1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Hansman D, Ma Y, Thomas D, Smith J, Casson R, Peet D. Metabolic reprogramming of the retinal pigment epithelium by cytokines associated with age-related macular degeneration. Biosci Rep 2024; 44:BSR20231904. [PMID: 38567515 PMCID: PMC11043024 DOI: 10.1042/bsr20231904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024] Open
Abstract
The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-β2, IL-6, and IL-1β, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- David S. Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Nwamba CO, Ibrahim K. The role of protein conformational switches in pharmacology: its implications in metabolic reprogramming and protein evolution. Cell Biochem Biophys 2014; 68:455-62. [PMID: 24068517 DOI: 10.1007/s12013-013-9748-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Besides pharmacogenomics and drug dynamics, pharmacological properties of a drug could also arise from protein conformational switches. These switches would arise from the following mechanisms: (a) slight shifts away from a protein's native conformation induced by mutation, (b) changes in the protein's environment allowing for structural rearrangements to form hitherto unknown conformations, (c) parsing the protein into foldable polypeptide fragment(s) by either proteolysis of the native structure or (d) perturbation of the native conformation to generate polypeptide fragment(s). These switches are modulated by changes in the protein's matrix properties such as pH, temperature, ligands-their nature, concentration and complexes; micronutrients, oxidant/antioxidant status and metabolic products within the functional environment of the protein. The pharmacological implications of these are discussed in light of polypharmacology arising from protein isomerism, cross-pharmacology, possible decreases in both the expressible and expressed protein population and metabolic reprogramming-and ultimately, how these factors relate to diseases. Further implications include variational drug toxicity and drug response idiosyncrasies. Another important consequence is that the "whole life" history of the individual would play an active role in that individual's response to disease severity and drug response up to that very moment and is prone to variations with changes in pre-disposing factors.
Collapse
|
4
|
Martínez-Vega R, Garrido F, Partearroyo T, Cediel R, Zeisel SH, Martínez-Álvarez C, Varela-Moreiras G, Varela-Nieto I, Pajares MA. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB J 2014; 29:418-32. [PMID: 25384423 DOI: 10.1096/fj.14-259283] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress.
Collapse
Affiliation(s)
- Raquel Martínez-Vega
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Francisco Garrido
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Teresa Partearroyo
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Rafael Cediel
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Steven H Zeisel
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Concepción Martínez-Álvarez
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Gregorio Varela-Moreiras
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Isabel Varela-Nieto
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - María A Pajares
- *Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain; Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain; University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, North Carolina, USA; Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; and Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| |
Collapse
|
5
|
Ferreira DMS, Simão AL, Rodrigues CMP, Castro RE. Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS J 2014; 281:2503-24. [PMID: 24702768 DOI: 10.1111/febs.12806] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/16/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of stages from simple steatosis to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and, ultimately, hepatocellular carcinoma. Despite being one of the most common chronic liver diseases, NAFLD pathogenesis remains largely unknown. In this review, we discuss the key molecular mechanisms involved in NAFLD development and progression, focusing on the emerging role of microRNAs. NAFLD is intrinsically related to obesity and the metabolic syndrome. Changes in lipid metabolism increase free fatty acids in blood, which in turn induces peripheral insulin resistance and increases oxidative and endoplasmic reticulum stress. Although not yet considered in the diagnosis of NAFLD, recent reports also reinforce the crucial role of apoptosis in disease progression via activation of either death receptor or mitochondrial pathways and p53. In addition, the role of gut microbiota and the gut-liver axis has been recently associated with NAFLD. Finally, there is an accumulating and growing body of evidence supporting the role of microRNAs in NAFLD pathogenesis and progression, as well as hinting at their use as biomarkers or therapeutic tools. The ultimate goal is to review different molecular pathways that may underlie NAFLD pathogenesis in the hope of finding targets for new and efficient therapeutic interventions.
