1
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Song Z, Lin S, Fu J, Chen Y, Zhang H, Li J, Liang M. Heterologous expression of ISU1 gene from Fragaria vesca enhances plant tolerance to Fe depletion in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:65-74. [PMID: 35636333 DOI: 10.1016/j.plaphy.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Iron-sulfur (Fe-S) cluster assembly genes play important roles in plant growth and development. However, their biological function in fruit crops is still unknown, especially in strawberry. In this study, Fe depletion significantly inhibited the growth, photosynthesis, Fe accumulation level and the enzyme activity of Fe-S proteins of aconitase (ACO), nitrate reductase (NiR) and succinate dehydrogenase (SDH) in strawberry seedlings. In addition, 40 Fe-S cluster assembly genes were isolated from strawberry, which were significantly varied among different tissues/organs and were differentially responded to Fe depletion in different tissue parts. In total, 79% of the responsive genes were up-regulated in shoots, while 65% of the responsive genes were down-regulated in roots under Fe depletion. Moreover, the expression level of ISU1 was the highest in strawberry tissues, especially in young fruits, and over-expression of ISU1 gene in Arabidopsis significantly enhanced the Fe accumulation, leaf total chlorophyll, ACO and SDH activities in transgenic lines, and strengthened plant tolerance to Fe depletion. This study provides gene resources to elucidate the molecular mechanisms of Fe-S cluster assembly in strawberry, and lays a theoretical foundation to reveal Fe nutrition and metabolism in Rosaceae fruits.
Collapse
Affiliation(s)
- Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, 186 Hongqizhong Road, Yantai, 264025, China; Department of Plant Science, University of Cambridge, Cambridge, CB2 3EA, UK.
| | - Shizhuo Lin
- The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, 186 Hongqizhong Road, Yantai, 264025, China
| | - Jiayu Fu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, 186 Hongqizhong Road, Yantai, 264025, China
| | - Yahui Chen
- The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, 186 Hongqizhong Road, Yantai, 264025, China; Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, 186 Hongqizhong Road, Yantai, 264025, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Meixia Liang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, 186 Hongqizhong Road, Yantai, 264025, China.
| |
Collapse
|
3
|
Przybyla-Toscano J, Maclean AE, Franceschetti M, Liebsch D, Vignols F, Keech O, Rouhier N, Balk J. Protein lipoylation in mitochondria requires Fe-S cluster assembly factors NFU4 and NFU5. PLANT PHYSIOLOGY 2022; 188:997-1013. [PMID: 34718778 PMCID: PMC8825329 DOI: 10.1093/plphys/kiab501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.
Collapse
Affiliation(s)
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, F-34060 Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | | | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
4
|
Wang P. Last piece of the puzzle: defining client proteins of the NFU iron-sulfur transfer proteins in mitochondria. PLANT PHYSIOLOGY 2022; 188:928-930. [PMID: 34788855 PMCID: PMC8825258 DOI: 10.1093/plphys/kiab523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
5
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
6
|
Gomez-Casati DF, Busi MV, Barchiesi J, Pagani MA, Marchetti-Acosta NS, Terenzi A. Fe-S Protein Synthesis in Green Algae Mitochondria. PLANTS 2021; 10:plants10020200. [PMID: 33494487 PMCID: PMC7911964 DOI: 10.3390/plants10020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Iron and sulfur are two essential elements for all organisms. These elements form the Fe-S clusters that are present as cofactors in numerous proteins and protein complexes related to key processes in cells, such as respiration and photosynthesis, and participate in numerous enzymatic reactions. In photosynthetic organisms, the ISC and SUF Fe-S cluster synthesis pathways are located in organelles, mitochondria, and chloroplasts, respectively. There is also a third biosynthetic machinery in the cytosol (CIA) that is dependent on the mitochondria for its function. The genes and proteins that participate in these assembly pathways have been described mainly in bacteria, yeasts, humans, and recently in higher plants. However, little is known about the proteins that participate in these processes in algae. This review work is mainly focused on releasing the information on the existence of genes and proteins of green algae (chlorophytes) that could participate in the assembly process of Fe-S groups, especially in the mitochondrial ISC and CIA pathways.
Collapse
Affiliation(s)
- Diego F. Gomez-Casati
- Correspondence: (D.F.G.-C.); (M.V.B.); Tel.: +54-341-4391955 (ext. 113) (D.F.G.-C. & M.V.B.)
| | - Maria V. Busi
- Correspondence: (D.F.G.-C.); (M.V.B.); Tel.: +54-341-4391955 (ext. 113) (D.F.G.-C. & M.V.B.)
| | | | | | | | | |
Collapse
|
7
|
Satyanarayan MB, Zhao J, Zhang J, Yu F, Lu Y. Functional relationships of three NFU proteins in the biogenesis of chloroplastic iron-sulfur clusters. PLANT DIRECT 2021; 5:e00303. [PMID: 33553997 PMCID: PMC7851846 DOI: 10.1002/pld3.303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 05/14/2023]
Abstract
Iron-sulfur clusters are required in a variety of biological processes. Biogenesis of iron-sulfur clusters includes assembly of iron-sulfur clusters on scaffold complexes and transfer of iron-sulfur clusters to recipient apoproteins by iron-sulfur carriers, such as nitrogen-fixation-subunit-U (NFU)-type proteins. Arabidopsis thaliana has three plastid-targeted NFUs: NFU1, NFU2, and NFU3. We previously discovered that nfu2 -/- nfu3 -/- mutants are embryo lethal. The lack of viable nfu2 -/- nfu3 -/- mutants posed a serious challenge. To overcome this problem, we characterized nfu2-1 -/- nfu3-2+/- and nfu2-1+/- nfu3-2 -/- sesquimutants. Simultaneous loss-of-function mutations in NFU2 and NFU3 have an additive effect on the declines of 4Fe-4S-containing PSI core subunits. Consequently, the sesquimutants had much lower PSI and PSII activities, much less chlorophyll, and much smaller plant sizes, than nfu2-1 and nfu3-2 single mutants. These observations are consistent with proposed roles of NFU3 and NFU2 in the biogenesis of chloroplastic 4Fe-4S. By performing spectroscopic and in vitro reconstitution experiments, we found that NFU1 may act as a carrier for chloroplastic 4Fe-4S and 3Fe-4S clusters. In line with this hypothesis, loss-of-function mutations in NFU1 resulted in significant declines in 4Fe-4S- and 3Fe-4S-containing chloroplastic proteins. The declines of PSI activity and 4Fe-4S-containing PSI core subunits in nfu1 mutants indicate that PSI is the main target of NFU1 action. The reductions in 4Fe-4S-containing PSI core proteins and PSI activity in nfu3-2, nfu2-1, and nfu1 single mutants suggest that all three plastid-targeted NFU proteins contribute to the biogenesis of chloroplastic 4Fe-4S clusters. Although different insertion sites of T-DNA lines may cause variations in phenotypic results, mutation severity could be an indicator of the relative importance of the gene product. Our results are consistent with the hypothesis that NFU3 contributes more than NFU2 and NFU2 contributes more than NFU1 to the production of 4Fe-4S-containing PSI core subunits.
Collapse
Affiliation(s)
- Manasa B. Satyanarayan
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
Charles River LaboratoriesMattawanMIUSA
| | - Jun Zhao
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jessica Zhang
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yan Lu
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| |
Collapse
|
8
|
Azam T, Przybyla-Toscano J, Vignols F, Couturier J, Rouhier N, Johnson MK. [4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins. J Biol Chem 2020; 295:18367-18378. [PMID: 33122194 PMCID: PMC7939391 DOI: 10.1074/jbc.ra120.015726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coliIn vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.
