1
|
Alexandrino AV, Barcelos MP, Federico LB, da Silva TG, Cavalca LB, de Moraes CHA, Ferreira H, Taft CA, Behlau F, de Paula Silva CHT, Novo-Mansur MTM. GDP-mannose pyrophosphorylase is an efficient target in Xanthomonas citri for citrus canker control. Microbiol Spectr 2024; 12:e0367323. [PMID: 38722158 PMCID: PMC11237706 DOI: 10.1128/spectrum.03673-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/20/2024] [Indexed: 06/06/2024] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity. Additionally, we found that XanB inhibitors protect the host against Xcc infection. Besides being deficient in motility, biofilm production, and ultraviolet resistance, the xanB deletion mutant was unable to cause disease, whereas xanB complementation restored wild-type phenotypes. XanB homology modeling allowed in silico virtual screening of inhibitors from databases, three of them being suitable in terms of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, which inhibited GMP (but not PMI) activity of the Xcc recombinant XanB protein in more than 50%. Inhibitors reduced citrus canker severity up to 95%, similarly to copper-based treatment. xanB is essential for Xcc pathogenicity, and XanB inhibitors can be used for the citrus canker control. IMPORTANCE Xcc causes citrus canker, a threat to citrus production, which has been managed with copper, being required a more sustainable alternative for the disease control. XanB was previously found on the surface of Xcc, interacting with the host and displaying PMI and GMP activities. We demonstrated by xanB deletion and complementation that GMP activity plays a critical role in Xcc pathogenicity, particularly in biofilm formation. XanB homology modeling was performed, and in silico virtual screening led to carbohydrate-derived compounds able to inhibit XanB activity and reduce disease symptoms by 95%. XanB emerges as a promising target for drug design for control of citrus canker and other economically important diseases caused by Xanthomonas sp.
Collapse
Affiliation(s)
- André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Bruno Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamiris Garcia da Silva
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | - Lúcia Bonci Cavalca
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Carlos Henrique Alves de Moraes
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | | | - Franklin Behlau
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | | | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular (PPGGEv), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Sparks IL, Kado T, Prithviraj M, Nijjer J, Yan J, Morita YS. Lipoarabinomannan mediates localized cell wall integrity during division in mycobacteria. Nat Commun 2024; 15:2191. [PMID: 38467648 PMCID: PMC10928101 DOI: 10.1038/s41467-024-46565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The growth and division of mycobacteria, which include clinically relevant pathogens, deviate from that of canonical bacterial models. Despite their Gram-positive ancestry, mycobacteria synthesize and elongate a diderm envelope asymmetrically from the poles, with the old pole elongating more robustly than the new pole. The phosphatidylinositol-anchored lipoglycans lipomannan (LM) and lipoarabinomannan (LAM) are cell envelope components critical for host-pathogen interactions, but their physiological functions in mycobacteria remained elusive. In this work, using biosynthetic mutants of these lipoglycans, we examine their roles in maintaining cell envelope integrity in Mycobacterium smegmatis and Mycobacterium tuberculosis. We find that mutants defective in producing mature LAM fail to maintain rod cell shape specifically at the new pole and para-septal regions whereas a mutant that produces a larger LAM becomes multi-septated. Therefore, LAM plays critical and distinct roles at subcellular locations associated with division in mycobacteria, including maintenance of local cell wall integrity and septal placement.
Collapse
Affiliation(s)
- Ian L Sparks
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
3
|
Lee SY, Marando VM, Smelyansky SR, Kim DE, Calabretta PJ, Warner TC, Bryson BD, Kiessling LL. Selective Glycan Labeling of Mannose-Containing Glycolipids in Mycobacteria. J Am Chem Soc 2024; 146:377-385. [PMID: 38112296 PMCID: PMC10914408 DOI: 10.1021/jacs.3c09495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of history's most successful human pathogens. By subverting typical immune responses, Mtb can persist within a host until conditions become favorable for growth and proliferation. Virulence factors that enable mycobacteria to modulate host immune systems include a suite of mannose-containing glycolipids: phosphatidylinositol mannosides, lipomannan, and lipoarabinomannan (LAM). Despite their importance, tools for their covalent capture, modification, and imaging are limited. Here, we describe a chemical biology strategy to detect and visualize these glycans. Our approach, biosynthetic incorporation, is to synthesize a lipid-glycan precursor that can be incorporated at a late-stage step in glycolipid biosynthesis. We previously demonstrated selective mycobacterial arabinan modification by biosynthetic incorporation using an exogenous donor. This report reveals that biosynthetic labeling is general and selective: it allows for cell surface mannose-containing glycolipid modification without nonspecific labeling of mannosylated glycoproteins. Specifically, we employed azido-(Z,Z)-farnesyl phosphoryl-β-d-mannose probes and took advantage of the strain-promoted azide-alkyne cycloaddition to label and directly visualize the localization and dynamics of mycobacterial mannose-containing glycolipids. Our studies highlight the generality and utility of biosynthetic incorporation as the probe structure directs the selective labeling of distinct glycans. The disclosed agents allowed for direct tracking of the target immunomodulatory glycolipid dynamics in cellulo. We anticipate that these probes will facilitate investigating the diverse biological roles of these glycans.
Collapse
Affiliation(s)
- So Young Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Victoria M. Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephanie R. Smelyansky
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daria E. Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Phillip J. Calabretta
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Theodore C. Warner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bryan D. Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
6
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
7
|
Techniques to Understand Mycobacterial Lipids and Use of Lipid-Based Nanoformulations for Tuberculosis Management. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Bangera M, Gowda K G, Sagurthi SR, Murthy MRN. Structural and functional insights into phosphomannose isomerase: the role of zinc and catalytic residues. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:475-487. [PMID: 31063150 DOI: 10.1107/s2059798319004169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/28/2019] [Indexed: 11/10/2022]
Abstract
Phosphomannose isomerase (PMI) is a housekeeping enzyme that is found in organisms ranging from bacteria to fungi to mammals and is important for cell-wall synthesis, viability and signalling. PMI is a zinc-dependent enzyme that catalyses the reversible isomerization between mannose 6-phosphate (M6P) and fructose 6-phosphate (F6P), presumably via the formation of a cis-enediol intermediate. The reaction is hypothesized to involve ring opening of M6P, the transfer of a proton from the C2 atom to the C1 atom and between the O1 and O2 atoms of the substrate, followed by ring closure resulting in the product F6P. Several attempts have been made to decipher the role of zinc ions and various residues in the catalytic function of PMI. However, there is no consensus on the catalytic base and the mechanism of the reaction catalyzed by the enzyme. In the present study, based on the structure of PMI from Salmonella typhimurium, site-directed mutagenesis targeting residues close to the bound metal ion and activity studies on the mutants, zinc ions were shown to be crucial for substrate binding. These studies also suggest Lys86 as the most probable catalytic base abstracting the proton in the isomerization reaction. Plausible roles for the highly conserved residues Lys132 and Arg274 could also be discerned based on comparison of the crystal structures of wild-type and mutant PMIs. PMIs from prokaryotes possess a low sequence identity to the human enzyme, ranging between 30% and 40%. Since PMI is important for the virulence of many pathogenic organisms, the identification of catalytically important residues will facilitate its use as a potential antimicrobial drug target.
