono S, Watanabe T, Taniguchi H, O̅mura S, Sunazuka T. Creation of Customized Bioactivity within a 14-Membered Macrolide Scaffold: Design, Synthesis, and Biological Evaluation Using a Family-18 Chitinase. J Med Chem 2015; 58:4984-97. [DOI: 10.1021/acs.jmedchem.5b00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Akihiro Sugawara
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuo Maita
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hiroaki Gouda
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsuyoshi Yamamoto
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saori Kimura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshifumi Saito
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayato Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takako Kasai
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirofumi Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuro Shiomi
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Watanabe
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | - Hisaaki Taniguchi
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Satoshi O̅mura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
14
|
Chen L, Zhou Y, Qu M, Zhao Y, Yang Q. Fully deacetylated chitooligosaccharides act as efficient glycoside hydrolase family 18 chitinase inhibitors. J Biol Chem 2014; 289:17932-40. [PMID: 24828498 DOI: 10.1074/jbc.m114.564534] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small molecule inhibitors against chitinases have potential applications as pesticides, fungicides, and antiasthmatics. Here, we report that a series of fully deacetylated chitooligosaccharides (GlcN)2-7 can act as inhibitors against the insect chitinase OfChtI, the human chitinase HsCht, and the bacterial chitinases SmChiA and SmChiB with IC50 values at micromolar to millimolar levels. The injection of mixed (GlcN)2-7 into the fifth instar larvae of the insect Ostrinia furnacalis resulted in 85% of the larvae being arrested at the larval stage and death after 10 days, also suggesting that (GlcN)2-7 might inhibit OfChtI in vivo. Crystal structures of the catalytic domain of OfChtI (OfChtI-CAD) complexed with (GlcN)5,6 were obtained at resolutions of 2.0 Å. These structures, together with mutagenesis and thermodynamic analysis, suggested that the inhibition was strongly related to the interaction between the -1 GlcN residue of the inhibitor and the catalytic Glu(148) of the enzyme. Structure-based comparison showed that the fully deacetylated chitooligosaccharides mimic the substrate chitooligosaccharides by binding to the active cleft. This work first reports the inhibitory activity and proposed inhibitory mechanism of fully deacetylated chitooligosaccharides. Because the fully deacetylated chitooligosaccharides can be easily derived from chitin, one of the most abundant materials in nature, this work also provides a platform for developing eco-friendly inhibitors against chitinases.
Collapse
Affiliation(s)
- Lei Chen
- From the School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Yong Zhou
- the School of Software, Dalian University of Technology, Dalian 116620, China, and
| | - Mingbo Qu
- From the School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Yong Zhao
- the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing Yang
- From the School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China,
| |
Collapse
|
15
|
Jitonnom J, Limb MAL, Mulholland AJ. QM/MM free-energy simulations of reaction in Serratia marcescens Chitinase B reveal the protonation state of Asp142 and the critical role of Tyr214. J Phys Chem B 2014; 118:4771-83. [PMID: 24730355 DOI: 10.1021/jp500652x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serratia marcescens Chitinase B (ChiB), belonging to the glycosidase family 18 (GH18), catalyzes the hydrolysis of β-1,4-glycosidic bond, with retention of configuration, via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile. Here, both elementary steps (glycosylation and deglycosylation) of the ChiB-catalyzed reaction are investigated by means of combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations at the SCC-DFTB/CHARMM22 level of theory. We examine the influence of the Asp142 protonation state on the reaction and the role that this residue performs in the reaction. Our simulations show that reaction with a neutral Asp142 is preferred and demonstrate that this residue provides electrostatic stabilization of the oxazolinium ion intermediate formed in the reaction. Insight into the conformational itinerary ((1,4)B↔(4)H5↔(4)C1) adopted by the substrate (bound in subsite -1) along the preferred reaction pathway is also provided by the simulations. The relative energies of the stationary points found along the reaction pathway calculated with SCC-DFTB and B3LYP were compared. The results suggest that SCC-DFTB is an accurate method for estimating the relative barriers for both steps of the reaction; however, it was found to overestimate the relative energy of an intermediate formed in the reaction when compared with the higher level of theory. Glycosylation is suggested to be a rate-determining step in the reaction with calculated overall reaction free-energy barrier of 20.5 kcal/mol, in a reasonable agreement with the 16.1 kcal/mol barrier derived from the experiment. The role of Tyr214 in catalysis was also investigated with the results, indicating that the residue plays a critical role in the deglycosylation step of the reaction. Simulations of the enzyme-product complex were also performed with an unbinding event suggested to have been observed, affording potential new mechanistic insight into the release of the product of ChiB.