Collapse
Affiliation(s)
- Tamanna Azam
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA
| | | | - Florence Vignols
- BPMP, Université de Montpellier, INRAE, CNRS, SupAgro, Montpellier, France
| | | | | | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
9
|
Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, Lukeš J. A Uniquely Complex Mitochondrial Proteome from Euglena gracilis. Mol Biol Evol 2020; 37:2173-2191. [PMID: 32159766 PMCID: PMC7403612 DOI: 10.1093/molbev/msaa061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Euglena gracilis is a metabolically flexible, photosynthetic, and adaptable free-living protist of considerable environmental importance and biotechnological value. By label-free liquid chromatography tandem mass spectrometry, a total of 1,786 proteins were identified from the E. gracilis purified mitochondria, representing one of the largest mitochondrial proteomes so far described. Despite this apparent complexity, protein machinery responsible for the extensive RNA editing, splicing, and processing in the sister clades diplonemids and kinetoplastids is absent. This strongly suggests that the complex mechanisms of mitochondrial gene expression in diplonemids and kinetoplastids occurred late in euglenozoan evolution, arising independently. By contrast, the alternative oxidase pathway and numerous ribosomal subunits presumed to be specific for parasitic trypanosomes are present in E. gracilis. We investigated the evolution of unexplored protein families, including import complexes, cristae formation proteins, and translation termination factors, as well as canonical and unique metabolic pathways. We additionally compare this mitoproteome with the transcriptome of Eutreptiella gymnastica, illuminating conserved features of Euglenida mitochondria as well as those exclusive to E. gracilis. This is the first mitochondrial proteome of a free-living protist from the Excavata and one of few available for protists as a whole. This study alters our views of the evolution of the mitochondrion and indicates early emergence of complexity within euglenozoan mitochondria, independent of parasitism.
Collapse
Affiliation(s)
- Michael J Hammond
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Anzhelika Butenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Eva Lacová Dobáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Mark C Field
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| |
Collapse
|
10
|
Nakai Y, Maruyama-Nakashita A. Biosynthesis of Sulfur-Containing Small Biomolecules in Plants. Int J Mol Sci 2020; 21:ijms21103470. [PMID: 32423011 PMCID: PMC7278922 DOI: 10.3390/ijms21103470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/25/2023] Open
Abstract
Sulfur is an essential element required for plant growth. It can be found as a thiol group of proteins or non-protein molecules, and as various sulfur-containing small biomolecules, including iron-sulfur (Fe/S) clusters, molybdenum cofactor (Moco), and sulfur-modified nucleotides. Thiol-mediated redox regulation has been well investigated, whereas biosynthesis pathways of the sulfur-containing small biomolecules have not yet been clearly described. In order to understand overall sulfur transfer processes in plant cells, it is important to elucidate the relationships among various sulfur delivery pathways as well as to investigate their interactions. In this review, we summarize the information from recent studies on the biosynthesis pathways of several sulfur-containing small biomolecules and the proteins participating in these processes. In addition, we show characteristic features of gene expression in Arabidopsis at the early stage of sulfate depletion from the medium, and we provide insights into sulfur transfer processes in plant cells.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki 569-8686, Japan
- Correspondence: ; Fax: +81-72-684-6516
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
11
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
12
|
Roland M, Przybyla-Toscano J, Vignols F, Berger N, Azam T, Christ L, Santoni V, Wu HC, Dhalleine T, Johnson MK, Dubos C, Couturier J, Rouhier N. The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. J Biol Chem 2020; 295:1727-1742. [PMID: 31911438 PMCID: PMC7008376 DOI: 10.1074/jbc.ra119.011034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Indexed: 11/06/2022] Open
Abstract
Proteins incorporating iron-sulfur (Fe-S) co-factors are required for a plethora of metabolic processes. Their maturation depends on three Fe-S cluster assembly machineries in plants, located in the cytosol, mitochondria, and chloroplasts. After de novo formation on scaffold proteins, transfer proteins load Fe-S clusters onto client proteins. Among the plastidial representatives of these transfer proteins, NFU2 and NFU3 are required for the maturation of the [4Fe-4S] clusters present in photosystem I subunits, acting upstream of the high-chlorophyll fluorescence 101 (HCF101) protein. NFU2 is also required for the maturation of the [2Fe-2S]-containing dihydroxyacid dehydratase, important for branched-chain amino acid synthesis. Here, we report that recombinant Arabidopsis thaliana NFU1 assembles one [4Fe-4S] cluster per homodimer. Performing co-immunoprecipitation experiments and assessing physical interactions of NFU1 with many [4Fe-4S]-containing plastidial proteins in binary yeast two-hybrid assays, we also gained insights into the specificity of NFU1 for the maturation of chloroplastic Fe-S proteins. Using bimolecular fluorescence complementation and in vitro Fe-S cluster transfer experiments, we confirmed interactions with two proteins involved in isoprenoid and thiamine biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase and 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase, respectively. An additional interaction detected with the scaffold protein SUFD enabled us to build a model in which NFU1 receives its Fe-S cluster from the SUFBC2D scaffold complex and serves in the maturation of specific [4Fe-4S] client proteins. The identification of the NFU1 partner proteins reported here more clearly defines the role of NFU1 in Fe-S client protein maturation in Arabidopsis chloroplasts among other SUF components.
Collapse
Affiliation(s)
- Mélanie Roland
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Tamanna Azam
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Loick Christ
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Hui-Chen Wu
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | |
Collapse
|
13
|
Sen S, Rao B, Wachnowsky C, Cowan JA. Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins. Metallomics 2019; 10:1282-1290. [PMID: 30137089 DOI: 10.1039/c8mt00128f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The [2Fe-2S] cluster-bridged complex of BOLA3 with GLRX5 has been implicated in cluster trafficking, but cluster exchange involving this heterocomplex has not been reported. Herein we describe an investigation of the cluster exchange reactivity of holo BOLA3-GLRX complexes using two different monothiol glutaredoxins, H.s. GLRX5 and S.c. Grx3, which share significant identity. We observe that a 1 : 1 mixture of apo BOLA3 and glutaredoxin protein is able to accept a cluster from donors such as ISCU and a [2Fe-2S](GS)4 complex, with preferential formation of the cluster-bridged heterodimer over the plausible holo homodimeric glutaredoxin. Holo BOLA3-GLRX5 transfers clusters to apo acceptors at rates comparable to other Fe-S cluster trafficking proteins. Isothermal titration calorimetry experiments with apo proteins demonstrated a strong binding of BOLA3 with both GLRX5 and Grx3, while binding with an alternative mitochondrial partner, NFU1, was weak. Cluster exchange and calorimetry experiments resulted in a very similar behavior for yeast Grx3 (cytosolic) and human GLRX5 (mitochondrial), indicating conservation across the monothiol glutaredoxin family for interactions with BOLA3 and supporting a functional role for the BOLA3-GLRX5 heterocomplex relative to the previously proposed BOLA3-NFU1 interaction. The results also demonstrate rapid formation of the heterocomplexed holo cluster via delivery from a glutathione-complexed cluster, again indicative of the physiological relevance of the [2Fe-2S](GS)4 complex in the cellular labile iron pool.