Collapse
Affiliation(s)
- Duarte M S Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
6
|
|
7
|
Gubina NE, Evdokimovsky EV, Ushakova TE. Mitochondrial genetic apparatus functioning in mice spleen cells under radiation-induced apoptosis. Mol Biol 2010. [DOI: 10.1134/s0026893310060087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gubina NE, Merekina OS, Ushakova TE. Mitochondrial DNA transcription in mouse liver, skeletal muscle, and brain following lethal x-ray irradiation. BIOCHEMISTRY (MOSCOW) 2010; 75:777-83. [PMID: 20636270 DOI: 10.1134/s0006297910060131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using quantitative real-time PCR, the levels of mitochondrial DNA transcripts in murine tissues (skeletal muscle, liver, and brain) were determined at different time points (1, 5, and 24 h) following X-ray irradiation at the dose of 10 Gy. One hour after irradiation the levels of mitochondrial transcripts ND2, ND4, CYTB, and ATP6 dramatically decreased by 85-95% and remained at the same minimum level for 24 h in all analyzed tissues. This decrease was not associated with depletion of mtDNA as a matrix for transcription, since mtDNA copy number increased after irradiation in all tissues. The decrease in mitochondrial transcription in liver, brain, and skeletal muscle did not generally result from the damage of cell transcription apparatus, because the transcription level of nuclear housekeeping gene BETA-ACTIN remained virtually unchanged after irradiation. The mitochondrial gene transcription decreased after irradiation in the same manner as that of the nuclear gene TFB2M encoding mitochondrial transcription factor, whose regulatory role under normal conditions is well understood.
Collapse
Affiliation(s)
- N E Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
9
|
Loukili N, Rosenblatt-Velin N, Rolli J, Levrand S, Feihl F, Waeber B, Pacher P, Liaudet L. Oxidants positively or negatively regulate nuclear factor kappaB in a context-dependent manner. J Biol Chem 2010; 285:15746-52. [PMID: 20299457 DOI: 10.1074/jbc.m110.103259] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Redox-based mechanisms play critical roles in the regulation of multiple cellular functions. NF-kappaB, a master regulator of inflammation, is an inducible transcription factor generally considered to be redox-sensitive, but the modes of interactions between oxidant stress and NF-kappaB are incompletely defined. Here, we show that oxidants can either amplify or suppress NF-kappaB activation in vitro by interfering both with positive and negative signals in the NF-kappaB pathway. NF-kappaB activation was evaluated in lung A549 epithelial cells stimulated with tumor necrosis factor alpha (TNFalpha), either alone or in combination with various oxidant species, including hydrogen peroxide or peroxynitrite. Exposure to oxidants after TNFalpha stimulation produced a robust and long lasting hyperactivation of NF-kappaB by preventing resynthesis of the NF-kappaB inhibitor IkappaB, thereby abrogating the major negative feedback loop of NF-kappaB. This effect was related to continuous activation of inhibitor of kappaB kinase (IKK), due to persistent IKK phosphorylation consecutive to oxidant-mediated inactivation of protein phosphatase 2A. In contrast, exposure to oxidants before TNFalpha stimulation impaired IKK phosphorylation and activation, leading to complete prevention of NF-kappaB activation. Comparable effects were obtained when interleukin-1beta was used instead of TNFalpha as the NF-kappaB activator. This study demonstrates that the influence of oxidants on NF-kappaB is entirely context-dependent, and that the final outcome (activation versus inhibition) depends on a balanced inhibition of protein phosphatase 2A and IKK by oxidant species. Our findings provide a new conceptual framework to understand the role of oxidant stress during inflammatory processes.