Collapse
Affiliation(s)
- Mamata Bangera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Giri Gowda K
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - S R Sagurthi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - M R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| |
Collapse
|
9
|
Rahlwes KC, Puffal J, Morita YS. Purification and Analysis of Mycobacterial Phosphatidylinositol Mannosides, Lipomannan, and Lipoarabinomannan. Methods Mol Biol 2019; 1954:59-75. [PMID: 30864124 DOI: 10.1007/978-1-4939-9154-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacteria and related bacteria in the Actinobacteria phylum are unusual in that they produce phosphatidylinositol (PI) as a major phospholipid species. PI can be further modified by glycan polymers, leading to the synthesis of PI mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). Small lipids such as PI and PIMs are extracted with a mixture of chloroform, methanol, and water and analyzed by thin layer chromatography. For larger glycolipids, such as LM and LAM, more hydrophilic solvent is needed for the extraction, and SDS-PAGE is better suited for the analysis. For LM, further structural characterization can be performed by MALDI-TOF mass spectrometry. Precise quantification of PIMs, LM, and LAM can be performed by quantification of glycan staining using analytical software. The metabolic radiolabeling protocol is also described.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Julia Puffal
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
10
|
Ahmad L, Plancqueel S, Dubosclard V, Lazar N, Ghattas W, Li de la Sierra‐Gallay I, Tilbeurgh H, Salmon L. Crystal structure of phosphomannose isomerase from
Candida albicans
complexed with 5‐phospho‐
d
‐arabinonhydrazide. FEBS Lett 2018; 592:1667-1680. [DOI: 10.1002/1873-3468.13059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lama Ahmad
- Equipe de Chimie Bioorganique et Bioinorganique Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR8182 LabEx LERMIT Université Paris‐Saclay Université Paris‐Sud Orsay France
| | - Stéphane Plancqueel
- Institut de Biologie Intégrative de la Cellule (I2BC) CNRS UMR9198 Université Paris‐Saclay Université Paris‐Sud Orsay France
| | - Virginie Dubosclard
- Equipe de Chimie Bioorganique et Bioinorganique Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR8182 LabEx LERMIT Université Paris‐Saclay Université Paris‐Sud Orsay France
| | - Noureddine Lazar
- Institut de Biologie Intégrative de la Cellule (I2BC) CNRS UMR9198 Université Paris‐Saclay Université Paris‐Sud Orsay France
| | - Wadih Ghattas
- Equipe de Chimie Bioorganique et Bioinorganique Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR8182 LabEx LERMIT Université Paris‐Saclay Université Paris‐Sud Orsay France
| | - Inès Li de la Sierra‐Gallay
- Institut de Biologie Intégrative de la Cellule (I2BC) CNRS UMR9198 Université Paris‐Saclay Université Paris‐Sud Orsay France
| | - Herman Tilbeurgh
- Institut de Biologie Intégrative de la Cellule (I2BC) CNRS UMR9198 Université Paris‐Saclay Université Paris‐Sud Orsay France
| | - Laurent Salmon
- Equipe de Chimie Bioorganique et Bioinorganique Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR8182 LabEx LERMIT Université Paris‐Saclay Université Paris‐Sud Orsay France
| |
Collapse
|
11
|
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is recognized as a global health emergency as promoted by the World Health Organization. Over 1 million deaths per year, along with the emergence of multi- and extensively-drug resistant strains of Mtb, have triggered intensive research into the pathogenicity and biochemistry of this microorganism, guiding the development of anti-TB chemotherapeutic agents. The essential mycobacterial cell wall, sharing some common features with all bacteria, represents an apparent ‘Achilles heel’ that has been targeted by TB chemotherapy since the advent of TB treatment. This complex structure composed of three distinct layers, peptidoglycan, arabinogalactan and mycolic acids, is vital in supporting cell growth, virulence and providing a barrier to antibiotics. The fundamental nature of cell wall synthesis and assembly has rendered the mycobacterial cell wall as the most widely exploited target of anti-TB drugs. This review provides an overview of the biosynthesis of the prominent cell wall components, highlighting the inhibitory mechanisms of existing clinical drugs and illustrating the potential of other unexploited enzymes as future drug targets.
Collapse
|
12
|
Loots DT, Swanepoel CC, Newton-Foot M, Gey van Pittius NC. A metabolomics investigation of the function of the ESX-1 gene cluster in mycobacteria. Microb Pathog 2016; 100:268-275. [PMID: 27744102 DOI: 10.1016/j.micpath.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The ESX-1 gene cluster, encoding the Type-VII secretion (T7S) system and its virulence associated proteins, ESAT-6 and CFP-10, is thought to be responsible for the transport of extracellular proteins across the hydrophobic and highly impermeable, cell envelope of Mycobacterium, and is involved in virulence in Mycobacterium tuberculosis, the causative agent of tuberculosis. Using a GCxGC-TOFMS metabolomics approach, a M. smegmatis ESX-1 knock-out strain (ΔESX-1ms) was compared to that of the M. smegmatis wild-type parent strain, and the metabolite markers due to the presence or absence of the ESX-1 gene cluster were identified. A general increase in specific metabolites in the ΔESX-1ms, confirmed the roles previously described for ESX-1 in mycolic acid biosynthesis and cell wall integrity. However, a number of other metabolite markers identified indicates ESX-1 has an additional role the in cell envelope structure, altering the levels of antioxidants and energy metabolism. Furthermore, the metabolome profiles correlated with the metabolomic variation observed when comparing a hyper- and hypo-virulent Beijing strain of M. tuberculosis, suggesting that the pathways which modulate virulence in M. tuberculosis are also influenced by ESX-1, reaffirming the previously described association of ESX-1 with virulence and cell envelope biogenesis.
Collapse
Affiliation(s)
- Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, Private Bag x6001, Box 269, 2531, South Africa.
| | - Conrad C Swanepoel
- Human Metabolomics, North-West University, Potchefstroom, Private Bag x6001, Box 269, 2531, South Africa
| | - Mae Newton-Foot
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nicolaas C Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
13
|
Gresh N, Perahia D, de Courcy B, Foret J, Roux C, El-Khoury L, Piquemal JP, Salmon L. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown. J Comput Chem 2016; 37:2770-2782. [DOI: 10.1002/jcc.24503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale; Paris France
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquées (LBPA), UMR 8113; Ecole Normale Supérieure Cachan France
| | - Benoit de Courcy
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale; Paris France
| | - Johanna Foret
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| | - Céline Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| | - Lea El-Khoury
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Centre d'Analyses et de Recherche; UR EGFEM, LSIM, Faculté de Sciences, Saint Joseph University of Beirut; BP 11-514, Riad El Solh Beirut 1116-2050 Lebanon
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Department of Biomolecular Engineering; The University of Texas at Austin; Texas 78712
| | - Laurent Salmon
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| |
Collapse
|
14
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
15
|
Abstract
The cell wall of Mycobacterium tuberculosis is unique in that it differs significantly from those of both Gram-negative and Gram-positive bacteria. The thick, carbohydrate- and lipid-rich cell wall with distinct lipoglycans enables mycobacteria to survive under hostile conditions such as shortage of nutrients and antimicrobial exposure. The key features of this highly complex cell wall are the mycolyl-arabinogalactan-peptidoglycan (mAGP)-based and phosphatidyl-myo-inositol-based macromolecular structures, with the latter possessing potent immunomodulatory properties. These structures are crucial for the growth, viability, and virulence of M. tuberculosis and therefore are often the targets of effective chemotherapeutic agents against tuberculosis. Over the past decade, sophisticated genomic and molecular tools have advanced our understanding of the primary structure and biosynthesis of these macromolecules. The availability of the full genome sequences of various mycobacterial species, including M. tuberculosis, Mycobacterium marinum, and Mycobacterium bovis BCG, have greatly facilitated the identification of large numbers of drug targets and antigens specific to tuberculosis. Techniques to manipulate mycobacteria have also improved extensively; the conditional expression-specialized transduction essentiality test (CESTET) is currently used to determine the essentiality of individual genes. Finally, various biosynthetic assays using either purified proteins or synthetic cell wall acceptors have been developed to study enzyme function. This article focuses on the recent advances in determining the structural details and biosynthesis of arabinogalactan, lipoarabinomannan, and related glycoconjugates.
Collapse
|
16
|
Characterization of host and microbial determinants in individuals with latent tuberculosis infection using a human granuloma model. mBio 2015; 6:e02537-14. [PMID: 25691598 PMCID: PMC4337582 DOI: 10.1128/mbio.02537-14] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Granulomas sit at the center of tuberculosis (TB) immunopathogenesis. Progress in biomarkers and treatment specific to the human granuloma environment is hindered by the lack of a relevant and tractable infection model that better accounts for the complexity of the host immune response as well as pathogen counterresponses that subvert host immunity in granulomas. Here we developed and characterized an in vitro granuloma model derived from human peripheral blood mononuclear cells (PBMCs) and autologous serum. Importantly, we interrogated this model for its ability to discriminate between host and bacterial determinants in individuals with and without latent TB infection (LTBI). By the use of this model, we provide the first evidence that granuloma formation, bacterial survival, lymphocyte proliferation, pro- and anti-inflammatory cytokines, and lipid body accumulation are significantly altered in LTBI individuals. Moreover, we show a specific transcriptional signature of Mycobacterium tuberculosis associated with survival within human granuloma structures depending on the host immune status. Our report provides fundamentally new information on how the human host immune status and bacterial transcriptional signature may dictate early granuloma formation and outcome and provides evidence for the validity of the granuloma model and its potential applications. IMPORTANCE In 2012, approximately 1.3 million people died from tuberculosis (TB), the highest rate for any single bacterial pathogen. The long-term control of TB requires a better understanding of Mycobacterium tuberculosis pathogenesis in appropriate research models. Granulomas represent the characteristic host tissue response to TB, controlling the bacilli while concentrating the immune response to a limited area. However, complete eradication of bacteria does not occur, since M. tuberculosis has its own strategies to adapt and persist. Thus, the M. tuberculosis-containing granuloma represents a unique environment for dictating both the host immune response and the bacterial response. Here we developed and characterized an in vitro granuloma model derived from blood cells of individuals with latent TB infection that more accurately defines the human immune response and metabolic profiles of M. tuberculosis within this uniquely regulated immune environment. This model may also prove beneficial for understanding other granulomatous diseases.