Collapse
Affiliation(s)
- Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
14
|
Bai Y, Chen T, Happe T, Lu Y, Sawyer A. Iron-sulphur cluster biogenesis via the SUF pathway. Metallomics 2019; 10:1038-1052. [PMID: 30019043 DOI: 10.1039/c8mt00150b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron-sulphur (Fe-S) clusters are versatile cofactors, which are essential for key metabolic processes in cells, such as respiration and photosynthesis, and which may have also played a crucial role in establishing life on Earth. They can be found in almost all living organisms, from unicellular prokaryotes and archaea to multicellular animals and plants, and exist in diverse forms. This review focuses on the most ancient Fe-S cluster assembly system, the sulphur utilization factor (SUF) mechanism, which is crucial in bacteria for cell survival under stress conditions such as oxidation and iron starvation, and which is also present in the chloroplasts of green microalgae and plants, where it is responsible for plastidial Fe-S protein maturation. We explain the SUF Fe-S cluster assembly process, the proteins involved, their regulation and provide evolutionary insights. We specifically focus on examples from Fe-S cluster synthesis in the model organisms Escherichia coli and Arabidopsis thaliana and discuss in an in vivo context the assembly of the [FeFe]-hydrogenase H-cluster from Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Y Bai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
15
|
Touraine B, Vignols F, Przybyla-Toscano J, Ischebeck T, Dhalleine T, Wu HC, Magno C, Berger N, Couturier J, Dubos C, Feussner I, Caffarri S, Havaux M, Rouhier N, Gaymard F. Iron-sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1875-1889. [PMID: 30785184 DOI: 10.1093/jxb/erz050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/25/2019] [Indexed: 05/23/2023]
Abstract
Numerous proteins require a metallic co-factor for their function. In plastids, the maturation of iron-sulfur (Fe-S) proteins necessitates a complex assembly machinery. In this study, we focused on Arabidopsis thaliana NFU1, NFU2, and NFU3, which participate in the final steps of the maturation process. According to the strong photosynthetic defects observed in high chlorophyll fluorescence 101 (hcf101), nfu2, and nfu3 plants, we determined that NFU2 and NFU3, but not NFU1, act immediately upstream of HCF101 for the maturation of [Fe4S4]-containing photosystem I subunits. An additional function of NFU2 in the maturation of the [Fe2S2] cluster of a dihydroxyacid dehydratase was obvious from the accumulation of precursors of the branched-chain amino acid synthesis pathway in roots of nfu2 plants and from the rescue of the primary root growth defect by supplying branched-chain amino acids. The absence of NFU3 in roots precluded any compensation. Overall, unlike their eukaryotic and prokaryotic counterparts, which are specific to [Fe4S4] proteins, NFU2 and NFU3 contribute to the maturation of both [Fe2S2] and [Fe4S4] proteins, either as a relay in conjunction with other proteins such as HCF101 or by directly delivering Fe-S clusters to client proteins. Considering the low number of Fe-S cluster transfer proteins relative to final acceptors, additional targets probably await identification.
Collapse
Affiliation(s)
- Brigitte Touraine
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Florence Vignols
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | | | - Hui-Chen Wu
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Cyril Magno
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Nathalie Berger
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Christian Dubos
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | - Stefano Caffarri
- Aix-Marseille Université, CEA Cadarache, CNRS UMR 7265, Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France
| | - Michel Havaux
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | | | - Frédéric Gaymard
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
16
|
Uzarska MA, Przybyla-Toscano J, Spantgar F, Zannini F, Lill R, Mühlenhoff U, Rouhier N. Conserved functions of Arabidopsis mitochondrial late-acting maturation factors in the trafficking of iron‑sulfur clusters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1250-1259. [PMID: 29902489 DOI: 10.1016/j.bbamcr.2018.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/25/2022]
Abstract
Numerous proteins require iron‑sulfur (Fe-S) clusters as cofactors for their function. Their biogenesis is a multi-step process occurring in the cytosol and mitochondria of all eukaryotes and additionally in plastids of photosynthetic eukaryotes. A basic model of Fe-S protein maturation in mitochondria has been obtained based on studies achieved in mammals and yeast, yet some molecular details, especially of the late steps, still require investigation. In particular, the late-acting biogenesis factors in plant mitochondria are poorly understood. In this study, we expressed the factors belonging to NFU, BOLA, SUFA/ISCA and IBA57 families in the respective yeast mutant strains. Expression of the Arabidopsis mitochondrial orthologs was usually sufficient to rescue the growth defects observed on specific media and/or to restore the abundance or activity of the defective Fe-S or lipoic acid-dependent enzymes. These data demonstrate that the plant mitochondrial counterparts, including duplicated isoforms, likely retained their ancestral functions. In contrast, the SUFA1 and IBA57.2 plastidial isoforms cannot rescue the lysine and glutamate auxotrophies of the respective isa1-isa2Δ and iba57Δ strains or of the isa1-isa2-iba57Δ triple mutant when expressed in combination. This suggests a specialization of the yeast mitochondrial and plant plastidial factors in these late steps of Fe-S protein biogenesis, possibly reflecting substrate-specific interactions in these different compartments.
Collapse
Affiliation(s)
- Marta A Uzarska
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Farah Spantgar
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany.
| | | |
Collapse
|
17
|
Py B, Gerez C, Huguenot A, Vidaud C, Fontecave M, Ollagnier de Choudens S, Barras F. The ErpA/NfuA complex builds an oxidation-resistant Fe-S cluster delivery pathway. J Biol Chem 2018; 293:7689-7702. [PMID: 29626095 DOI: 10.1074/jbc.ra118.002160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Fe-S cluster-containing proteins occur in most organisms, wherein they assist in myriad processes from metabolism to DNA repair via gene expression and bioenergetic processes. Here, we used both in vitro and in vivo methods to investigate the capacity of the four Fe-S carriers, NfuA, SufA, ErpA, and IscA, to fulfill their targeting role under oxidative stress. Likewise, Fe-S clusters exhibited varying half-lives, depending on the carriers they were bound to; an NfuA-bound Fe-S cluster was more stable (t½ = 100 min) than those bound to SufA (t½ = 55 min), ErpA (t½ = 54 min), or IscA (t½ = 45 min). Surprisingly, the presence of NfuA further enhanced stability of the ErpA-bound cluster to t½ = 90 min. Using genetic and plasmon surface resonance analyses, we showed that NfuA and ErpA interacted directly with client proteins, whereas IscA or SufA did not. Moreover, NfuA and ErpA interacted with one another. Given all of these observations, we propose an architecture of the Fe-S delivery network in which ErpA is the last factor that delivers cluster directly to most if not all client proteins. NfuA is proposed to assist ErpA under severely unfavorable conditions. A comparison with the strategy employed in yeast and eukaryotes is discussed.