Collapse
Affiliation(s)
- Noureddine Loukili
- Department of Intensive Care Medicine, Division of Pathophysiology, Faculty of Biology and Medicine, University MedicalCenter, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 2010; 18:424-32. [PMID: 19822235 DOI: 10.1016/j.joca.2009.09.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Pro-inflammatory cytokines play a pivotal role in cartilage destruction during the progression of osteoarthritis (OA). Additionally, these cytokines are capable to generate reactive oxygen and nitrogen species within chondrocytes. Mitochondrion is a prime target of oxidative damage and an important player in aging and degenerative processes. The purpose of the present study was to investigate whether these cytokines will alter the mitochondrial DNA (mtDNA) integrity and mitochondrial function in both normal and osteoarthritic human chondrocytes. DESIGN Primary normal and osteoarthritic human chondrocyte cultures were exposed to various concentrations of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) for different time. Following exposure, chondrocytes were evaluated for mitochondrial DNA damage, ATP production, changes in mitochondrial transcription, and apoptosis. Adenoviral vectors were used to deliver DNA repair enzyme hOGG1 to mitochondria. RESULTS Pro-inflammatory cytokines IL-1beta and TNF-alpha disturb mitochondrial function in human chondrocytes by inducing mitochondrial DNA damage, decreasing energy production and mitochondrial transcription, which correlated with the induction of apoptosis. Increased NO production was the key factor responsible for accumulation of mtDNA damage after cytokine exposure. Mitochondrial superoxide production was also enhanced following pro-inflammatory cytokine exposure. OA chondrocyte mitochondria were more susceptible to damage induced by pro-inflammatory cytokines then mitochondria from normal chondrocytes. Protection of human chondrocytes from mtDNA damage by the mitochondria-targeted DNA repair enzyme hOGG1 rescued mtDNA integrity, preserved ATP levels, reestablished mitochondrial transcription, and significantly diminished apoptosis following IL-1beta and TNF-alpha exposure. CONCLUSION Mitochondrion is an important target in pro-inflammatory cytokine toxicity, maintaining of mitochondrial DNA integrity is necessary to prevent chondrocytes from apoptosis induced by IL-1beta and TNF-alpha.
Collapse
|
11
|
Shen B, Yu J, Wang S, Chu ESH, Wong VWS, Zhou X, Lin G, Sung JJY, Chan HLY. Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo. Hepatology 2008; 47:473-83. [PMID: 18157836 DOI: 10.1002/hep.22039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatic oxidative stress plays a critical role in metabolic forms of steatohepatitis. Phyllanthus urinaria, an herbal medicine, has been reported to have potential antioxidant properties. We tested the effects of P. urinaria on nutritional steatohepatitis both in vitro and in vivo. Immortalized normal hepatocytes (AML-12) or primary hepatocytes were exposed to control, the methionine-and-choline-deficient (MCD) culture medium, in the presence or absence of P. urinaria for 24 hours. Hepatocyte triglyceride, release of alanine aminotransferase, lipoperoxides, and reactive oxygen species production were determined. Age-matched C57BL/6 and db/db mice were fed control or MCD diet for 10 days with or without P. urinaria. Hepatic steatosis, necroinflammation, triglycerides, and lipid peroxide levels were determined. Hepatic expression of inflammatory factors and lipid regulatory mediators were assayed. P. urinaria reduced steatosis and alanine aminotransferase (ALT) levels in culture of hepatocytes in a dose-dependent manner. Phyllanthus prevented MCD-induced hepatic fat accumulation and steatohepatitis in mice. This effect was associated with repressed levels of hepatic lipid peroxides, reduced expression of cytochrome P450-2E1, pro-inflammatory tumor necrosis factor alpha, interleukin-6, dampened activation of inflammatory c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-kappaB), increased expression of lipolytic cytochrome P450 (Cyp4a10), and suppressed transcriptional activity of lipogenic CCAAT/enhancer binding protein beta (C/EBPbeta). Hepatic acyl co-enzyme A oxidase that regulated hepatic beta-oxidation of fatty acid and other lipid regulators were not affected by P. urinaria. In conclusion, P. urinaria effectively alleviated the steatohepatitis induced by the MCD, probably through dampening oxidative stress, ameliorating inflammation, and decreasing lipid accumulation.
Collapse
Affiliation(s)
- Bo Shen
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32:37-43. [PMID: 17141506 DOI: 10.1016/j.tibs.2006.11.001] [Citation(s) in RCA: 649] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/13/2006] [Accepted: 11/20/2006] [Indexed: 12/20/2022]
Abstract
Necrosis has been defined as a type of cell death that lacks the features of apoptosis and autophagy, and is usually considered to be uncontrolled. Recent research suggests, however, that its occurrence and course might be tightly regulated. After signaling- or damage-induced lesions, necrosis can include signs of controlled processes such as mitochondrial dysfunction, enhanced generation of reactive oxygen species, ATP depletion, proteolysis by calpains and cathepsins, and early plasma membrane rupture. In addition, the inhibition of specific proteins involved in regulating apoptosis or autophagy can change the type of cell death to necrosis. Because necrosis is prominent in ischemia, trauma and possibly some forms of neurodegeneration, further biochemical comprehension and molecular definition of this process could have important clinical implications.