Collapse
Affiliation(s)
- Jitrayut Jitonnom
- Division of Chemistry, School of Science, University of Phayao , Phayao 56000, Thailand
| | | | | |
Collapse
|
16
|
Sun X, Rai R, MacKerell AD, Faden AI, Xue F. Facile one-step synthesis of 2,5-diketopiperazines. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 2013; 97:7081-95. [DOI: 10.1007/s00253-013-5045-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 01/07/2023]
|
18
|
Nishanth Kumar S, Mohandas C, Nambisan B. Purification of an antifungal compound, cyclo(l-Pro-d-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode. Microbiol Res 2013; 168:278-88. [PMID: 23305769 DOI: 10.1016/j.micres.2012.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/15/2012] [Indexed: 11/15/2022]
Abstract
Mold spoilage is the main cause of substantial economic loss in cereals and might also cause public health problems due to the production of mycotoxins. The aim of this study was to separate and purify and to identify antifungal compounds of bacterium associated with novel entomopathogenic nematode and check the antifungal property of identified compound in particular food model systems. The antifungal compound was purified using silica gel column chromatography, TLC and HPLC and its structure was elucidated using NMR (¹H NMR, ¹³C NMR, ¹H-¹H COSY, ¹H-¹³C HMBC), HRMS and Marfey's method. Based on the spectral data, the active compounds were identified as diketopiperazine [cyclo(l-Pro-d-Leu)]. The antifungal activity of cyclo(l-Pro-d-Leu) was studied by MIC and paper disk assay against Aspergillus flavus MTCC 277 and Aspergillus niger MTCC 282 and best MIC value of 8μg/ml was recorded against A. flavus. Cyclo(l-Pro-d-Leu) strongly inhibit mycelia growth of fungus and thereby affecting aflatoxin production. To investigate the potential application of the cyclo(l-Pro-d-Leu) and to eliminate fungal spoilage in food and feed, soybean and peanut were used as models. White mycelia and dark/pale green spores of A. flavus were observed in the control soybeans after 2-day incubation. However the fungal growth was not observed in soybeans treated with cyclo(l-Pro-d-Leu). Almost the same result was observed for peanuts treated with cyclo(l-Pro-d-Leu) for A. niger. The cyclo(l-Pro-d-Leu) was nontoxic to two normal human cell lines (FS normal fibroblast and L231 lung epithelial) up to 200μg/ml. Thus the diketopiperazine derivative identified in the study may be a promising alternative to chemical preservatives as a potential biopreservative which prevent fungal growth and mycotoxin formation in food and feed.
Collapse
Affiliation(s)
- S Nishanth Kumar
- Division of Crop Protection/Division of Crop Utilization, Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695017, India.
| | | | | |
Collapse
|
19
|
Insect-Derived Chitinases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:19-50. [DOI: 10.1007/10_2013_207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Payne CM, Baban J, Horn SJ, Backe PH, Arvai AS, Dalhus B, Bjørås M, Eijsink VGH, Sørlie M, Beckham GT, Vaaje-Kolstad G. Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J Biol Chem 2012; 287:36322-30. [PMID: 22952223 DOI: 10.1074/jbc.m112.402149] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degradation of recalcitrant polysaccharides in nature is typically accomplished by mixtures of processive and nonprocessive glycoside hydrolases (GHs), which exhibit synergistic activity wherein nonprocessive enzymes provide new sites for productive attachment of processive enzymes. GH processivity is typically attributed to active site geometry, but previous work has demonstrated that processivity can be tuned by point mutations or removal of single loops. To gain additional insights into the differences between processive and nonprocessive enzymes that give rise to their synergistic activities, this study reports the crystal structure of the catalytic domain of the GH family 18 nonprocessive endochitinase, ChiC, from Serratia marcescens. This completes the structural characterization of the co-evolved chitinolytic enzymes from this bacterium and enables structural analysis of their complementary functions. The ChiC catalytic module reveals a shallow substrate-binding cleft that lacks aromatic residues vital for processivity, a calcium-binding site not previously seen in GH18 chitinases, and, importantly, a displaced catalytic acid (Glu-141), suggesting flexibility in the catalytic center. Molecular dynamics simulations of two processive chitinases (ChiA and ChiB), the ChiC catalytic module, and an endochitinase from Lactococcus lactis show that the nonprocessive enzymes have more flexible catalytic machineries and that their bound ligands are more solvated and flexible. These three features, which relate to the more dynamic on-off ligand binding processes associated with nonprocessive action, correlate to experimentally measured differences in processivity of the S. marcescens chitinases. These newly defined hallmarks thus appear to be key dynamic metrics in determining processivity in GH enzymes complementing structural insights.