Collapse
|
17
|
Frediani JK, Jones DP, Tukvadze N, Uppal K, Sanikidze E, Kipiani M, Tran VT, Hebbar G, Walker DI, Kempker RR, Kurani SS, Colas RA, Dalli J, Tangpricha V, Serhan CN, Blumberg HM, Ziegler TR. Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study. PLoS One 2014; 9:e108854. [PMID: 25329995 PMCID: PMC4198093 DOI: 10.1371/journal.pone.0108854] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
We aimed to characterize metabolites during tuberculosis (TB) disease and identify new pathophysiologic pathways involved in infection as well as biomarkers of TB onset, progression and resolution. Such data may inform development of new anti-tuberculosis drugs. Plasma samples from adults with newly diagnosed pulmonary TB disease and their matched, asymptomatic, sputum culture-negative household contacts were analyzed using liquid chromatography high-resolution mass spectrometry (LC-MS) to identify metabolites. Statistical and bioinformatics methods were used to select accurate mass/charge (m/z) ions that were significantly different between the two groups at a false discovery rate (FDR) of q<0.05. Two-way hierarchical cluster analysis (HCA) was used to identify clusters of ions contributing to separation of cases and controls, and metabolomics databases were used to match these ions to known metabolites. Identity of specific D-series resolvins, glutamate and Mycobacterium tuberculosis (Mtb)-derived trehalose-6-mycolate was confirmed using LC-MS/MS analysis. Over 23,000 metabolites were detected in untargeted metabolomic analysis and 61 metabolites were significantly different between the two groups. HCA revealed 8 metabolite clusters containing metabolites largely upregulated in patients with TB disease, including anti-TB drugs, glutamate, choline derivatives, Mycobacterium tuberculosis-derived cell wall glycolipids (trehalose-6-mycolate and phosphatidylinositol) and pro-resolving lipid mediators of inflammation, known to stimulate resolution, efferocytosis and microbial killing. The resolvins were confirmed to be RvD1, aspirin-triggered RvD1, and RvD2. This study shows that high-resolution metabolomic analysis can differentiate patients with active TB disease from their asymptomatic household contacts. Specific metabolites upregulated in the plasma of patients with active TB disease, including Mtb-derived glycolipids and resolvins, have potential as biomarkers and may reveal pathways involved in TB disease pathogenesis and resolution.
Collapse
Affiliation(s)
- Jennifer K. Frediani
- Nutrition and Health Sciences, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, United States of America
- Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dean P. Jones
- Nutrition and Health Sciences, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, United States of America
- Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (TRZ); (DPJ)
| | - Nestan Tukvadze
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
| | - Karan Uppal
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eka Sanikidze
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
| | - Maia Kipiani
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
| | - ViLinh T. Tran
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gautam Hebbar
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Douglas I. Walker
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Russell R. Kempker
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shaheen S. Kurani
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Romain A. Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vin Tangpricha
- Nutrition and Health Sciences, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, United States of America
- Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Henry M. Blumberg
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Thomas R. Ziegler
- Nutrition and Health Sciences, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, United States of America
- Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (TRZ); (DPJ)
| |
Collapse
|
18
|
Kim SJ, Hong M, Song KD, Lee HK, Ryoo S, Heo TH. Normalization of the levels of inflammatory molecules in Mycobacterium smegmatis-infected U937 cells by fibrate pretreatment. Biol Res 2014; 47:42. [PMID: 25299393 PMCID: PMC4177238 DOI: 10.1186/0717-6287-47-42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a respiratory tract disease caused by Mycobacterium tuberculosis infection. M. tuberculosis exploits immune privilege to grow and divide in pleural macrophages. Fibrates are associated with the immune response and control lipid metabolism through glycolysis with β-oxidation of fatty acids. RESULTS In this study, we investigated the effect of fibrate pretreatment on the immune response during M. smegmatis infection in U937 cells, a human leukemic monocyte lymphoma cell line. The protein expression of tumor necrosis factor α (TNF-α), an inflammatory marker, and myeloid differentiation primary response gene 88 (MyD88), a toll like receptor adaptor molecule, in the infected group increased at 1 and 6 h after M. smegmatis infection of U937 cells. Acetyl coenzyme A acetyl transferase-1 (ACAT-1), peroxisome proliferator-activated receptor-α (PPAR-α), TNF-α, and MyD88 decreased in U937 cells treated with fibrates at 12 and 24 h after treatment. More than a 24 h pretreatment with fibrate resulted in similar expression levels of ACAT-1 and PPAR-α between infected vehicle control and infected groups which were pretreated with fibrate for 24 h. However, upon exposure to M. smegmatis, the cellular expression of the TNF-α and MyD88 in the infected groups pretreated with fibrate for 24 h decreased significantly compared to that in the infected vehicle group. CONCLUSION These results suggest that fibrate pretreatment normalized the levels of inflammatory molecules in Mycobacterium smegmatis-infected U937 cells. Further studies are needed to confirm the findings on pathophysiology and immune defense mechanism of U937 by fibrates during M. tuberculosis infection.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 336-795, Republic of Korea.
| | - Minho Hong
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 336-795, Republic of Korea.
| | - Ki Duk Song
- The Animal Genomics and Breeding Center, Han-Kyong National University, Anseong, 336-795, Republic of Korea.
| | - Hak-Kyo Lee
- The Animal Genomics and Breeding Center, Han-Kyong National University, Anseong, 336-795, Republic of Korea.
| | - Sungweon Ryoo
- Korean Institute of Tuberculosis, Mansu-ri 482, Gangoe-myeon, Chungcheongbuk-do, 363-954, Cheongwon-gun,Republic of Korea.
| | - Tae-Hwe Heo
- Laboratory of Immunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea. .,NP512, Hall of Cardinal Jin-Suk Cheong, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| |
Collapse
|
19
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mycobacterium tuberculosis (Mtb) lipids are indelibly imprinted in just about every key aspect of tuberculosis (TB) basic and translational research. Although the interest in these compounds originally stemmed from their abundance, structural diversity, and antigenicity, continued research in this field has been driven by their important contribution to TB pathogenesis and their interest from the perspective of drug, vaccine, diagnostic, and biomarker development. This article summarizes what is known of the roles of lipids in the physiology and pathogenicity of Mtb and the exciting developments that have occurred in recent years in identifying new lead compounds targeting their biogenesis.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado 80523-1682
| |
Collapse
|
21
|
Mishra AK, Krumbach K, Rittmann D, Batt SM, Lee OYC, De S, Frunzke J, Besra GS, Eggeling L. Deletion of manC in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant. MICROBIOLOGY-SGM 2012; 158:1908-1917. [PMID: 22539165 DOI: 10.1099/mic.0.057653-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mannose is an important constituent of the immunomodulatory glycoconjugates of the mycobacterial cell wall: lipoarabinomannan (LAM), lipomannan (LM) and the related phospho-myo-inositol mannosides (PIMs). In Mycobacterium tuberculosis and the related bacillus Corynebacterium glutamicum, mannose is either imported from the medium or derived from glycolysis, and is subsequently converted into the nucleotide-based sugar donor guanosine diphosphomannose (GDP-mannose). This can be utilized by the glycosyltranferases of the GT-A/B superfamily or converted to the lipid-based donor polyprenyl monophosphomannose, and used as a substrate by the transmembrane glycosyltransferases of the GT-C superfamily. To investigate GDP-mannose biosynthesis in detail, the gene encoding a putative ManC in C. glutamicum was deleted. Deletion of manC resulted in a slow-growing mutant, with reduced but not totally abrogated guanosine diphosphomannose pyrophosphorylase activity. However, a comprehensive cell wall analysis revealed that C. glutamicumΔmanC is deficient in PIMs and LM/LAM. Closer inspection suggests that promiscuous ManC activity is contributed by additional putative nucleotidyltransferases, PmmB, WbbL1, GalU and GlmU, and a hypothetical protein, NCgl0715. Furthermore, complementation analyses of C. glutamicumΔmanC with Rv3264c suggested that it is a true homologue of ManC in M. tuberculosis, and the essentiality of PIMs in M. tuberculosis makes it an attractive drug target.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Karin Krumbach
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| | - Doris Rittmann
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| | - Sarah M Batt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Oona Y-C Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sandip De
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Julia Frunzke
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lothar Eggeling
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| |
Collapse
|
22
|
Krishna S, Ray A, Dubey SK, Larrouy-Maumus G, Chalut C, Castanier R, Noguera A, Gilleron M, Puzo G, Vercellone A, Nampoothiri KM, Nigou J. Lipoglycans contribute to innate immune detection of mycobacteria. PLoS One 2011; 6:e28476. [PMID: 22164297 PMCID: PMC3229593 DOI: 10.1371/journal.pone.0028476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 11/09/2011] [Indexed: 12/20/2022] Open
Abstract
Innate immune recognition is based on the detection, by pattern recognition receptors (PRRs), of molecular structures that are unique to microorganisms. Lipoglycans are macromolecules specific to the cell envelope of mycobacteria and related genera. They have been described to be ligands, as purified molecules, of several PRRs, including the C-type lectins Mannose Receptor and DC-SIGN, as well as TLR2. However, whether they are really sensed by these receptors in the context of a bacterium infection remains unclear. To address this question, we used the model organism Mycobacterium smegmatis to generate mutants altered for the production of lipoglycans. Since their biosynthesis cannot be fully abrogated, we manipulated the biosynthesis pathway of GDP-Mannose to obtain some strains with either augmented (∼1.7 fold) or reduced (∼2 fold) production of lipoglycans. Interestingly, infection experiments demonstrated a direct correlation between the amount of lipoglycans in the bacterial cell envelope on one hand and the magnitude of innate immune signaling in TLR2 reporter cells, monocyte/macrophage THP-1 cell line and human dendritic cells, as revealed by NF-κB activation and IL-8 production, on the other hand. These data establish that lipoglycans are bona fide Microbe-Associated Molecular Patterns contributing to innate immune detection of mycobacteria, via TLR2 among other PRRs.