Collapse
Affiliation(s)
- Pierre Golstein
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
13
|
López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 2006; 103:1768-73. [PMID: 16446459 PMCID: PMC1413655 DOI: 10.1073/pnas.0510452103] [Citation(s) in RCA: 502] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Age-related accumulation of cellular damage and death has been linked to oxidative stress. Calorie restriction (CR) is the most robust, nongenetic intervention that increases lifespan and reduces the rate of aging in a variety of species. Mechanisms responsible for the antiaging effects of CR remain uncertain, but reduction of oxidative stress within mitochondria remains a major focus of research. CR is hypothesized to decrease mitochondrial electron flow and proton leaks to attenuate damage caused by reactive oxygen species. We have focused our research on a related, but different, antiaging mechanism of CR. Specifically, using both in vivo and in vitro analyses, we report that CR reduces oxidative stress at the same time that it stimulates the proliferation of mitochondria through a peroxisome proliferation-activated receptor coactivator 1 alpha signaling pathway. Moreover, mitochondria under CR conditions show less oxygen consumption, reduce membrane potential, and generate less reactive oxygen species than controls, but remarkably they are able to maintain their critical ATP production. In effect, CR can induce a peroxisome proliferation-activated receptor coactivator 1 alpha-dependent increase in mitochondria capable of efficient and balanced bioenergetics to reduce oxidative stress and attenuate age-dependent endogenous oxidative damage.
Collapse
Affiliation(s)
- G. López-Lluch
- *Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - N. Hunt
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825
| | - B. Jones
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825
| | - M. Zhu
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825
| | - H. Jamieson
- Centre for Education and Research on Aging, University of Sydney, Concord Hospital, Concord NSW 2139, Australia; and
- Departments of Aged Care and Clinical Pharmacology, Royal North Shore Hospital, St. Leonards NSW 2069, Australia
| | - S. Hilmer
- Centre for Education and Research on Aging, University of Sydney, Concord Hospital, Concord NSW 2139, Australia; and
- Departments of Aged Care and Clinical Pharmacology, Royal North Shore Hospital, St. Leonards NSW 2069, Australia
| | - M. V. Cascajo
- *Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - J. Allard
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825
| | - D. K. Ingram
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825
| | - P. Navas
- *Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - R. de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Baker SK, Tarnopolsky MA. Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 2005; 12:1655-79. [PMID: 14519086 DOI: 10.1517/13543784.12.10.1655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).
Collapse
Affiliation(s)
- Steven K Baker
- Neurology and Rehabilitation, Room 4U4, Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
15
|
Carter AB, Tephly LA, Venkataraman S, Oberley LW, Zhang Y, Buettner GR, Spitz DR, Hunninghake GW. High Levels of Catalase and Glutathione Peroxidase Activity Dampen H2O2Signaling in Human Alveolar Macrophages. Am J Respir Cell Mol Biol 2004; 31:43-53. [PMID: 14962975 DOI: 10.1165/rcmb.2003-0377oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Results are presented which support the hypothesis that adequate steady-state levels of hydrogen peroxide (H2O2) are required to overcome the effects of high catalase and glutathione peroxidase (GPx) expression for p38 mitogen-activated protein (MAP) kinase activation and tumor necrosis factor (TNF)-alpha gene expression in human alveolar macrophages stimulated with asbestos. We found significant differences in the types and amounts of reactive oxygen species generated in human blood monocytes compared with human alveolar macrophages. This difference in reactive oxygen species production is related, in part, to the differences in antioxidant enzyme expression and activity. Most importantly, catalase and GPx activities were significantly increased in alveolar macrophages compared with blood monocytes. Asbestos activated the p38 MAP kinase and induced TNF-alpha gene expression only in blood monocytes. Increasing the steady-state levels of H2O2 by using polyethylene glycol superoxide dismutase, an antioxidant that crosses the cell membrane, or aminotriazole, an irreversible inhibitor of catalase, allowed the p38 MAP kinase to be activated in alveolar macrophages. In addition, asbestos-stimulated macrophages cultured with polyethylene glycol superoxide dismutase had a significant increase in gene expression mediated by the TNF-alpha promoter. These results demonstrate that high catalase and GPx activity in human alveolar macrophages limits the effectiveness of H2O2 to act as a mediator of inflammatory gene expression.