Collapse
Affiliation(s)
- Christina M Payne
- Biosciences Center, National Renewable Energy Laboratory, Golden Colorado 80401, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 620] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Li X, Hopmann KH, Hudecová J, Stensen W, Novotná J, Urbanová M, Svendsen JS, Bouř P, Ruud K. Absolute Configuration of a Cyclic Dipeptide Reflected in Vibrational Optical Activity: Ab Initio and Experimental Investigation. J Phys Chem A 2012; 116:2554-63. [DOI: 10.1021/jp211454v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Li
- Centre for
Theoretical and Computational
Chemistry (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | - Jana Hudecová
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences,
166 10 Prague, Czech Republic
| | - Wenche Stensen
- Lytix Biopharma AS, Tromsø Research
Park, N-9294 Tromsø, Norway
| | - Jana Novotná
- Department of Analytical Chemistry, Institute of Chemical Technology, Prague, 166 28 Prague, Czech
Republic
| | - Marie Urbanová
- Department of
Physics and Measurements, Institute of Chemical Technology, Prague, 166 28 Prague, Czech
Republic
| | | | - Petr Bouř
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences,
166 10 Prague, Czech Republic
| | - Kenneth Ruud
- Centre for
Theoretical and Computational
Chemistry (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
23
|
Monbaliu JCM, Hansen FK, Beagle LK, Panzner MJ, Steel PJ, Todadze E, Stevens CV, Katritzky AR. A New Benzotriazole-Mediated Stereoflexible Gateway to Hetero-2,5-diketopiperazines. Chemistry 2012; 18:2632-8. [DOI: 10.1002/chem.201103143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Indexed: 11/08/2022]
|
24
|
Schüttelkopf AW, Andersen OA, Rao FV, Allwood M, Rush CL, Eggleston IM, van Aalten DMF. Bisdionin C-a rationally designed, submicromolar inhibitor of family 18 chitinases. ACS Med Chem Lett 2011; 2:428-32. [PMID: 24900325 DOI: 10.1021/ml200008b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/11/2011] [Indexed: 11/29/2022] Open
Abstract
Chitinases of the GH18 family play important roles in a variety of pathogenic organisms and have also been shown to be involved in human asthma progression, making these enzymes potential drug targets. While a number of potent GH18 chitinase inhibitors have been described, in general, these compounds suffer from limited synthetic accessibility or unfavorable medicinal-chemical properties, making them poor starting points for the development of chitinase-targeted drugs. Exploiting available structural data, we have rationally designed bisdionin C, a submicromolar inhibitor of GH18 enzymes, that possesses desirable druglike properties and tractable chemical synthesis. A crystallographic structure of a chitinase-bisdionin C complex shows the two aromatic systems of the ligand interacting with two conserved tryptophan residues exposed in the active site cleft of the enzyme, while at the same time forming extensive hydrogen-bonding interactions with the catalytic machinery. The observed mode of binding, together with inhibition data, suggests that bisdionin C presents an attractive starting point for the development of specific inhibitors of bacterial-type, but not plant-type, GH 18 chitinases.