Collapse
Affiliation(s)
- Béatrice Py
- From the Institut de Microbiologie de la Méditerranée, 13009 Marseille, France, .,CNRS Unité Mixte de Recherche (UMR) 7283, Laboratoire de Chimie Bactérienne (LCB), 31 Chemin Joseph Aiguier, 13009 Marseille, France.,Aix-Marseille Université, 13007 Marseille, France
| | - Catherine Gerez
- Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France.,CNRS UMR 5249, Laboratoire de Chimie et Biologie des Métaux (LCBM), 38054 Grenoble, France.,CEA/DRF/BIG/CBM/BioCat, 38054 Grenoble, France
| | - Allison Huguenot
- From the Institut de Microbiologie de la Méditerranée, 13009 Marseille, France.,CNRS Unité Mixte de Recherche (UMR) 7283, Laboratoire de Chimie Bactérienne (LCB), 31 Chemin Joseph Aiguier, 13009 Marseille, France.,Aix-Marseille Université, 13007 Marseille, France
| | | | - Marc Fontecave
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie (UPMC) Université Paris 06, Collège de France, Paris Sciences et Lettres (PSL) Research University, 75252 Paris, France
| | - Sandrine Ollagnier de Choudens
- Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France.,CNRS UMR 5249, Laboratoire de Chimie et Biologie des Métaux (LCBM), 38054 Grenoble, France.,CEA/DRF/BIG/CBM/BioCat, 38054 Grenoble, France
| | - Frédéric Barras
- From the Institut de Microbiologie de la Méditerranée, 13009 Marseille, France, .,CNRS Unité Mixte de Recherche (UMR) 7283, Laboratoire de Chimie Bactérienne (LCB), 31 Chemin Joseph Aiguier, 13009 Marseille, France.,Aix-Marseille Université, 13007 Marseille, France
| |
Collapse
|
18
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
19
|
Przybyla-Toscano J, Roland M, Gaymard F, Couturier J, Rouhier N. Roles and maturation of iron-sulfur proteins in plastids. J Biol Inorg Chem 2018; 23:545-566. [PMID: 29349662 PMCID: PMC6006212 DOI: 10.1007/s00775-018-1532-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
One reason why iron is an essential element for most organisms is its presence in prosthetic groups such as hemes or iron–sulfur (Fe–S) clusters, which are notably required for electron transfer reactions. As an organelle with an intense metabolism in plants, chloroplast relies on many Fe–S proteins. This includes those present in the electron transfer chain which will be, in fact, essential for most other metabolic processes occurring in chloroplasts, e.g., carbon fixation, nitrogen and sulfur assimilation, pigment, amino acid, and vitamin biosynthetic pathways to cite only a few examples. The maturation of these Fe–S proteins requires a complex and specific machinery named SUF (sulfur mobilisation). The assembly process can be split in two major steps, (1) the de novo assembly on scaffold proteins which requires ATP, iron and sulfur atoms, electrons, and thus the concerted action of several proteins forming early acting assembly complexes, and (2) the transfer of the preformed Fe–S cluster to client proteins using a set of late-acting maturation factors. Similar machineries, having in common these basic principles, are present in the cytosol and in mitochondria. This review focuses on the currently known molecular details concerning the assembly and roles of Fe–S proteins in plastids.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Mélanie Roland
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université Montpellier 2, SupAgro Campus, 34060, Montpellier, France
| | - Jérémy Couturier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
20
|
Lu Y. Assembly and Transfer of Iron-Sulfur Clusters in the Plastid. FRONTIERS IN PLANT SCIENCE 2018; 9:336. [PMID: 29662496 PMCID: PMC5890173 DOI: 10.3389/fpls.2018.00336] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/28/2018] [Indexed: 05/09/2023]
Abstract
Iron-Sulfur (Fe-S) clusters and proteins are essential to many growth and developmental processes. In plants, they exist in the plastids, mitochondria, cytosol, and nucleus. Six types of Fe-S clusters are found in the plastid: classic 2Fe-2S, NEET-type 2Fe-2S, Rieske-type 2Fe-2S, 3Fe-4S, 4Fe-4S, and siroheme 4Fe-4S. Classic, NEET-type, and Rieske-type 2Fe-2S clusters have the same 2Fe-2S core; similarly, common and siroheme 4Fe-4S clusters have the same 4Fe-4S core. Plastidial Fe-S clusters are assembled by the sulfur mobilization (SUF) pathway, which contains cysteine desulfurase (EC 2.8.1.7), sulfur transferase (EC 2.8.1.3), Fe-S scaffold complex, and Fe-S carrier proteins. The plastidial cysteine desulfurase-sulfur transferase-Fe-S-scaffold complex system is responsible for de novo assembly of all plastidial Fe-S clusters. However, different types of Fe-S clusters are transferred to recipient proteins via respective Fe-S carrier proteins. This review focuses on recent discoveries on the molecular functions of different assembly and transfer factors involved in the plastidial SUF pathway. It also discusses potential points for regulation of the SUF pathway, relationships among the plastidial, mitochondrial, and cytosolic Fe-S assembly and transfer pathways, as well as several open questions about the carrier proteins for Rieske-type 2Fe-2S, NEET-type 2Fe-2S, and 3F-4S clusters.
Collapse
|
21
|
Gupta S, Bhar A, Chatterjee M, Ghosh A, Das S. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. PLoS One 2017; 12:e0178164. [PMID: 28542579 PMCID: PMC5460890 DOI: 10.1371/journal.pone.0178164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Plants' reaction to underground microorganisms is complex as sessile nature of plants compels them to prioritize their responses to diverse microorganisms both pathogenic and symbiotic. Roots of important crops are directly exposed to diverse microorganisms, but investigations involving root pathogens are significantly less. Thus, more studies involving root pathogens and their target crops are necessitated to enrich the understanding of underground interactions. Present study reported the molecular complexities in chickpea during Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) infection. Transcriptomic dissections using RNA-seq showed significantly differential expression of molecular transcripts between infected and control plants of both susceptible and resistant genotypes. Radar plot analyses showed maximum expressional undulations after infection in both susceptible and resistant plants. Gene ontology and functional clustering showed large number of transcripts controlling basic metabolism of plants. Network analyses demonstrated defense components like peptidyl cis/trans isomerase, MAP kinase, beta 1,3 glucanase, serine threonine kinase, patatin like protein, lactolylglutathione lyase, coproporphyrinogen III oxidase, sulfotransferases; reactive oxygen species regulating components like respiratory burst oxidase, superoxide dismutases, cytochrome b5 reductase, glutathione reductase, thioredoxin reductase, ATPase; metabolism regulating components, myo inositol phosphate, carboxylate synthase; transport related gamma tonoplast intrinsic protein, and structural component, ubiquitins to serve as important nodals of defense signaling network. These nodal molecules probably served as hub controllers of defense signaling. Functional characterization of these hub molecules would not only help in developing better understanding of chickpea-Foc1 interaction but also place them as promising candidates for resistance management programs against vascular wilt of legumes.
Collapse
Affiliation(s)
- Sumanti Gupta
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Anirban Bhar
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Moniya Chatterjee
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Amartya Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Nath K, O'Donnell JP, Lu Y. Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness. PLANT SIGNALING & BEHAVIOR 2017; 12:e1282023. [PMID: 28102753 PMCID: PMC5351725 DOI: 10.1080/15592324.2017.1282023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A previous study showed that Nitrogen-Fixing-subunit-U-type protein NFU3 may act an iron-sulfur scaffold protein in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters in the chloroplast. Examples of 4Fe-4S and 3Fe-4S-requiring proteins and complexes include Photosystem I (PSI), NAD(P)H dehydrogenase, and ferredoxin-dependent glutamine oxoglutarate aminotransferases. In this paper, the authors provided additional evidence for the role of NFU3 in 4Fe-4S and 3Fe-4S cluster assembly and transfer, as well as its role in overall plant fitness. Confocal microscopic analysis of the fluorescently-tagged NFU3 protein confirmed the chloroplast localization of the NFU3 protein. Detailed analysis of chlorophyll fluorescence data revealed that a substantial increase in minimal fluorescence is the primary contributor to the decrease in PSII maximum photochemical efficiency observed in the nfu3 mutants. The substantial increase in minimal fluorescence in the nfu3 mutants is probably the result of an impaired PSI function, blockage of electron flow from PSII to PSI, and over-accumulation of reduced plastoquinone at the acceptor side of PSII. Analyses of seed morphology and germination showed that NFU3 is essential to seed development and germination, in addition to plant growth, development, and flowering. In summary, NFU3 has wide-ranging effects on many biologic processes and is therefore important to overall plant fitness. NFU3 may exert these effects by modulating the availability of 4Fe-4S and 3Fe-4S clusters to 4Fe-4S and 3Fe-4S-requiring proteins and complexes involved in various biologic processes.
Collapse
Affiliation(s)
- Krishna Nath
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - James P. O'Donnell
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
- CONTACT Yan Lu Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
23
|
Nath K, Wessendorf RL, Lu Y. A Nitrogen-Fixing Subunit Essential for Accumulating 4Fe-4S-Containing Photosystem I Core Proteins. PLANT PHYSIOLOGY 2016; 172:2459-2470. [PMID: 27784767 PMCID: PMC5129733 DOI: 10.1104/pp.16.01564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/25/2016] [Indexed: 05/07/2023]
Abstract
Nitrogen-fixation-subunit-U (NFU)-type proteins have been shown to be involved in the biogenesis of iron-sulfur clusters. We investigated the molecular function of a chloroplastic NFU-type iron-sulfur scaffold protein, NFU3, in Arabidopsis (Arabidopsis thaliana) using genetics approaches. Loss-of-function mutations in the NFU3 gene caused yellow pigmentation in leaves, reductions in plant size, leaf size, and growth rate, delay in flowering and seeding, and decreases in seed production. Biochemical and physiological analyses indicated that these defects are due to the substantial reductions in the abundances of 4Fe-4S-containing photosystem I (PSI) core subunits PsaA (where Psa stands for PSI), PsaB, and PsaC and a nearly complete loss of PSI activity. In addition to the substantial decreases in the amounts of PSI core proteins, the content of 3Fe-4S-containing ferredoxin-dependent glutamine oxoglutarate aminotransferases declined significantly in the nfu3 mutants. Furthermore, the absorption spectrum of the recombinant NFU3 protein showed features characteristic of 4Fe-4S and 3Fe-4S clusters, and the in vitro reconstitution experiment indicated an iron-sulfur scaffold function of NFU3. These data demonstrate that NFU3 is involved in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters and that NFU3 is required for the accumulation of 4Fe-4S- and 3Fe-4S-containing proteins, especially 4Fe-4S-containing PSI core subunits, in the Arabidopsis chloroplast.