Collapse
Affiliation(s)
- Shyam Krishna
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram, India
| | - Aurélie Ray
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Shiv K. Dubey
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Gérald Larrouy-Maumus
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Christian Chalut
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Romain Castanier
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Audrey Noguera
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Martine Gilleron
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Germain Puzo
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Alain Vercellone
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - K. Madhavan Nampoothiri
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram, India
- * E-mail: (JN); (KMN)
| | - Jérôme Nigou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- * E-mail: (JN); (KMN)
| |
Collapse
|
23
|
Comparative transcriptional study of the putative mannose donor biosynthesis genes in virulent Mycobacterium tuberculosis and attenuated Mycobacterium bovis BCG strains. Infect Immun 2011; 79:4668-73. [PMID: 21896775 DOI: 10.1128/iai.05635-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis contains mannosylated cell wall components which are important in macrophage recognition and response. The building block for the mannosyl constituents of these components is GDP-mannose, which is synthesized through a series of enzymes involved in the mannose donor biosynthesis pathway. Nothing is known about the expression levels of the genes encoding these enzymes during the course of infection. To generate transcriptional profiles for the mannose donor biosynthesis genes from virulent M. tuberculosis and attenuated Mycobacterium bovis BCG, bacteria were grown in broth culture and within human macrophages. Our results with broth-grown bacteria show that there are differences in expression of the selected genes between M. tuberculosis and BCG, with increased expression of manC in M. tuberculosis and manA in BCG during stationary-phase growth. Results for M. tuberculosis extracted from within macrophages show that whiB2 is highly expressed and manB and manC are moderately expressed during infection. Rv3256c, Rv3258c, and ppm1 have high expression levels early and decreased expression as the infection progresses. Results with BCG show that, as in M. tuberculosis, whiB2 is highly expressed throughout infection, whereas there is either low expression or little change in expression of the remaining genes studied. Overall, our results show that there is differential regulation of expression of several genes in the mannose donor biosynthesis pathway of M. tuberculosis and BCG grown in broth and within macrophages, raising the possibility that the level of mannose donors may vary during the course of infection and thereby impact the biosynthesis of mannose-containing cell wall molecules.
Collapse
|
24
|
Gresh N, de Courcy B, Piquemal JP, Foret J, Courtiol-Legourd S, Salmon L. Polarizable Water Networks in Ligand–Metalloprotein Recognition. Impact on the Relative Complexation Energies of Zn-Dependent Phosphomannose Isomerase with d-Mannose 6-Phosphate Surrogates. J Phys Chem B 2011; 115:8304-16. [DOI: 10.1021/jp2024654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Univ Paris Descartes, UFR Biomédicale, Faculté de Médecine de Paris, F-75006, Paris, France
| | - Benoit de Courcy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Univ Paris Descartes, UFR Biomédicale, Faculté de Médecine de Paris, F-75006, Paris, France
- Laboratoire de Chimie Théorique, UPMC Univ Paris 06, UMR7616, F-75252, Paris, France
- Laboratoire de Chimie Théorique, CNRS, UMR7616, F-75252, Paris, France
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, UPMC Univ Paris 06, UMR7616, F-75252, Paris, France
- Laboratoire de Chimie Théorique, CNRS, UMR7616, F-75252, Paris, France
| | - Johanna Foret
- Laboratoire de Chimie Bioorganique et Bioinorganique, Univ Paris-Sud, ICMMO, UMR8182, F-91405, Orsay, France
- Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS, ICMMO, UMR8182, F-91405, Orsay, France
| | - Stéphanie Courtiol-Legourd
- Laboratoire de Chimie Bioorganique et Bioinorganique, Univ Paris-Sud, ICMMO, UMR8182, F-91405, Orsay, France
- Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS, ICMMO, UMR8182, F-91405, Orsay, France
| | - Laurent Salmon
- Laboratoire de Chimie Bioorganique et Bioinorganique, Univ Paris-Sud, ICMMO, UMR8182, F-91405, Orsay, France
- Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS, ICMMO, UMR8182, F-91405, Orsay, France
| |
Collapse
|
25
|
Mishra AK, Driessen NN, Appelmelk BJ, Besra GS. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 2011; 35:1126-57. [PMID: 21521247 PMCID: PMC3229680 DOI: 10.1111/j.1574-6976.2011.00276.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl–arabinogalactan–peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host–pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host–pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
26
|
Roux C, Bhatt F, Foret J, de Courcy B, Gresh N, Piquemal JP, Jeffery CJ, Salmon L. The reaction mechanism of type I phosphomannose isomerases: new information from inhibition and polarizable molecular mechanics studies. Proteins 2011; 79:203-20. [PMID: 21058398 DOI: 10.1002/prot.22873] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Type I phosphomannose isomerases (PMIs) are zinc-dependent metalloenzymes involved in the reversible isomerization of D-mannose 6-phosphate (M6P) and D-fructose 6-phosphate (F6P). 5-Phospho-D-arabinonohydroxamic acid (5PAH), an inhibitor endowed with nanomolar affinity for yeast (Type I) and Pseudomonas aeruginosa (Type II) PMIs (Roux et al., Biochemistry 2004; 43:2926-2934), strongly inhibits human (Type I) PMI (for which we report an improved expression and purification procedure), as well as Escherichia coli (Type I) PMI. Its K(i) value of 41 nM for human PMI is the lowest value ever reported for an inhibitor of PMI. 5-Phospho-D-arabinonhydrazide, a neutral analogue of the reaction intermediate 1,2-cis-enediol, is about 15 times less efficient at inhibiting both enzymes, in accord with the anionic nature of the postulated high-energy reaction intermediate. Using the polarizable molecular mechanics, sum of interactions between fragments ab initio computed (SIBFA) procedure, computed structures of the complexes between Candida albicans (Type I) PMI and the cyclic substrate β-D-mannopyranose 6-phosphate (β-M6P) and between the enzyme and the high-energy intermediate analogue inhibitor 5PAH are reported. Their analysis allows us to identify clearly the nature of each individual active site amino acid and to formulate a hypothesis for the overall mechanism of the reaction catalyzed by Type I PMIs, that is, the ring-opening and isomerization steps, respectively. Following enzyme-catalyzed ring-opening of β-M6P by zinc-coordinated water and Gln111 ligands, Lys136 is identified as the probable catalytic base involved in proton transfer between the two carbon atoms C1 and C2 of the substrate D-mannose 6-phosphate.