Collapse
Affiliation(s)
- Alexander W. Schüttelkopf
- Division of Molecular Microbiology and ‡Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | - Ole A. Andersen
- Division of Molecular Microbiology and ‡Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | - Francesco V. Rao
- Division of Molecular Microbiology and ‡Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | - Matthew Allwood
- Division of Molecular Microbiology and ‡Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | - Christina L. Rush
- Division of Molecular Microbiology and ‡Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | - Ian M. Eggleston
- Division of Molecular Microbiology and ‡Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology and ‡Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| |
Collapse
|
25
|
Yang J, Gan Z, Lou Z, Tao N, Mi Q, Liang L, Sun Y, Guo Y, Huang X, Zou C, Rao Z, Meng Z, Zhang KQ. Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. MICROBIOLOGY-SGM 2010; 156:3566-3574. [PMID: 20829286 DOI: 10.1099/mic.0.043653-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chitinases are a group of enzymes capable of hydrolysing the β-(1,4)-glycosidic bonds of chitin, an essential component of the fungal cell wall, the shells of nematode eggs, and arthropod exoskeletons. Chitinases from pathogenic fungi have been shown to be putative virulence factors, and can play important roles in infecting hosts. However, very limited information is available on the structure of chitinases from nematophagous fungi. Here, we present the 1.8 Å resolution of the first structure of a Family 18 chitinase from this group of fungi, that of Clonostachys rosea CrChi1, and the 1.6 Å resolution of CrChi1 in complex with a potent inhibitor, caffeine. Like other Family 18 chitinases, CrChi1 has the DXDXE motif at the end of strand β5, with Glu174 as the catalytic residue in the middle of the open end of the (β/α)(8) barrel. Two caffeine molecules were shown to bind to CrChi1 in subsites -1 to +1 in the substrate-binding domain. Moreover, site-directed mutagenesis of the amino acid residues forming hydrogen bonds with caffeine molecules suggests that these residues are important for substrate binding and the hydrolytic process. Our results provide a foundation for elucidating the catalytic mechanism of chitinases from nematophagous fungi and for improving the pathogenicity of nematophagous fungi against agricultural pest hosts.
Collapse
Affiliation(s)
- Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Zhongwei Gan
- Middle School Attached to Yunnan Normal University, Kunming 650106, PR China.,Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Zhiyong Lou
- Tsinghua-Nankai-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, PR China
| | - Nan Tao
- Institute of Biotechnology, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650223, PR China.,Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Qili Mi
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Lianming Liang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Yuna Sun
- Tsinghua-Nankai-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, PR China
| | - Yu Guo
- Tsinghua-Nankai-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, PR China
| | - Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Chenggan Zou
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Zihe Rao
- Tsinghua-Nankai-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, PR China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical College, Kunming 650032, PR China.,Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| |
Collapse
|
26
|
Andersen OA, Nathubhai A, Dixon MJ, Eggleston IM, van Aalten DMF. Structure-based dissection of the natural product cyclopentapeptide chitinase inhibitor argifin. ACTA ACUST UNITED AC 2008; 15:295-301. [PMID: 18355729 PMCID: PMC3764403 DOI: 10.1016/j.chembiol.2008.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/30/2008] [Accepted: 02/05/2008] [Indexed: 11/30/2022]
Abstract
Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides, and antiasthmatics. Argifin, a natural product cyclopentapeptide, competitively inhibits family 18 chitinases in the nanomolar to micromolar range and shows extensive substrate mimicry. In an attempt to map the active fragments of this large natural product, the cyclopentapeptide was progressively dissected down to four linear peptides and dimethylguanylurea, synthesized using a combination of solution and solid phase peptide synthesis. The peptide fragments inhibit chitinase B1 from Aspergillus fumigatus (AfChiB1), the human chitotriosidase, and chitinase activity in lung homogenates from a murine model of chronic asthma, with potencies ranging from high nanomolar to high micromolar inhibition. X-ray crystallographic analysis of the chitinase-inhibitor complexes revealed that the conformations of the linear peptides were remarkably similar to that of the natural product. Strikingly, the dimethylguanylurea fragment, representing only a quarter of the natural product mass, was found to harbor all significant interactions with the protein and binds with unusually high efficiency. The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.