Collapse
Affiliation(s)
- Krishna Nath
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - Ryan L Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| |
Collapse
|
24
|
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster exchange reactions mediated by the human Nfu protein. J Biol Inorg Chem 2016; 21:825-836. [PMID: 27538573 DOI: 10.1007/s00775-016-1381-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Human Nfu is an iron-sulfur cluster protein that has recently been implicated in multiple mitochondrial dysfunctional syndrome (MMDS1). The Nfu family of proteins shares a highly homologous domain that contains a conserved active site consisting of a CXXC motif. There is less functional conservation between bacterial and human Nfu proteins, particularly concerning their Iron-sulfur cluster binding and transfer roles. Herein, we characterize the cluster exchange chemistry of human Nfu and its capacity to bind and transfer a [2Fe-2S] cluster. The mechanism of cluster uptake from a physiologically relevant [2Fe-2S](GS)4 cluster complex, and extraction of the Nfu-bound iron-sulfur cluster by glutathione are described. Human holo Nfu shows a dimer-tetramer equilibrium with a protein to cluster ratio of 2:1, reflecting the Nfu-bridging [2Fe-2S] cluster. This cluster can be transferred to apo human ferredoxins at relatively fast rates, demonstrating a direct role for human Nfu in the process of [2Fe-2S] cluster trafficking and delivery.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Biophysics Graduate Program, The Ohio State University, Columbus, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
- The Biophysics Graduate Program, The Ohio State University, Columbus, USA
| |
Collapse
|
25
|
Benz C, Kovářová J, Králová-Hromadová I, Pierik AJ, Lukeš J. Roles of the Nfu Fe-S targeting factors in the trypanosome mitochondrion. Int J Parasitol 2016; 46:641-51. [PMID: 27181928 DOI: 10.1016/j.ijpara.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
Abstract
Iron-sulphur clusters (ISCs) are protein co-factors essential for a wide range of cellular functions. The core iron-sulphur cluster assembly machinery resides in the mitochondrion, yet due to export of an essential precursor from the organelle, it is also needed for cytosolic and nuclear iron-sulphur cluster assembly. In mitochondria all [4Fe-4S] iron-sulphur clusters are synthesised and transferred to specific apoproteins by so-called iron-sulphur cluster targeting factors. One of these factors is the universally present mitochondrial Nfu1, which in humans is required for the proper assembly of a subset of mitochondrial [4Fe-4S] proteins. Although most eukaryotes harbour a single Nfu1, the genomes of Trypanosoma brucei and related flagellates encode three Nfu genes. All three Nfu proteins localise to the mitochondrion in the procyclic form of T. brucei, and TbNfu2 and TbNfu3 are both individually essential for growth in bloodstream and procyclic forms, suggesting highly specific functions for each of these proteins in the trypanosome cell. Moreover, these two proteins are functional in the iron-sulphur cluster assembly in a heterologous system and rescue the growth defect of a yeast deletion mutant.
Collapse
Affiliation(s)
- Corinna Benz
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Julie Kovářová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Ivica Králová-Hromadová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Antonio J Pierik
- Faculty of Chemistry, Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Julius Lukeš
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
26
|
Ströher E, Grassl J, Carrie C, Fenske R, Whelan J, Millar AH. Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1284-99. [PMID: 26672074 PMCID: PMC4775112 DOI: 10.1104/pp.15.01308] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 05/18/2023]
Abstract
Glutaredoxins (Grxs) are small proteins that function as oxidoreductases with roles in deglutathionylation of proteins, reduction of antioxidants, and assembly of iron-sulfur (Fe-S) cluster-containing enzymes. Which of the 33 Grxs in Arabidopsis (Arabidopsis thaliana) perform roles in Fe-S assembly in mitochondria is unknown. We have examined in detail the function of the monothiol GrxS15 in plants. Our results show its exclusive mitochondrial localization, and we are concluding it is the major or only Grx in this subcellular location. Recombinant GrxS15 has a very low deglutathionylation and dehydroascorbate reductase activity, but it binds a Fe-S cluster. Partially removing GrxS15 from mitochondria slowed whole plant growth and respiration. Native GrxS15 is shown to be especially important for lipoic acid-dependent enzymes in mitochondria, highlighting a putative role in the transfer of Fe-S clusters in this process. The enhanced effect of the toxin arsenic on the growth of GrxS15 knockdown plants compared to wild type highlights the role of mitochondrial glutaredoxin Fe-S-binding in whole plant growth and toxin tolerance.
Collapse
Affiliation(s)
- Elke Ströher
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - Julia Grassl
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - Chris Carrie
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| |
Collapse
|
27
|
Belcher S, Williams-Carrier R, Stiffler N, Barkan A. Large-scale genetic analysis of chloroplast biogenesis in maize. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1004-16. [PMID: 25725436 DOI: 10.1016/j.bbabio.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chloroplast biogenesis involves a collaboration between several thousand nuclear genes and ~100 genes in the chloroplast. Many of the nuclear genes are of cyanobacterial ancestry and continue to perform their ancestral function. However, many others evolved subsequently and comprise a diverse set of proteins found specifically in photosynthetic eucaryotes. Genetic approaches have been key to the discovery of nuclear genes that participate in chloroplast biogenesis, especially those lacking close homologs outside the plant kingdom. SCOPE OF REVIEW This article summarizes contributions from a genetic resource in maize, the Photosynthetic Mutant Library (PML). The PML collection consists of ~2000 non-photosynthetic mutants induced by Mu transposons. We include a summary of mutant phenotypes for 20 previously unstudied maize genes, including genes encoding chloroplast ribosomal proteins, a PPR protein, tRNA synthetases, proteins involved in plastid transcription, a putative ribosome assembly factor, a chaperonin 60 isoform, and a NifU-domain protein required for Photosystem I biogenesis. MAJOR CONCLUSIONS Insertions in 94 maize genes have been linked thus far to visible and molecular phenotypes with the PML collection. The spectrum of chloroplast biogenesis genes that have been genetically characterized in maize is discussed in the context of related efforts in other organisms. This comparison shows how distinct organismal attributes facilitate the discovery of different gene classes, and reveals examples of functional divergence between monocot and dicot plants. GENERAL SIGNIFICANCE These findings elucidate the biology of an organelle whose activities are fundamental to agriculture and the biosphere. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Nicholas Stiffler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
28
|
Tillmann B, Röth S, Bublak D, Sommer M, Stelzer EHK, Scharf KD, Schleiff E. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato. MOLECULAR PLANT 2015; 8:228-41. [PMID: 25619681 DOI: 10.1016/j.molp.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 05/09/2023]
Abstract
Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response.
Collapse
Affiliation(s)
- Bodo Tillmann
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Sascha Röth
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Manuel Sommer
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Raes K, Knockaert D, Struijs K, Van Camp J. Role of processing on bioaccessibility of minerals: Influence of localization of minerals and anti-nutritional factors in the plant. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Liu D, Wang L, Liu C, Song X, He S, Zhai H, Liu Q. An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance. PLoS One 2014; 9:e93935. [PMID: 24695556 PMCID: PMC3973627 DOI: 10.1371/journal.pone.0093935] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/08/2014] [Indexed: 12/18/2022] Open
Abstract
Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system.