Collapse
Affiliation(s)
- Céline Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique, ICMMO, Univ Paris-Sud, UMR 8182, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sasaki M, Teramoto H, Inui M, Yukawa H. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Appl Microbiol Biotechnol 2010; 89:1905-16. [PMID: 21125267 DOI: 10.1007/s00253-010-3002-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
Here, focus is on Corynebacterium glutamicum mannose metabolic genes with the aim to improve this industrially important microorganism's ability to ferment mannose present in mixed sugar substrates. cgR_0857 encodes C. glutamicum's protein with 36% amino acid sequence identity to mannose 6-phosphate isomerase encoded by manA of Escherichia coli. Its deletion mutant did not grow on mannose and exhibited noticeably reduced growth on glucose as sole carbon sources. In effect, C. glutamicum manA is not only essential for growth on mannose but also important in glucose metabolism. A double deletion mutant of genes encoding glucose and fructose permeases (ptsG and ptsF, respectively) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was not able to grow on mannose unlike the respective single deletion mutants with mannose utilization ability. A mutant deficient in ptsH, a general PTS gene, did not utilize mannose. These indicate that the glucose-PTS and fructose-PTS are responsible for mannose uptake in C. glutamicum. When cultured with a glucose and mannose mixture, mannose utilization of manA-overexpressing strain CRM1 was significantly higher than that of its wild-type counterpart, but with a strong preference for glucose. ptsF-overexpressing strain CRM2 co-utilized mannose and glucose, but at a total sugar consumption rate much lower than that of the wild-type strain and CRM1. Strain CRM3 overexpressing both manA and ptsF efficiently co-utilized mannose and glucose. Under oxygen-deprived conditions, high volumetric productivity of organic acids concomitant with the simultaneous consumption of the mixed sugars was achieved by the densely packed growth-arrested CRM3 cells.
Collapse
Affiliation(s)
- Miho Sasaki
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | | | | | | |
Collapse
|
28
|
Guerin ME, Korduláková J, Alzari PM, Brennan PJ, Jackson M. Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J Biol Chem 2010; 285:33577-83. [PMID: 20801880 PMCID: PMC2962455 DOI: 10.1074/jbc.r110.168328] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphatidyl-myo-inositol mannosides (PIMs) are unique glycolipids found in abundant quantities in the inner and outer membranes of the cell envelope of all Mycobacterium species. They are based on a phosphatidyl-myo-inositol lipid anchor carrying one to six mannose residues and up to four acyl chains. PIMs are considered not only essential structural components of the cell envelope but also the structural basis of the lipoglycans (lipomannan and lipoarabinomannan), all important molecules implicated in host-pathogen interactions in the course of tuberculosis and leprosy. Although the chemical structure of PIMs is now well established, knowledge of the enzymes and sequential events leading to their biosynthesis and regulation is still incomplete. Recent advances in the identification of key proteins involved in PIM biogenesis and the determination of the three-dimensional structures of the essential phosphatidyl-myo-inositol mannosyltransferase PimA and the lipoprotein LpqW have led to important insights into the molecular basis of this pathway.
Collapse
Affiliation(s)
- Marcelo E. Guerin
- From the Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- the Departamento de Bioquímica, Universidad del País Vasco, 48940 País Vasco, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Jana Korduláková
- the Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Pedro M. Alzari
- the Unité de Biochimie Structurale, CNRS URA 2185, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, and
| | - Patrick J. Brennan
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Mary Jackson
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| |
Collapse
|
29
|
Batt SM, Jabeen T, Mishra AK, Veerapen N, Krumbach K, Eggeling L, Besra GS, Fütterer K. Acceptor substrate discrimination in phosphatidyl-myo-inositol mannoside synthesis: structural and mutational analysis of mannosyltransferase Corynebacterium glutamicum PimB'. J Biol Chem 2010; 285:37741-52. [PMID: 20843801 PMCID: PMC2988379 DOI: 10.1074/jbc.m110.165407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long term survival of the pathogen Mycobacterium tuberculosis in humans is linked to the immunomodulatory potential of its complex cell wall glycolipids, which include the phosphatidylinositol mannoside (PIM) series as well as the related lipomannan and lipoarabinomannan glycoconjugates. PIM biosynthesis is initiated by a set of cytosolic α-mannosyltransferases, catalyzing glycosyl transfer from the activated saccharide donor GDP-α-D-mannopyranose to the acceptor phosphatidyl-myo-inositol (PI) in an ordered and regio-specific fashion. Herein, we report the crystal structure of mannosyltransferase Corynebacterium glutamicum PimB' in complex with nucleotide to a resolution of 2.0 Å. PimB' attaches mannosyl selectively to the 6-OH of the inositol moiety of PI. Two crystal forms and GDP- versus GDP-α-d-mannopyranose-bound complexes reveal flexibility of the nucleotide conformation as well as of the structural framework of the active site. Structural comparison, docking of the saccharide acceptor, and site-directed mutagenesis pin regio-selectivity to a conserved Asp residue in the N-terminal domain that forces presentation of the correct inositol hydroxyl to the saccharide donor.
Collapse
Affiliation(s)
- Sarah M Batt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cobucci-Ponzano B, Conte F, Strazzulli A, Capasso C, Fiume I, Pocsfalvi G, Rossi M, Moracci M. The molecular characterization of a novel GH38 α-mannosidase from the crenarchaeon Sulfolobus solfataricus revealed its ability in de-mannosylating glycoproteins. Biochimie 2010; 92:1895-907. [PMID: 20696204 DOI: 10.1016/j.biochi.2010.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/29/2010] [Indexed: 02/03/2023]
Abstract
α-Mannosidases, important enzymes in the N-glycan processing and degradation in Eukaryotes, are frequently found in the genome of Bacteria and Archaea in which their function is still largely unknown. The α-mannosidase from the hyperthermophilic Crenarchaeon Sulfolobus solfataricus has been identified and purified from cellular extracts and its gene has been cloned and expressed in Escherichia coli. The gene, belonging to retaining GH38 mannosidases of the carbohydrate active enzyme classification, is abundantly expressed in this Archaeon. The purified α-mannosidase activity depends on a single Zn(2+) ion per subunit is inhibited by swainsonine with an IC(50) of 0.2 mM. The molecular characterization of the native and recombinant enzyme, named Ssα-man, showed that it is highly specific for α-mannosides and α(1,2), α(1,3), and α(1,6)-D-mannobioses. In addition, the enzyme is able to demannosylate Man(3)GlcNAc(2) and Man(7)GlcNAc(2) oligosaccharides commonly found in N-glycosylated proteins. More interestingly, Ssα-man removes mannose residues from the glycosidic moiety of the bovine pancreatic ribonuclease B, suggesting that it could process mannosylated proteins also in vivo. This is the first evidence that archaeal glycosidases are involved in the direct modification of glycoproteins.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Protein Biochemistry - Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Torrelles JB, Schlesinger LS. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb) 2010; 90:84-93. [PMID: 20199890 PMCID: PMC2855779 DOI: 10.1016/j.tube.2010.02.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
Mycobacterium tuberculosis (the causal agent of TB) has co-evolved with humans for centuries. It infects via the airborne route and is a prototypic highly adapted intracellular pathogen of macrophages. Extensive sequencing of the M. tuberculosis genome along with recent molecular phylogenetic studies is enabling us to gain insight into the biologic diversity that exists among bacterial strains that impact the pathogenesis of latent infection and disease. The majority of the M. tuberculosis cell envelope is comprised of carbohydrates and lipids, and there is increasing evidence that these microbial determinants that are readily exposed to the host immune system play critical roles in disease pathogenesis. Studies from our laboratory and others have raised the possibility that M. tuberculosis is adapting to the human host by cloaking its cell envelope molecules with terminal mannosylated (i.e. Man-alpha-(1-->2)-Man) oligosaccharides that resemble the glycoforms of mammalian mannoproteins. These mannosylated biomolecules engage the mannose receptor (MR) on macrophages during phagocytosis and dictate the intracellular fate of M. tuberculosis by regulating formation of the unique vesicular compartment in which the bacterium survives. The MR is highly expressed on alveolar macrophages (predominant C-type lectin on human cells) and functions as a scavenger receptor to maintain the healthiness of the lung by clearing foreign particles and at the same time regulating dangerous inflammatory responses. Thus M. tuberculosis exploits MR functions to gain entry into the macrophage and survive. Key biochemical pathways and mycobacterial determinants involved in the development and maintenance of the M. tuberculosis phagosome are being identified. The phylogenetic diversity observed in M. tuberculosis strains that impact its cell wall structure together with the genetic diversity observed in human populations, including those elements that affect macrophage function, may help to explain the extraordinary evolutionary adaptation of this pathogen to the human host. Major developments in these areas are the focus of this review.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
32
|
Espitia C, Servín-González L, Mancilla R. New insights into protein O-mannosylation in actinomycetes. MOLECULAR BIOSYSTEMS 2010; 6:775-81. [PMID: 20567761 DOI: 10.1039/b916394h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a common post-translational modification of surface exposed proteins and lipids present in all kingdoms of life. Information derived from bacterial genome sequencing, together with proteomic and genomic analysis has allowed the identification of the enzymatic glycosylation machinery. Among prokaryotes, O-mannosylation of proteins has been found in the actinomycetes and resembles protein O-mannosylation in fungi and higher eukaryotes. In this review we summarize the main features of the biosynthetic pathway of O-mannosylation in prokaryotes with special emphasis on the actinomycetes, as well as the biological role of the glycosylated target proteins.