Collapse
MESH Headings
- Adolescent
- Adult
- Amitrole/pharmacology
- Asbestos
- Catalase/metabolism
- Cells, Cultured
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Glutathione Peroxidase/metabolism
- Humans
- Hydrogen Peroxide/metabolism
- Lung/enzymology
- Lung/metabolism
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/metabolism
- Mitogen-Activated Protein Kinases/genetics
- Monocytes/drug effects
- Monocytes/enzymology
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Pneumonia/enzymology
- Pneumonia/metabolism
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Superoxide Dismutase/metabolism
- Superoxide Dismutase/pharmacology
- Tumor Necrosis Factor-alpha/genetics
- Up-Regulation/drug effects
- Up-Regulation/physiology
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- A Brent Carter
- Department of Medicine, University of Iowa Roy J. and Lucille A Carver College of Medicine, Iowa City Veterans Administration medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shimizu M, Azuma C, Taniguchi T, Murayama T. Expression of Cytosolic Phospholipase A2α in Murine C12 Cells, a Variant of L929 Cells, Induces Arachidonic Acid Release in Response to Phorbol Myristate Acetate and Ca2+ Ionophores, but Not to Tumor Necrosis Factor-α. J Pharmacol Sci 2004; 96:324-32. [PMID: 15539760 DOI: 10.1254/jphs.fpj04033x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha)-induced cell death is regulated through the release of arachidonic acid (AA) by group IVA cytosolic phospholipase A2 (cPLA2alpha) in the murine fibroblast cell line L929. However, the signaling pathway by which TNFalpha activates cPLA2alpha remained to be solved. We examined AA release in L929 cells, in a variant of L929 (C12 cells) lacking cPLA2alpha, and in C12 cells transfected with cPLA2alpha expression vectors. In transient and stable clones of C12 cells expressing cPLA2alpha, Ca2+ ionophore A23187 and phorbol myristate acetate (PMA) stimulated AA release within 90 min, although no response to TNFalpha was observed within 6 h. These results suggest that C12 cells may lack the components necessary for TNFalpha-induced AA release, in addition to cPLA2alpha. PMA is known to stimulate AA release via phosphorylation of Ser505 in cPLA2alpha by activating extracellular signal-regulated kinases (ERK1/2). However, PMA-induced AA release from C12 cells expressing mutant cPLA2alpha S505A (mutation of Ser505 to Ala), which is not phosphorylated by ERK1/2, was similar to that from L929 cells and C12 cells expressing wild-type cPLA2alpha. The role of Ser505 phosphorylation in AA release induced by PMA is also discussed.
Collapse
Affiliation(s)
- Masaya Shimizu
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|
17
|
Sood S, Dawra RK, Sharma OP, Kurade NP. Exposure to the fern Onychium contiguum causes increase in lipid peroxidation and alters antioxidant status in urinary bladder. Biochem Biophys Res Commun 2003; 302:476-9. [PMID: 12615057 DOI: 10.1016/s0006-291x(03)00170-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The status of lipid peroxidation, glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, superoxide dismutase, catalase, ascorbic acid, and alpha-tocopherol was studied in the urinary bladder of guinea pigs exposed to the carcinogenic fern Onychium contiguum. There was significant increase in the preformed lipid peroxides in the urinary bladders from fern exposed animals. The amount of lipid peroxides produced on incubation of urinary bladder homogenates with or without catalyst was significantly higher in the fern exposed animals. The concentrations of glutathione and alpha-tocopherol and the activities of glutathione reductase and catalase were elevated in the urinary bladders of the animals exposed to the fern. No effect was observed on the concentration of ascorbic acid and the activities of glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase. It is summarized that the fern toxins increased oxidative stress in the urinary bladder and antioxidant status was altered. However, the altered antioxidant status did not provide protection from the toxin induced injury. Histopathology of the urinary bladder in the fern exposed animals revealed oedema, haemorrhages, and congestion. This is the first study to show increase in lipid peroxidation along with altered antioxidant status in the urinary bladder of fern exposed animals.
Collapse
Affiliation(s)
- Shweta Sood
- Department of Chemistry and Biochemistry, CSK HPKV, Kangra Valley, Palampur, HP 176 062, India
| | | | | | | |
Collapse
|