Collapse
Affiliation(s)
- Degao Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lianjun Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chenglong Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Xuejin Song
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Hong Zhai
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Liang X, Qin L, Liu P, Wang M, Ye H. Genes for iron-sulphur cluster assembly are targets of abiotic stress in rice, Oryza sativa. PLANT, CELL & ENVIRONMENT 2014; 37:780-94. [PMID: 24028141 DOI: 10.1111/pce.12198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 05/14/2023]
Abstract
Iron-sulphur (Fe-S) cluster assembly occurs in chloroplasts, mitochondria and cytosol, involving dozens of genes in higher plants. In this study, we have identified 41 putative Fe-S cluster assembly genes in rice (Oryza sativa) genome, and the expression of all genes was verified. To investigate the role of Fe-S cluster assembly as a metabolic pathway, we applied abiotic stresses to rice seedlings and analysed Fe-S cluster assembly gene expression by qRT-PCR. Our data showed that genes for Fe-S cluster assembly in chloroplasts of leaves are particularly sensitive to heavy metal treatments, and that Fe-S cluster assembly genes in roots were up-regulated in response to iron toxicity, oxidative stress and some heavy metal assault. The effect of each stress treatment on the Fe-S cluster assembly machinery demonstrated an unexpected tissue or organelle specificity, suggesting that the physiological relevance of the Fe-S cluster assembly is more complex than thought. Furthermore, our results may reveal potential candidate genes for molecular breeding of rice.
Collapse
Affiliation(s)
- Xuejiao Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | | | | | |
Collapse
|
32
|
Braun HP, Binder S, Brennicke A, Eubel H, Fernie AR, Finkemeier I, Klodmann J, König AC, Kühn K, Meyer E, Obata T, Schwarzländer M, Takenaka M, Zehrmann A. The life of plant mitochondrial complex I. Mitochondrion 2014; 19 Pt B:295-313. [PMID: 24561573 DOI: 10.1016/j.mito.2014.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
Abstract
The mitochondrial NADH dehydrogenase complex (complex I) of the respiratory chain has several remarkable features in plants: (i) particularly many of its subunits are encoded by the mitochondrial genome, (ii) its mitochondrial transcripts undergo extensive maturation processes (e.g. RNA editing, trans-splicing), (iii) its assembly follows unique routes, (iv) it includes an additional functional domain which contains carbonic anhydrases and (v) it is, indirectly, involved in photosynthesis. Comprising about 50 distinct protein subunits, complex I of plants is very large. However, an even larger number of proteins are required to synthesize these subunits and assemble the enzyme complex. This review aims to follow the complete "life cycle" of plant complex I from various molecular perspectives. We provide arguments that complex I represents an ideal model system for studying the interplay of respiration and photosynthesis, the cooperation of mitochondria and the nucleus during organelle biogenesis and the evolution of the mitochondrial oxidative phosphorylation system.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Stefan Binder
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Iris Finkemeier
- Plant Sciences, Ludwig Maximilians Universität München, Grosshadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jennifer Klodmann
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Ann-Christine König
- Plant Sciences, Ludwig Maximilians Universität München, Grosshadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Kristina Kühn
- Institut für Biologie/Molekulare Zellbiologie der Pflanzen, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Etienne Meyer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Schwarzländer
- INRES - Chemical Signalling, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Mizuki Takenaka
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| |
Collapse
|
33
|
Gao H, Subramanian S, Couturier J, Naik SG, Kim SK, Leustek T, Knaff DB, Wu HC, Vignols F, Huynh BH, Rouhier N, Johnson MK. Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 2013; 52:6633-45. [PMID: 24032747 DOI: 10.1021/bi4007622] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nfu-type proteins are essential in the biogenesis of iron-sulfur (Fe-S) clusters in numerous organisms. A number of phenotypes including low levels of Fe-S cluster incorporation are associated with the deletion of the gene encoding a chloroplast-specific Nfu-type protein, Nfu2 from Arabidopsis thaliana (AtNfu2). Here, we report that recombinant AtNfu2 is able to assemble both [2Fe-2S] and [4Fe-4S] clusters. Analytical data and gel filtration studies support cluster/protein stoichiometries of one [2Fe-2S] cluster/homotetramer and one [4Fe-4S] cluster/homodimer. The combination of UV-visible absorption and circular dichroism and resonance Raman and Mössbauer spectroscopies has been employed to investigate the nature, properties, and transfer of the clusters assembled on Nfu2. The results are consistent with subunit-bridging [2Fe-2S](2+) and [4Fe-4S](2+) clusters coordinated by the cysteines in the conserved CXXC motif. The results also provided insight into the specificity of Nfu2 for the maturation of chloroplastic Fe-S proteins via intact, rapid, and quantitative cluster transfer. [2Fe-2S] cluster-bound Nfu2 is shown to be an effective [2Fe-2S](2+) cluster donor for glutaredoxin S16 but not glutaredoxin S14. Moreover, [4Fe-4S] cluster-bound Nfu2 is shown to be a very rapid and efficient [4Fe-4S](2+) cluster donor for adenosine 5'-phosphosulfate reductase (APR1), and yeast two-hybrid studies indicate that APR1 forms a complex with Nfu2 but not with Nfu1 and Nfu3, the two other chloroplastic Nfu proteins. This cluster transfer is likely to be physiologically relevant and is particularly significant for plant metabolism as APR1 catalyzes the second step in reductive sulfur assimilation, which ultimately results in the biosynthesis of cysteine, methionine, glutathione, and Fe-S clusters.
Collapse
Affiliation(s)
- Huanyao Gao
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia, 30602, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. FRONTIERS IN PLANT SCIENCE 2013; 4:259. [PMID: 23898337 PMCID: PMC3721309 DOI: 10.3389/fpls.2013.00259] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 05/18/2023]
Abstract
Many metabolic pathways and cellular processes occurring in most sub-cellular compartments depend on the functioning of iron-sulfur (Fe-S) proteins, whose cofactors are assembled through dedicated protein machineries. Recent advances have been made in the knowledge of the functions of individual components through a combination of genetic, biochemical and structural approaches, primarily in prokaryotes and non-plant eukaryotes. Whereas most of the components of these machineries are conserved between kingdoms, their complexity is likely increased in plants owing to the presence of additional assembly proteins and to the existence of expanded families for several assembly proteins. This review focuses on the new actors discovered in the past few years, such as glutaredoxin, BOLA and NEET proteins as well as MIP18, MMS19, TAH18, DRE2 for the cytosolic machinery, which are integrated into a model for the plant Fe-S cluster biogenesis systems. It also discusses a few issues currently subjected to an intense debate such as the role of the mitochondrial frataxin and of glutaredoxins, the functional separation between scaffold, carrier and iron-delivery proteins and the crosstalk existing between different organelles.