Collapse
Affiliation(s)
- Ole A Andersen
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | | | | | |
Collapse
|
27
|
Family 18 chitolectins: comparison of MGP40 and HUMGP39. Biochem Biophys Res Commun 2007; 359:221-6. [PMID: 17543889 DOI: 10.1016/j.bbrc.2007.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 05/08/2007] [Indexed: 11/21/2022]
Abstract
Glycosidase and lectins both bind sugars, but only the glycosidases have catalytic activity. The glycosidases occur among over 100 evolved protein families and Family 18 is one of the two chitinases (EC 3, 2.1.14) families. Interestingly, lectins are also in this evolutionary group of Family 18 glycosidase proteins. The proteins belonging to the enzymatically inactive class are referred to as chitolectins and have a binding site that is highly similar to the catalytic Family 18 enzymes. We present a comparison of the recently obtained structures of two Family 18 chitolectins, MGP40 [A.K. Mohanty, G. Singh, M. Paramasivam, K. Saravanan, T. Jabeen, S. Sharma, S. Yadav, P. Kaur, P. Kumar, A. Srinivasan, T.P. Singh, Crystal structure of a novel regulatory 40kDa mammary gland protein (MGP-40) secreted during involution, J. Biol. Chem. 278 (2003) 14451-14460.] and HumGP39 [F. Fusetti, T. Pijning, K.H. Kalk, E. Bos, B.W. Dijkstra, Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39, J. Biol. Chem. 278 (2003) 37753-37760; D.R. Houston, D.R. Anneliese, C.K. Joanne, D.M.V. Aalten, Structure and ligand-induced conformational change of the 39kDa glycoprotein from human articular chondrocytes, J. Biol. Chem. 278 (2003) 30206-30212.] with a focus on the glycosidase active site. We compare the sequence and the structure of these two Family 18 protein classes. The difference between the active and inactive protein is a glutamic acid which acts as the essential acid/base residue for chitin cleavage and is replaced with leucine or glutamine in the chitolectins. Furthermore, a mechanism for the interaction between the chitolectin and oligosaccharides was proposed.
Collapse
|
28
|
Schüttelkopf AW, Andersen OA, Rao FV, Allwood M, Lloyd C, Eggleston IM, van Aalten DMF. Screening-based discovery and structural dissection of a novel family 18 chitinase inhibitor. J Biol Chem 2006; 281:27278-85. [PMID: 16844689 DOI: 10.1074/jbc.m604048200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Family 18 chitinases play key roles in the life cycles of a variety of organisms ranging from bacteria to man. Very recently it has been shown that one of the mammalian chitinases is highly overexpressed in the asthmatic lung and contributes to the pathogenic process through recruitment of inflammatory cells. Although several potent natural product chitinase inhibitors have been identified, their chemotherapeutic potential or their use as cell biological tools is limited due to their size, complex chemistry, and limited availability. We describe a virtual screening-based approach to identification of a novel, purine-based, chitinase inhibitor. This inhibitor acts in the low micromolar (Ki=2.8+/-0.2 microM) range in a competitive mode. Dissection of the binding mode by x-ray crystallography reveals that the compound, which consists of two linked caffeine moieties, binds in the active site through extensive and not previously observed stacking interactions with conserved, solvent exposed tryptophans. Such exposed aromatics are also present in the structures of many other carbohydrate processing enzymes. The compound exhibits favorable chemical properties and is likely to be useful as a general scaffold for development of pan-family 18 chitinase inhibitors.
Collapse
Affiliation(s)
- Alexander W Schüttelkopf
- Division of Biological Chemistry and Molecular Microbiology, Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | | | | | | | | | | | | |
Collapse
|
29
|
Rao FV, Andersen OA, Vora KA, Demartino JA, van Aalten DMF. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. ACTA ACUST UNITED AC 2006; 12:973-80. [PMID: 16183021 DOI: 10.1016/j.chembiol.2005.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/10/2005] [Accepted: 07/12/2005] [Indexed: 12/22/2022]
Abstract
Family 18 chitinases play key roles in a range of pathogenic organisms and are overexpressed in the asthmatic lung. By screening a library of marketed drug molecules, we have identified methylxanthine derivatives as possible inhibitor leads. These derivatives, theophylline, caffeine, and pentoxifylline, are used therapeutically as antiinflammatory agents, with pleiotropic mechanisms of action. Here it is shown that they are also competitive inhibitors against a fungal family 18 chitinase, with pentoxifylline being the most potent (K(i) of 37 microM). Crystallographic analysis of chitinase-inhibitor complexes revealed specific interactions with the active site, mimicking the reaction intermediate analog, allosamidin. Mutagenesis identified the key active site residues, conserved in mammalian chitinases, which contribute to inhibitor affinity. Enzyme assays also revealed that these methylxanthines are active against human chitinases.