Collapse
Affiliation(s)
- Clara Espitia
- Departamento de Inmunologia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
33
|
Cao B, Williams SJ. Chemical approaches for the study of the mycobacterial glycolipids phosphatidylinositol mannosides, lipomannan and lipoarabinomannan. Nat Prod Rep 2010; 27:919-47. [DOI: 10.1039/c000604a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Kaur D, Guerin ME, Skovierová H, Brennan PJ, Jackson M. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. ADVANCES IN APPLIED MICROBIOLOGY 2009; 69:23-78. [PMID: 19729090 DOI: 10.1016/s0065-2164(09)69002-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The re-emergence of tuberculosis in its present-day manifestations - single, multiple and extensive drug-resistant forms and as HIV-TB coinfections - has resulted in renewed research on fundamental questions such as the nature of the organism itself, Mycobacterium tuberculosis, the molecular basis of its pathogenesis, definition of the immunological response in animal models and humans, and development of new intervention strategies such as vaccines and drugs. Foremost among these developments has been the precise chemical definition of the complex and distinctive cell wall of M. tuberculosis, elucidation of the relevant pathways and underlying genetics responsible for the synthesis of the hallmark moieties of the tubercle bacillus such as the mycolic acid-arabinogalactan-peptidoglycan complex, the phthiocerol- and trehalose-containing effector lipids, the phosphatidylinositol-containing mannosides, lipomannosides and lipoarabinomannosides, major immunomodulators, and others. In this review, the laboratory personnel who have been the focal point of some to these developments review recent progress towards a comprehensive understanding of the basic physiology and functions of the cell wall of M. tuberculosis.
Collapse
Affiliation(s)
- Devinder Kaur
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523-1682, USA
| | | | | | | | | |
Collapse
|
35
|
Synthesis and evaluation of non-hydrolyzable D-mannose 6-phosphate surrogates reveal 6-deoxy-6-dicarboxymethyl-D-mannose as a new strong inhibitor of phosphomannose isomerases. Bioorg Med Chem 2009; 17:7100-7. [PMID: 19783448 DOI: 10.1016/j.bmc.2009.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/28/2009] [Accepted: 09/03/2009] [Indexed: 11/23/2022]
Abstract
Non-hydrolyzable d-mannose 6-phosphate analogues in which the phosphate group was replaced by a phosphonomethyl, a dicarboxymethyl, or a carboxymethyl group were synthesized and kinetically evaluated as substrate analogues acting as potential inhibitors of type I phosphomannose isomerases (PMIs) from Saccharomyces cerevisiae and Escherichia coli. While 6-deoxy-6-phosphonomethyl-d-mannose and 6-deoxy-6-carboxymethyl-D-mannose did not inhibit the enzymes significantly, 6-deoxy-6-dicarboxymethyl-D-mannose appeared as a new strong competitive inhibitor of both S. cerevisiae and E. coli PMIs with K(m)/K(i) ratios of 28 and 8, respectively. We thus report the first malonate-based inhibitor of an aldose-ketose isomerase to date. Phosphonomethyl mimics of the 1,2-cis-enediolate high-energy intermediate postulated for the isomerization reaction catalyzed by PMIs were also synthesized but behave as poor inhibitors of PMIs. A polarizable molecular mechanics (SIBFA) study was performed on the complexes of d-mannose 6-phosphate and two of its analogues with PMI from Candida albicans, an enzyme involved in yeast infection homologous to S. cerevisiae and E. coli PMIs. It shows that effective binding to the catalytic site occurs with retention of the Zn(II)-bound water molecule. Thus the binding of the hydroxyl group on C1 of the ligand to Zn(II) should be water-mediated. The kinetic study reported here also suggests the dianionic character of the phosphate surrogate as a likely essential parameter for strong binding of the inhibitor to the enzyme active site.
Collapse
|
36
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
37
|
Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M. Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. PLANT & CELL PHYSIOLOGY 2009; 50:423-8. [PMID: 19122187 DOI: 10.1093/pcp/pcn206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphomannomutase (PMM; EC 5.4.2.8) catalyzes the interconversion of mannose-6-phosphate to mannose-1-phosphate in the Smirnoff-Wheeler pathway for the biosynthesis of l-ascorbic acid (AsA). We have cloned the PMM cDNA from acerola (Malpighia glabra), a plant containing an enormous amount of AsA. The AsA contents correlate with the PMM gene expression of the ripening fruits and leaves. The PMM activities in the leaves of acerola, tomato and Arabidopsis correlate with their respective AsA contents. Transgenic tobacco plants overexpressing the acerola PMM gene showed about a 2-fold increase in AsA contents compared with the wild type, with a corresponding correlation with the PMM transcript levels and activities.
Collapse
|
38
|
Nic Lochlainn L, Caffrey P. Phosphomannose isomerase and phosphomannomutase gene disruptions in Streptomyces nodosus: impact on amphotericin biosynthesis and implications for glycosylation engineering. Metab Eng 2008; 11:40-7. [PMID: 18824121 DOI: 10.1016/j.ymben.2008.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/12/2022]
Abstract
Streptomycetes synthesise several bioactive natural products that are modified with sugar residues derived from GDP-mannose. These include the antifungal polyenes, the antibacterial antibiotics hygromycin A and mannopeptimycins, and the anticancer agent bleomycin. Three enzymes function in biosynthesis of GDP-mannose from the glycolytic intermediate fructose 6-phosphate: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMPP). Synthesis of GDP-mannose from exogenous mannose requires hexokinase or phosphotransferase enzymes together with PMM and GMPP. In this study, a region containing genes for PMI, PMM and GMPP was cloned from Streptomyces nodosus, producer of the polyenes amphotericins A and B. Inactivation of the manA gene for PMI resulted in production of amphotericins and their aglycones, 8-deoxyamphoteronolides. A double mutant lacking the PMI and PMM genes produced 8-deoxyamphoteronolides in good yields along with trace levels of glycosylated amphotericins. With further genetic engineering these mutants may activate alternative hexoses as GDP-sugars for transfer to aglycones in vivo.
Collapse
Affiliation(s)
- Laura Nic Lochlainn
- School of Biomolecular and Biomedical Science and Centre for Synthesis and Chemical Biology, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
39
|
Saxena A, Srivastava V, Srivastava R, Srivastava BS. Identification of genes of Mycobacterium tuberculosis upregulated during anaerobic persistence by fluorescence and kanamycin resistance selection. Tuberculosis (Edinb) 2008; 88:518-25. [PMID: 18434250 DOI: 10.1016/j.tube.2008.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 01/12/2008] [Accepted: 01/12/2008] [Indexed: 11/18/2022]
Abstract
Molecular mechanisms involved in maintaining the latent infection of Mycobacterium tuberculosis are least understood. We have applied principles of in vivo expression technology (IVET) to identify upregulated genes in an in vitro simulated condition of anaerobic persistence likely to be encountered by the pathogen in lung granulomas. A promoter library of M. tuberculosis constructed in plasmid pLL192 was subjected to hypoxic condition (dissolved oxygen <1%) in a controlled fermenter. On the basis of green fluorescent protein fluorescence and kanamycin resistance the upregulated promoters were selected, identified by nucleotide sequence and the genes were confirmed by RT-PCR. The upregulated genes include Rv0050 (penicillin binding protein), Rv1511 (GDP-d-mannose dehydratase), Rv1489, Rv2257, Rv2258 (all conserved hypothetical proteins), Rv0467 (isocitrate lyase) and Rv2031c (alpha-crystalline homolog). The involvement of the last four genes in latency has been suggested before. The functional role of Rv0050 and Rv1511 may be important in determining cell wall characteristics controlling permeability of nutrients and antibiotics.
Collapse
Affiliation(s)
- Alka Saxena
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | |
Collapse
|
40
|
Gresh N, Cisneros GA, Darden TA, Piquemal JP. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. J Chem Theory Comput 2007; 3:1960-1986. [PMID: 18978934 PMCID: PMC2367138 DOI: 10.1021/ct700134r] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present an overview of the SIBFA polarizable molecular mechanics procedure, which is formulated and calibrated on the basis of quantum chemistry (QC). It embodies nonclassical effects such as electrostatic penetration, exchange-polarization, and charge transfer. We address the issues of anisotropy, nonadditivity, and transferability by performing parallel QC computations on multimolecular complexes. These encompass multiply H-bonded complexes and polycoordinated complexes of divalent cations. Recent applications to the docking of inhibitors to Zn-metalloproteins are presented next, namely metallo-beta-lactamase, phosphomannoisomerase, and the nucleocapsid of the HIV-1 retrovirus. Finally, toward third-generation intermolecular potentials based on density fitting, we present the development of a novel methodology, the Gaussian electrostatic model (GEM), which relies on ab initio-derived fragment electron densities to compute the components of the total interaction energy. As GEM offers the possibility of a continuous electrostatic model going from distributed multipoles to densities, it allows an inclusion of short-range quantum effects in the molecular mechanics energies. The perspectives of an integrated SIBFA/GEM/QM procedure are discussed.