Collapse
Affiliation(s)
- Jérémy Couturier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
| | - Brigitte Touraine
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Jean-François Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
- *Correspondence: Nicolas Rouhier, Université de Lorraine, UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, Faculté des Sciences, Bd des aiguillettes, BP 239,54506 Vandoeuvre, France e-mail:
| |
Collapse
|
35
|
Kesawat MS, Das BK, Bhaganagare GR, Manorama. Genome-wide identification, evolutionary and expression analyses of putative Fe-S biogenesis genes in rice (Oryza sativa). Genome 2012; 55:571-83. [PMID: 22856514 DOI: 10.1139/g2012-044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron-sulfur (Fe-S) proteins are ubiquitous in nature and carry Fe-S clusters (ISCs) as prosthetic groups that are essential in maintaining basic biological processes such as photosynthesis, respiration, nitrogen fixation, and DNA repair. In the present investigation, a comprehensive genome-wide analysis was carried out to find all the genes involved in the formation of ISCs in rice ( Oryza sativa L.) through a systematic EST and genomic DNA sequence data mining. This analysis profiled 44 rice ISC genes (OsISCs) that were identified using in silico analysis. Multiple sequence alignment and phylogenetic analysis revealed that these genes were highly conserved among bacteria, fungi, animals, and plants. EST analysis and RT-PCR assays demonstrated that all OsISCs were active and that the transcript abundance of some OsISCs was tissue specific. The results of this study will assist further investigations to identify and elucidate the structural components involved in the assembly, biogenesis, and regulation of OsISCs. Thus, the outcome of the present study provides basic genomic information for the OsISC and will pave the way for elucidating the precise role of OsISCs in plant growth and development in the future. Also, it may enable us in the future to enhance the crop yield, uptake of Fe, and protection against abiotic and biotic stress.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Krishak Nagar - 492 012 Raipur (CG), India.
| | | | | | | |
Collapse
|
36
|
Fellerer C, Schweiger R, Schöngruber K, Soll J, Schwenkert S. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. MOLECULAR PLANT 2011; 4:1133-45. [PMID: 21596689 DOI: 10.1093/mp/ssr037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state. Preproteins can associate with HSP70, HSP90, and 14-3-3 proteins in the cytosol. In this study, we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding. Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70. We were able to identify a diverse and extensive class of preproteins as HSP90 substrates, thus providing a tool for the investigation of HSP90 client protein association. The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins, in HSP90 binding. We identified two partner components of the HSP90 cycle, which were present in the preprotein containing high-molecular-weight complexes, the HSP70/HSP90 organizing protein HOP, as well as the immunophilin FKBP73. The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.
Collapse
Affiliation(s)
- Christine Fellerer
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
37
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
38
|
Nouet C, Motte P, Hanikenne M. Chloroplastic and mitochondrial metal homeostasis. TRENDS IN PLANT SCIENCE 2011; 16:395-404. [PMID: 21489854 DOI: 10.1016/j.tplants.2011.03.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/25/2011] [Accepted: 03/07/2011] [Indexed: 05/03/2023]
Abstract
Transition metal deficiency has a strong impact on the growth and survival of an organism. Indeed, transition metals, such as iron, copper, manganese and zinc, constitute essential cofactors for many key cellular functions. Both photosynthesis and respiration rely on metal cofactor-mediated electron transport chains. Chloroplasts and mitochondria are, therefore, organelles with high metal ion demand and represent essential components of the metal homeostasis network in photosynthetic cells. In this review, we describe the metal requirements of chloroplasts and mitochondria, the acclimation of their functions to metal deficiency and recent advances in our understanding of their contributions to cellular metal homeostasis, the control of the cellular redox status and the synthesis of metal cofactors.
Collapse
Affiliation(s)
- Cécile Nouet
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering, Department of Life Sciences (B22), University of Liège, Belgium
| | | | | |
Collapse
|
39
|
Balk J, Pilon M. Ancient and essential: the assembly of iron-sulfur clusters in plants. TRENDS IN PLANT SCIENCE 2011; 16:218-26. [PMID: 21257336 DOI: 10.1016/j.tplants.2010.12.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 05/18/2023]
Abstract
In plants iron-sulfur (Fe-S) proteins are found in the plastids, mitochondria, cytosol and nucleus, where they are essential for numerous physiological and developmental processes. Recent mutant studies, mostly in Arabidopsis thaliana, have identified three pathways for the assembly of Fe-S clusters. The plastids harbor the SUF (sulfur mobilization) pathway and operate independently, whereas cluster assembly in the cytosol depends on the emerging CIA (cytosolic iron-sulfur cluster assembly) pathway and mitochondria. The latter organelles use the ISC (iron-sulfur cluster) assembly pathway. In all three pathways the assembly process can be divided into a first stage where S and Fe are combined on a scaffold protein, and a second stage in which the Fe-S cluster is transferred to a target protein. The second stage might involve different carrier proteins with specialized functions.
Collapse
Affiliation(s)
- Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | |
Collapse
|
40
|
Xu XM, Lin H, Latijnhouwers M, Møller SG. Dual localized AtHscB involved in iron sulfur protein biogenesis in Arabidopsis. PLoS One 2009; 4:e7662. [PMID: 19865480 PMCID: PMC2764847 DOI: 10.1371/journal.pone.0007662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/09/2009] [Indexed: 11/21/2022] Open
Abstract
Background Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria. Methodology/Principal Findings In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase. Conclusions Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis of iron-sulfur proteins in both mitochondria and the cytosol.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Hong Lin
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Maita Latijnhouwers
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Simon Geir Møller
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
- * E-mail:
| |
Collapse
|
41
|
Liu Y, Cowan JA. Iron-sulfur cluster biosynthesis: characterization of a molten globule domain in human NFU. Biochemistry 2009; 48:7512-8. [PMID: 19722697 DOI: 10.1021/bi9002524] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human NFU (also known as HIRIP5) has been implicated in cellular iron-sulfur cluster biosynthesis. Bacterial and yeast forms are smaller than the human protein and are homologous to the C-terminal domain of human NFU. This C-terminal domain contains a pair of redox active cysteines and demonstrates thioredoxin-like activity by both binding to and mediating persulfide bond cleavage of sulfur-loaded IscS, the sulfide donor for [2Fe-2S] cluster assembly on ISU-type scaffold proteins. Herein, human NFU is shown to possess a novel combination of a molten globule-type C-terminal domain and an N-terminal domain with a fully folded regular tertiary structure. The molten globule characteristics of the C-terminal domain have been evaluated by 1-anilino-8-naphthalenesulfonic acid binding, the kinetics of trypsin digestion, and heteronuclear single-quantum coherence nuclear magnetic resonance studies. Human NFU is a functionally competent reducing agent for cysteinyl persulfide bond cleavage, releasing inorganic sulfide for incorporation into the ISU-bound [2Fe-2S] cluster, a reactivity that might be facilitated by the flexibility of the C-terminal domain.
Collapse
Affiliation(s)
- Yushi Liu
- Evans Laboratory of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
42
|
Ishikawa M, Fujiwara M, Sonoike K, Sato N. Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis. PLANT & CELL PHYSIOLOGY 2009; 50:773-788. [PMID: 19224954 DOI: 10.1093/pcp/pcp027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chloroplasts are descendents of a cyanobacterial endosymbiont, but many chloroplast protein genes of endosymbiont origin are encoded by the nucleus. The chloroplast-cyanobacteria relationship is a typical target of orthogenomics, an analytical method that focuses on the relationship of orthologous genes. Here, we present results of a pilot study of functional orthogenomics, combining bioinformatic and experimental analyses, to identify nuclear-encoded chloroplast proteins of endosymbiont origin (CPRENDOs). Phylogenetic profiling based on complete clustering of all proteins in 17 organisms, including eight cyanobacteria and two photosynthetic eukaryotes, was used to deduce 65 protein groups that are conserved in all oxygenic autotrophs analyzed but not in non-oxygenic organisms. With the exception of 28 well-characterized protein groups, 56 Arabidopsis proteins and 43 Synechocystis proteins in the 37 conserved homolog groups were analyzed. Green fluorescent protein (GFP) targeting experiments indicated that 54 Arabidopsis proteins were targeted to plastids. Expression of 39 Arabidopsis genes was promoted by light. Among the 40 disruptants of Synechocystis, 22 showed phenotypes related to photosynthesis. Arabidopsis mutants in 21 groups, including those reported previously, showed phenotypes. Characteristics of pulse amplitude modulation fluorescence were markedly different in corresponding mutants of Arabidopsis and Synechocystis in most cases. We conclude that phylogenetic profiling is useful in finding CPRENDOs, but the physiological functions of orthologous genes may be different in chloroplasts and cyanobacteria.