Collapse
Affiliation(s)
- Francesco V Rao
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Scotland
| | | | | | | | | |
Collapse
|
30
|
Dixon MJ, Andersen OA, van Aalten DMF, Eggleston IM. An efficient synthesis of argifin: A natural product chitinase inhibitor with chemotherapeutic potential. Bioorg Med Chem Lett 2005; 15:4717-21. [PMID: 16153835 DOI: 10.1016/j.bmcl.2005.07.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 11/25/2022]
Abstract
The first synthesis of the cyclopentapeptide family 18 chitinase inhibitor argifin has been achieved by a combination of solid phase and solution chemistry. Synthetic argifin is a nanomolar inhibitor of chitinase B1 from Aspergillus fumigatus and the high-resolution X-ray structure of the synthesized material in complex with the same enzyme is identical to that previously obtained for the natural product.
Collapse
Affiliation(s)
- Mark J Dixon
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
31
|
Andersen OA, Dixon MJ, Eggleston IM, van Aalten DMF. Natural product family 18 chitinase inhibitors. Nat Prod Rep 2005; 22:563-79. [PMID: 16193156 DOI: 10.1039/b416660b] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ole A Andersen
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH
| | | | | | | |
Collapse
|
32
|
Rao FV, Houston DR, Boot RG, Aerts JMFG, Hodkinson M, Adams DJ, Shiomi K, Omura S, van Aalten DMF. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. ACTA ACUST UNITED AC 2005; 12:65-76. [PMID: 15664516 DOI: 10.1016/j.chembiol.2004.10.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 10/07/2004] [Accepted: 10/14/2004] [Indexed: 11/30/2022]
Abstract
Family 18 chitinases play key roles in organisms ranging from bacteria to man. There is a need for specific, potent inhibitors to probe the function of these chitinases in different organisms. Such molecules could also provide leads for the development of chemotherapeuticals with fungicidal, insecticidal, or anti-inflammatory potential. Recently, two natural product peptides, argifin and argadin, have been characterized, which structurally mimic chitinase-chitooligosaccharide interactions and inhibit a bacterial chitinase in the nM-mM range. Here, we show that these inhibitors also act on human and Aspergillus fumigatus chitinases. The structures of these enzymes in complex with argifin and argadin, together with mutagenesis, fluorescence, and enzymology, reveal that subtle changes in the binding site dramatically affect affinity and selectivity. The data show that it may be possible to develop specific chitinase inhibitors based on the argifin/argadin scaffolds.
Collapse
Affiliation(s)
- Francesco V Rao
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Houston DR, Synstad B, Eijsink VGH, Stark MJR, Eggleston IM, van Aalten DMF. Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 2004; 47:5713-20. [PMID: 15509170 DOI: 10.1021/jm049940a] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Family 18 chitinases play an essential role in a range of pathogens and pests. Several inhibitors are known, including the potent inhibitors argadin and allosamidin, and the structures of these in complex with chitinases have been elucidated. Recent structural analysis has revealed that CI-4 [cyclo-(L-Arg-D-Pro)] inhibits family 18 chitinases by mimicking the structure of the proposed reaction intermediate. Here we report the high-resolution structures of four new CI-4 derivatives, cyclo-(L-Arg-L-Pro), cyclo-(Gly-L-Pro), cyclo-(L-His-L-Pro), and cyclo-(L-Tyr-L-Pro), in complex with a family 18 chitinase. In addition, details of enzyme inhibition and in vivo activity against Saccharomyces cerevisiae are presented. The structures reveal that the common cyclo-(Gly-Pro) substructure is sufficient for binding, allowing modification of the side chain of the nonproline residue. This suggests that design of cyclic dipeptides with a view to increasing inhibition of family 18 chitinases should be possible through relatively accessible chemistry. The derivatives presented here in complex with chitinase B from Serratia marcescens provide further insight into the mechanism of inhibition of chitinases by cyclic dipeptides as well as providing a new scaffold for chitinase inhibitor design.