Collapse
Affiliation(s)
- Nohad Gresh
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université René-Descartes, 45, rue des Saints-Pères, 75006 Paris, France, Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Laboratoire de Chimie Théorique, Université Pierre-et-Marie-Curie, UMR 7616 CNRS, case courrier 137, 4, place Jussieu, 75252 Paris, France
| | | | | | | |
Collapse
|
41
|
Roux C, Gresh N, Perera LE, Piquemal JP, Salmon L. Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem 2007; 28:938-57. [PMID: 17253648 DOI: 10.1002/jcc.20586] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type I phosphomannose isomerase (PMI) is a Zn-dependent metalloenzyme involved in the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate. One of our laboratories has recently designed and synthesized 5-phospho-D-arabinonohydroxamate (5PAH), an inhibitor endowed with a nanomolar affinity for PMI (Roux et al., Biochemistry 2004, 43, 2926). By contrast, the 5-phospho-D-arabinonate (5PAA), in which the hydroxamate moiety is replaced by a carboxylate one, is devoid of inhibitory potency. Subsequent biochemical studies showed that in its PMI complex, 5PAH binds Zn(II) through its hydroxamate moiety rather than through its phosphate. These results have stimulated the present theoretical investigation in which we resort to the SIBFA polarizable molecular mechanics procedure to unravel the structural and energetical aspects of 5PAH and 5PAA binding to a 164-residue model of PMI. Consistent with the experimental results, our theoretical studies indicate that the complexation of PMI by 5PAH is much more favorable than by 5PAA, and that in the 5PAH complex, Zn(II) ligation by hydroxamate is much more favorable than by phosphate. Validations by parallel quantum-chemical computations on model of the recognition site extracted from the PMI-inhibitor complexes, and totaling up to 140 atoms, showed the values of the SIBFA intermolecular interaction energies in such models to be able to reproduce the quantum-chemistry ones with relative errors < 3%. On the basis of the PMI-5PAH SIBFA energy-minimized structure, we report the first hypothesis of a detailed view of the active site of the zinc PMI complexed to the high-energy intermediate analogue inhibitor, which allows us to identify active site residues likely involved in the proton transfer between the two adjacent carbons of the substrates.
Collapse
Affiliation(s)
- Celine Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS-UMR 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, Université Paris-Sud XI, 15 rue Georges Clémenceau, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
42
|
Beste DJV, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 2007; 8:R89. [PMID: 17521419 PMCID: PMC1929162 DOI: 10.1186/gb-2007-8-5-r89] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/16/2007] [Accepted: 05/23/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND An impediment to the rational development of novel drugs against tuberculosis (TB) is a general paucity of knowledge concerning the metabolism of Mycobacterium tuberculosis, particularly during infection. Constraint-based modeling provides a novel approach to investigating microbial metabolism but has not yet been applied to genome-scale modeling of M. tuberculosis. RESULTS GSMN-TB, a genome-scale metabolic model of M. tuberculosis, was constructed, consisting of 849 unique reactions and 739 metabolites, and involving 726 genes. The model was calibrated by growing Mycobacterium bovis bacille Calmette Guérin in continuous culture and steady-state growth parameters were measured. Flux balance analysis was used to calculate substrate consumption rates, which were shown to correspond closely to experimentally determined values. Predictions of gene essentiality were also made by flux balance analysis simulation and were compared with global mutagenesis data for M. tuberculosis grown in vitro. A prediction accuracy of 78% was achieved. Known drug targets were predicted to be essential by the model. The model demonstrated a potential role for the enzyme isocitrate lyase during the slow growth of mycobacteria, and this hypothesis was experimentally verified. An interactive web-based version of the model is available. CONCLUSION The GSMN-TB model successfully simulated many of the growth properties of M. tuberculosis. The model provides a means to examine the metabolic flexibility of bacteria and predict the phenotype of mutants, and it highlights previously unexplored features of M. tuberculosis metabolism.
Collapse
Affiliation(s)
- Dany JV Beste
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Tracy Hooper
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Graham Stewart
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Bhushan Bonde
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Claudio Avignone-Rossa
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Michael E Bushell
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Paul Wheeler
- Tuberculosis Research Group, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone KT15 3NB, UK
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, D-39106 Magdeburg, Germany
| | - Andrzej M Kierzek
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Johnjoe McFadden
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
43
|
Xiao J, Guo Z, Guo Y, Chu F, Sun P. Computational study of human phosphomannose isomerase: Insights from homology modeling and molecular dynamics simulation of enzyme bound substrate. J Mol Graph Model 2006; 25:289-95. [PMID: 16488169 DOI: 10.1016/j.jmgm.2006.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 01/04/2006] [Accepted: 01/08/2006] [Indexed: 11/25/2022]
Abstract
Phosphomannose isomerase is a zinc metalloenzyme that catalyzes the reversible isomerization of mannose-6-phosphate and fructose-6-phosphate, and the three-dimensional (3D) structure of human phosphomannose isomerase has not been reported. In order to understand the catalytic mechanism, the 3D structure of the protein is built by using homology modeling based on the known crystal structure of mannose-6-phosphate isomerase from (PDB code 1PMI). The model structure is further refined by energy minimization and molecular dynamics methods. The mannose-6-phosphate-enzyme complex is developed by molecular docking and the key residues involved in the ligand binding are determined, which will facilitate the understanding of the action mode of the ligands and guide further genetic studies. Our results suggest a hydride transfer mechanism of alpha-hydrogen between the C1 and C2 positions but do not support the cis-enediol mechanism. The detailed mechanism involves, on one side, Zn2+ mediating the movement of a proton between O1 and O2, and, on the other side, the hydrophobic environment formed in part by Tyr278 promoting transfer of a hydride ion.
Collapse
Affiliation(s)
- Jingfa Xiao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | |
Collapse
|
44
|
Raghunand TR, Bishai WR. Mycobacterium smegmatis whmD and its homologue Mycobacterium tuberculosis whiB2 are functionally equivalent. Microbiology (Reading) 2006; 152:2735-2747. [PMID: 16946268 DOI: 10.1099/mic.0.28911-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium smegmatis whmDis is an essential gene involved in cell division. This paper shows thatwhmDand its homologuewhiB2inMycobacterium tuberculosisare functionally equivalent. The genes are syntenous, and share significant homology in both their coding and non-coding DNA sequences. Transcription site mapping showed that the two genes possess near-identical promoter elements, and they displayed comparable promoter strengths in a reporter gene assay. The two proteins show near identity in their C-terminus, and polyclonal antiserum to WhmD specifically cross-reacts with a ∼15 kDa band inM. tuberculosislysates. Following overexpression of sense and anti-sense constructs in their cognate mycobacterial hosts,whiB2andwhmDtransformants displayed a small-colony phenotype, exhibited filamentation, and showed a reduction in viability. These observations reveal that the two proteins are functionally homologous and that their intracellular concentration is critical for septation in mycobacteria. Colonies ofM. tuberculosisoverexpressingwhiB2were spherical and glossy, suggesting a change in composition of the cell envelope. Filaments of the conditionally complementedM. smegmatis whmDmutant were non-acid-fast, also indicating changes in characteristics of surface lipids.M. smegmatistransformants carrying awhmD–gfpfusion showed a diffuse pattern of fluorescence, consistent with the putative role of WhmD as a regulator. These observations strongly suggest thatM. tuberculosis whiB2is an essential gene and its protein product in all likelihood regulates the expression of genes involved in the cell division cascade.