Collapse
Affiliation(s)
- Douglas R Houston
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
35
|
Schug KA, Lindner W, Lemr K. Isomeric discrimination of arginine-containing dipeptides using electrospray ionization-ion trap mass spectrometry and the kinetic method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:840-847. [PMID: 15144973 DOI: 10.1016/j.jasms.2004.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 03/02/2004] [Accepted: 03/02/2004] [Indexed: 05/24/2023]
Abstract
The Kinetic Method (KM), applied commonly for thermochemical determinations, is used here for sterically-controlled isomeric determination of N- versus C-terminal Arg-containing dipeptide isomers (ArgX versus XArg; where X = His, Leu, Lys, Pro, Ser, Phe, and Tyr). The KM is offered as an alternate approach to direct collision-induced dissociation (CID) procedures. Through formation, isolation, and dissociation of a sterically-encumbered, metal-centered complex with electrospray ionization ion trap mass spectrometry technology, reference dipeptide molecules are screened to quantitatively differentiate a mixture of isomers based on their arrangement about the metal center. Arg-containing dipeptide molecules are chosen because of their contribution in a wide array of protein and peptide functions. Additionally, problems cited previously for evaluation of systems containing Arg residues (due to the incorporation of the guanidinium moiety) by the KM are addressed. The method is shown to be successful for highlighting favorable reference analytes (e.g., ArgPhe, ArgLeu, ProArg, PheArg, among others) for exceptional discrimination (R(iso) > 2.0) of the majority of N- and C-terminal Arg-containing peptides tested.
Collapse
Affiliation(s)
- Kevin A Schug
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
36
|
Vaaje-Kolstad G, Houston DR, Rao FV, Peter MG, Synstad B, van Aalten DMF, Eijsink VGH. Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:103-11. [PMID: 14726210 DOI: 10.1016/j.bbapap.2003.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D(140)XD(142)XE(144) sequence motif. In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced k(cat) and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with k(cat), indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue.
Collapse
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry and Biotechnology, Agricultural University of Norway, PO Box 5040, N-1432 Aas, Norway
| | | | | | | | | | | | | |
Collapse
|
37
|
Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 2003; 206:4393-412. [PMID: 14610026 DOI: 10.1242/jeb.00709] [Citation(s) in RCA: 742] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARY
Chitin is one of the most important biopolymers in nature. It is mainly produced by fungi, arthropods and nematodes. In insects, it functions as scaffold material, supporting the cuticles of the epidermis and trachea as well as the peritrophic matrices lining the gut epithelium. Insect growth and morphogenesis are strictly dependent on the capability to remodel chitin-containing structures. For this purpose, insects repeatedly produce chitin synthases and chitinolytic enzymes in different tissues. Coordination of chitin synthesis and its degradation requires strict control of the participating enzymes during development. In this review, we will summarize recent advances in understanding chitin synthesis and its degradation in insects.
Collapse
Affiliation(s)
- Hans Merzendorfer
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | |
Collapse
|
38
|
Aronson NN, Halloran BA, Alexyev MF, Amable L, Madura JD, Pasupulati L, Worth C, Van Roey P. Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A. Biochem J 2003; 376:87-95. [PMID: 12932195 PMCID: PMC1223757 DOI: 10.1042/bj20030273] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Revised: 08/07/2003] [Accepted: 08/22/2003] [Indexed: 11/17/2022]
Abstract
The sizes and anomers of the products formed during the hydrolysis of chitin oligosaccharides by the Family 18 chitinase A (ChiA) from Serratia marcescens were analysed by hydrophilic interaction chromatography using a novel approach in which reactions were performed at 0 degrees C to stabilize the anomer conformations of the initial products. Crystallographic studies of the enzyme, having the structure of the complex of the ChiA E315L (Glu315-->Leu) mutant with a hexasaccharide, show that the oligosaccharide occupies subsites -4 to +2 in the substrate-binding cleft, consistent with the processing of beta-chitin by the release of disaccharide at the reducing end. Products of the hydrolysis of hexa- and penta-saccharides by wild-type ChiA, as well as by two mutants of the residues Trp275 and Phe396 important in binding the substrate at the +1 and +2 sites, show that the substrates only occupy sites -2 to +2 and that additional N -acetyl-D-glucosamines extend beyond the substrate-binding cleft at the reducing end. The subsites -3 and -4 are not used in this four-site binding mode. The explanation for these results is found in the high importance of individual binding sites for the processing of short oligosaccharides compared with the cumulative recognition and processive hydrolysis mechanism used to digest natural beta-chitin.
Collapse
Affiliation(s)
- Nathan N Aronson
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vaaje-Kolstad G, Vasella A, Peter MG, Netter C, Houston DR, Westereng B, Synstad B, Eijsink VGH, van Aalten DMF. Interactions of a family 18 chitinase with the designed inhibitor HM508 and its degradation product, chitobiono-delta-lactone. J Biol Chem 2003; 279:3612-9. [PMID: 14597613 DOI: 10.1074/jbc.m310057200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe enzymological and structural analyses of the interaction between the family 18 chitinase ChiB from Serratia marcescens and the designed inhibitor N,N'-diacetylchitobionoxime-N-phenylcarbamate (HM508). HM508 acts as a competitive inhibitor of this enzyme with a K(i) in the 50 microM range. Active site mutants of ChiB show K(i) values ranging from 1 to 200 microM, providing insight into some of the interactions that determine inhibitor affinity. Interestingly, the wild type enzyme slowly degrades HM508, but the inhibitor is essentially stable in the presence of the moderately active D142N mutant of ChiB. The crystal structure of the D142N-HM508 complex revealed that the two sugar moieties bind to the -2 and -1 subsites, whereas the phenyl group interacts with aromatic side chains that line the +1 and +2 subsites. Enzymatic degradation of HM508, as well as a Trp --> Ala mutation in the +2 subsite of ChiB, led to reduced affinity for the inhibitor, showing that interactions between the phenyl group and the enzyme contribute to binding. Interestingly, a complex of enzymatically degraded HM508 with the wild type enzyme showed a chitobiono-delta-lactone bound in the -2 and -1 subsites, despite the fact that the equilibrium between the lactone and the hydroxy acid forms in solution lies far toward the latter. This shows that the active site preferentially binds the (4)E conformation of the -1 sugar, which resembles the proposed transition state of the reaction.
Collapse
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry and Biotechnology, Agricultural University of Norway, N-1432 As, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rigden DJ, Jedrzejas MJ, de Mello LV. Identification and analysis of catalytic TIM barrel domains in seven further glycoside hydrolase families. FEBS Lett 2003; 544:103-11. [PMID: 12782298 DOI: 10.1016/s0014-5793(03)00481-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fold recognition results allocate catalytic triose phosphate isomerase (TIM) barrels to seven previously unassigned glycoside hydrolase (GH) families, numbers 29, 44, 50, 71, 84, 85 and 89, enabling prediction of catalytic residues. Modelling of GH family 50 suggests that it may be the common evolutionary ancestor of families 42 and 14. TIM barrels now comprise the catalytic domains of more than half of the assigned GH families, and catalyse a much larger variety of GH reactions than any other catalytic domain architecture. Only 327 GH sequences still have no structurally identified catalytic domain.
Collapse
Affiliation(s)
- Daniel J Rigden
- Embrapa Genetic Resources and Biotechnology, Cenargen/Embrapa, Estação Parque Biológico, Final W5, Asa Norte, 70770-900, Brasília-DF, Brazil.
| | | | | |
Collapse
|
41
|
Rao FV, Houston DR, Boot RG, Aerts JMFG, Sakuda S, van Aalten DMF. Crystal structures of allosamidin derivatives in complex with human macrophage chitinase. J Biol Chem 2003; 278:20110-6. [PMID: 12639956 DOI: 10.1074/jbc.m300362200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pseudotrisaccharide allosamidin is a potent family 18 chitinase inhibitor with demonstrated biological activity against insects, fungi, and the Plasmodium falciparum life cycle. The synthesis and biological properties of several derivatives have been reported. The structural interactions of allosamidin with several family 18 chitinases have been determined by x-ray crystallography previously. Here, a high resolution structure of chitotriosidase, the human macrophage chitinase, in complex with allosamidin is presented. In addition, complexes of the allosamidin derivatives demethylallosamidin, methylallosamidin, and glucoallosamidin B are described, together with their inhibitory properties. Similar to other chitinases, inhibition of the human chitinase by allosamidin derivatives lacking a methyl group is 10-fold stronger, and smaller effects are observed for the methyl and C3 epimer derivatives. The structures explain the effects on inhibition in terms of altered hydrogen bonding and hydrophobic interactions, together with displaced water molecules. The data reported here represent a first step toward structure-based design of specific allosamidin derivatives.
Collapse
Affiliation(s)
- Francesco V Rao
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Scotland
| | | | | | | | | | | |
Collapse
|