Collapse
Affiliation(s)
- Tirumalai R Raghunand
- Department of Medicine, Johns Hopkins University, CRB2, Room 1.08, 1550 Orleans Street, Baltimore, MD 21231-1044, USA
| | - William R Bishai
- Department of Medicine, Johns Hopkins University, CRB2, Room 1.08, 1550 Orleans Street, Baltimore, MD 21231-1044, USA
| |
Collapse
|
45
|
Morita YS, Sena CBC, Waller RF, Kurokawa K, Sernee MF, Nakatani F, Haites RE, Billman-Jacobe H, McConville MJ, Maeda Y, Kinoshita T. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem 2006; 281:25143-55. [PMID: 16803893 DOI: 10.1074/jbc.m604214200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol mannosides (PIMs) are a major class of glycolipids in all mycobacteria. AcPIM2, a dimannosyl PIM, is both an end product and a precursor for polar PIMs, such as hexamannosyl PIM (AcPIM6) and the major cell wall lipoglycan, lipoarabinomannan (LAM). The mannosyltransferases that convert AcPIM2 to AcPIM6 or LAM are dependent on polyprenol-phosphate-mannose (PPM), but have not yet been characterized. Here, we identified a gene, termed pimE that is present in all mycobacteria, and is required for AcPIM6 biosynthesis. PimE was initially identified based on homology with eukaryotic PIG-M mannosyltransferases. PimE-deleted Mycobacterium smegmatis was defective in AcPIM6 synthesis, and accumulated the tetramannosyl PIM, AcPIM4. Loss of PimE had no affect on cell growth or viability, or the biosynthesis of other intracellular and cell wall glycans. However, changes in cell wall hydrophobicity and plasma membrane organization were detected, suggesting a role for AcPIM6 in the structural integrity of the cell wall and plasma membrane. These defects were corrected by ectopic expression of the pimE gene. Metabolic pulse-chase radiolabeling and cell-free PIM biosynthesis assays indicated that PimE catalyzes the alpha1,2-mannosyl transfer for the AcPIM5 synthesis. Mutation of an Asp residue in PimE that is conserved in and required for the activity of human PIG-M resulted in loss of PIM-biosynthetic activity, indicating that PimE is the catalytic component. Finally, PimE was localized to a distinct membrane fraction enriched in AcPIM4-6 biosynthesis. Taken together, PimE represents the first PPM-dependent mannosyl-transferase shown to be involved in PIM biosynthesis, where it mediates the fifth mannose transfer.
Collapse
Affiliation(s)
- Yasu S Morita
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McCarthy TR, Torrelles JB, MacFarlane AS, Katawczik M, Kutzbach B, Desjardin LE, Clegg S, Goldberg JB, Schlesinger LS. Overexpression of Mycobacterium tuberculosis manB, a phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis in Mycobacterium smegmatis and mycobacterial association with human macrophages. Mol Microbiol 2006; 58:774-90. [PMID: 16238626 DOI: 10.1111/j.1365-2958.2005.04862.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis (M. tb) pathogenesis involves the interaction between the mycobacterial cell envelope and host macrophage, a process mediated, in part, by binding of the mannose caps of M. tb lipoarabinomannan (ManLAM) to the macrophage mannose receptor (MR). A presumed critical step in the biosynthesis of ManLAM, and other mannose-containing glycoconjugates, is the conversion of mannose-6-phosphate to mannose-1-phosphate, by a phosphomannomutase (PMM), to produce GDP-mannose, the primary mannose-donor in mycobacteria. We have identified four M. tb H37Rv genes with similarity to known PMMs. Using in vivo complementation of PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa, and an in vitro enzyme assay, we have identified both PMM and PGM activity from one of these genes, Rv3257c (MtmanB). MtmanB overexpression in M. smegmatis produced increased levels of LAM, lipomannan, and phosphatidylinositol mannosides (PIMs) compared with control strains and led to a 13.3 +/- 3.9-fold greater association of mycobacteria with human macrophages, in a mannan-inhibitable fashion. This increased association was mediated by the overproduction of higher order PIMs that possess mannose cap structures. We conclude that MtmanB encodes a functional PMM involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with macrophage phagocytic receptors.
Collapse
Affiliation(s)
- Travis R McCarthy
- Department of Medicine and Molecular Virology, the Center for Microbial Interface Biology, and the Division of Infectious Diseases, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Morita YS, Velasquez R, Taig E, Waller RF, Patterson JH, Tull D, Williams SJ, Billman-Jacobe H, McConville MJ. Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 2005; 280:21645-52. [PMID: 15805104 DOI: 10.1074/jbc.m414181200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane of Mycobacterium sp. is the site of synthesis of several distinct classes of lipids that are either retained in the membrane or exported to the overlying cell envelope. Here, we provide evidence that enzymes involved in the biosynthesis of two major lipid classes, the phosphatidylinositol mannosides (PIMs) and aminophospholipids, are compartmentalized within the plasma membrane. Enzymes involved in the synthesis of early PIM intermediates were localized to a membrane subdomain termed PMf, that was clearly resolved from the cell wall by isopyknic density centrifugation and amplified in rapidly dividing Mycobacterium smegmatis. In contrast, the major pool of apolar PIMs and enzymes involved in polar PIM biosynthesis were localized to a denser fraction that contained both plasma membrane and cell wall markers (PM-CW). Based on the resistance of the PIMs to solvent extraction in live but not lysed cells, we propose that polar PIM biosynthesis occurs in the plasma membrane rather than the cell wall component of the PM-CW. Enzymes involved in phosphatidylethanolamine biosynthesis also displayed a highly polarized distribution between the PMf and PM-CW fractions. The PMf was greatly reduced in non-dividing cells, concomitant with a reduction in the synthesis and steady-state levels of PIMs and amino-phospholipids and the redistribution of PMf marker enzymes to non-PM-CW fractions. The formation of the PMf and recruitment of enzymes to this domain may thus play a role in regulating growth-specific changes in the biosynthesis of membrane and cell wall lipids.
Collapse
Affiliation(s)
- Yasu S Morita
- Department of Biochemistry and Molecular Biology, The B1021 Molecular Sciences and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jayaprakash KN, Lu J, Fraser-Reid B. Synthesis of a key Mycobacterium tuberculosis biosynthetic phosphoinositide intermediate. Bioorg Med Chem Lett 2004; 14:3815-9. [PMID: 15203168 DOI: 10.1016/j.bmcl.2004.04.103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/25/2022]
Abstract
Regioselective mannosylations of a myoinositol acceptor diol are readily achieved by Lewis acid mediated iodinolysis of n-pentenyl ortho-esters. The procedure affords a psuedotrisaccharide to which the phosphoglyceryl and other lipid residues are added leading to the key biosynthetic intermediate of Mycobacterium species.
Collapse
Affiliation(s)
- K N Jayaprakash
- Natural Products and Glycotechnology Research Institute, Inc., (NPG), 4118 Swarthmore Road, Durham, NC 27706, USA
| | | | | |
Collapse
|
49
|
Gophna U, Charlebois RL, Doolittle WF. Have archaeal genes contributed to bacterial virulence? Trends Microbiol 2004; 12:213-9. [PMID: 15120140 DOI: 10.1016/j.tim.2004.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Uri Gophna
- Genome Atlantic and Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | |
Collapse
|
50
|
Morita YS, Patterson JH, Billman-Jacobe H, McConville MJ. Biosynthesis of mycobacterial phosphatidylinositol mannosides. Biochem J 2004; 378:589-97. [PMID: 14627436 PMCID: PMC1223975 DOI: 10.1042/bj20031372] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/07/2003] [Accepted: 11/20/2003] [Indexed: 11/17/2022]
Abstract
All mycobacterial species, including pathogenic Mycobacterium tuberculosis, synthesize an abundant class of phosphatidylinositol mannosides (PIMs) that are essential for normal growth and viability. These glycolipids are important cell-wall and/or plasma-membrane components in their own right and can also be hyperglycosylated to form other wall components, such as lipomannan and lipoarabinomannan. We have investigated the steps involved in the biosynthesis of the major PIM species in a new M. smegmatis cell-free system. A number of apolar and polar PIM intermediates were labelled when this system was continuously labelled or pulse-chase-labelled with GDP-[3H]Man, and the glycan head groups and the acylation states of these species were determined by chemical and enzymic treatments and octyl-Sepharose chromatography respectively. These analyses showed that (1) the major apolar PIM species, acyl-PIM2, can be synthesized by at least two pathways that differ in the timing of the first acylation step, (2) early PIM intermediates containing a single mannose residue can be modified with two fatty acid residues, (3) formation of polar PIM species from acyl-PIM2 is amphomycin-sensitive, indicating that polyprenol phosphate-Man, rather than GDP-Man, is the donor for these reactions, (4) modification of acylated PIM4 with alpha1-2- or alpha1-6-linked mannose residues is probably the branch point in the biosyntheses of polar PIM and lipoarabinomannan respectively and (5) GDP strongly inhibits the synthesis of early PIM intermediates and increases the turnover of polyprenol phosphate-Man. These findings are incorporated into a revised pathway for mycobacterial PIM biosynthesis.
Collapse
Affiliation(s)
- Yasu S Morita
- Department of Biochemistry and Molecular Biology, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|