Collapse
Affiliation(s)
- Masayuki Ishikawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
43
|
Liu Y, Qi W, Cowan JA. Iron−Sulfur Cluster Biosynthesis: Functional Characterization of the N- and C-Terminal Domains of Human NFU. Biochemistry 2009; 48:973-80. [PMID: 19146390 DOI: 10.1021/bi801645z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yushi Liu
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Wenbin Qi
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - J. A. Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|
44
|
Abstract
The biogenesis of iron-sulfur clusters ([Fe-S]) plays a very important role in many essential functions of life. Several [Fe-S] biogenesis systems have been discovered, such as the NIF (nitrogen fixation), SUF (mobilisation of sulfur) and ISC (iron-sulfur cluster) systems in bacteria, and the ISC-like and CIA (cytosolic iron-sulfur protein assembly) systems in yeast. Experimental evidence has revealed that SUF and ISC in bacteria communicate with each other partly through IscR to coordinate the utilisation of iron and cysteine. The ISC-like system in yeast is localised to the mitochondria, while the ISC-dependent CIA system is localised to the cytosol; this suggests a possible role for the ISC mitochondrial export machinery in mediating crosstalk between the two systems. Based on genetic analysis, the model plant Arabidopsis thaliana contains three [Fe-S] biogenesis systems similar to SUF, ISC and CIA named AtSUF, AtISC and AtCIA. Possible communication between these three systems has been proposed.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Faculty of Science and Technology, Centre of Organelle Research, University of Stavanger, Stavanger, Norway
| | | |
Collapse
|
45
|
Genome analysis of Chlamydomonas reinhardtii reveals the existence of multiple, compartmentalized iron-sulfur protein assembly machineries of different evolutionary origins. Genetics 2008; 179:59-68. [PMID: 18493040 DOI: 10.1534/genetics.107.086033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is used extensively as a model to study eukaryotic photosynthesis, flagellar functions, and more recently the production of hydrogen as biofuel. Two of these processes, photosynthesis and hydrogen production, are highly dependent on iron-sulfur (Fe-S) enzymes. To understand how Fe-S proteins are assembled in Chlamydomonas, we have analyzed its recently sequenced genome for orthologs of genes involved in Fe-S cluster assembly. We found a total of 32 open reading frames, most single copies, that are thought to constitute a mitochondrial assembly pathway, mitochondrial export machinery, a cytosolic assembly pathway, and components for Fe-S cluster assembly in the chloroplast. The chloroplast proteins are also expected to play a role in the assembly of the H-cluster in [FeFe]-hydrogenases, together with the recently identified HydEF and HydG proteins. Comparison with the higher plant model Arabidopsis indicated a strong degree of conservation of Fe-S cofactor assembly pathways in the green lineage, the pathways being derived from different origins during the evolution of the photosynthetic eukaryote. As a haploid, unicellular organism with available forward and reverse genetic tools, Chlamydomonas provides an excellent model system to study Fe-S cluster assembly and its regulation in photosynthetic eukaryotes.
Collapse
|
46
|
Jin Z, Heinnickel M, Krebs C, Shen G, Golbeck JH, Bryant DA. Biogenesis of iron-sulfur clusters in photosystem I: holo-NfuA from the cyanobacterium Synechococcus sp. PCC 7002 rapidly and efficiently transfers [4Fe-4S] clusters to apo-PsaC in vitro. J Biol Chem 2008; 283:28426-35. [PMID: 18694929 DOI: 10.1074/jbc.m803395200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NfuA protein has been postulated to act as a scaffolding protein in the biogenesis of photosystem (PS) I and other iron-sulfur (Fe/S) proteins in cyanobacteria and chloroplasts. To determine the properties of NfuA, recombinant NfuA from Synechococcus sp. PCC 7002 was overproduced and purified. In vitro reconstituted NfuA contained oxygen- and EDTA-labile Fe/S cluster(s), which had EPR properties consistent with [4Fe-4S] clusters. After reconstitution with 57Fe2+, Mössbauer studies of NfuA showed a broad quadrupole doublet that confirmed the presence of [4Fe-4S]2+ clusters. Native gel electrophoresis under anoxic conditions and chemical cross-linking showed that holo-NfuA forms dimers and tetramers harboring Fe/S cluster(s). Combined with iron and sulfide analyses, the results indicated that one [4Fe-4S] cluster was bound per NfuA dimer. Fe/S cluster transfer from holo-NfuA to apo-PsaC of PS I was studied by reconstitution of PS I complexes using P700-F(X) core complexes, PsaD, apo-PsaC, and holo-NfuA. Electron transfer measurements by time-resolved optical spectroscopy showed that holo-NfuA rapidly and efficiently transferred [4Fe-4S] clusters to PsaC in a reaction that required contact between the two proteins. The NfuA-reconstituted PS I complexes had typical charge recombination kinetics from [F(A)/F(B)](-) to P700+ and light-induced low-temperature EPR spectra. These results establish that cyanobacterial NfuA can act as a scaffolding protein for the insertion of [4Fe-4S] clusters into PsaC of PS I in vitro.
Collapse
Affiliation(s)
- Zhao Jin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bandyopadhyay S, Naik SG, O'Carroll IP, Huynh BH, Dean DR, Johnson MK, Dos Santos PC. A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron-sulfur cluster carrier. J Biol Chem 2008; 283:14092-9. [PMID: 18339629 DOI: 10.1074/jbc.m709161200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-sulfur clusters ([Fe-S] clusters) are assembled on molecular scaffolds and subsequently used for maturation of proteins that require [Fe-S] clusters for their functions. Previous studies have shown that Azotobacter vinelandii produces at least two [Fe-S] cluster assembly scaffolds: NifU, required for the maturation of nitrogenase, and IscU, required for the general maturation of other [Fe-S] proteins. A. vinelandii also encodes a protein designated NfuA, which shares amino acid sequence similarity with the C-terminal region of NifU. The activity of aconitase, a [4Fe-4S] cluster-containing enzyme, is markedly diminished in a strain containing an inactivated nfuA gene. This inactivation also results in a null-growth phenotype when the strain is cultivated under elevated oxygen concentrations. NifU has a limited ability to serve the function of NfuA, as its expression at high levels corrects the defect of the nfuA-disrupted strain. Spectroscopic and analytical studies indicate that one [4Fe-4S] cluster can be assembled in vitro within a dimeric form of NfuA. The resultant [4Fe-4S] cluster-loaded form of NfuA is competent for rapid in vitro activation of apo-aconitase. Based on these results a model is proposed where NfuA could represent a class of intermediate [Fe-S] cluster carriers involved in [Fe-S] protein maturation.
Collapse
|
48
|
Angelini S, Gerez C, Ollagnier-de Choudens S, Sanakis Y, Fontecave M, Barras F, Py B. NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 2008; 283:14084-91. [PMID: 18339628 DOI: 10.1074/jbc.m709405200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron/sulfur (Fe/S) proteins are central to the functioning of cells in both prokaryotes and eukaryotes. Here, we show that the yhgI gene, which we renamed nfuA, encodes a two-domain protein that is required for Fe/S biogenesis in Escherichia coli. The N-terminal domain resembles the so-called Fe/S A-type scaffold but, curiously, has lost the functionally important Cys residues. The C-terminal domain shares sequence identity with Nfu proteins. Mössbauer and UV-visible spectroscopic analyses revealed that, upon reconstitution, NfuA binds a [4Fe-4S] cluster. Moreover, NfuA can transfer this cluster to apo-aconitase. Mutagenesis studies indicated that the N- and C-terminal domains are important for NfuA function in vivo. Similarly, the functional importance of Cys residues present in the Nfu-like domain was demonstrated in vivo by introducing Cys-->Ser mutations. In vivo investigations revealed that the nfuA gene is important for E. coli to sustain oxidative stress and iron starvation. Also, combining nfuA with either isc or suf mutations led to additive phenotypic deficiencies, indicating that NfuA is a bona fide new player in Isc- and Suf-dependent Fe/S biogenesis pathways. Taken together, these data demonstrate that NfuA intervenes in the maturation of apoproteins in E. coli, allowing them to acquire Fe/S clusters. By taking into account results from numerous previous transcriptomic studies that had suggested a link between NfuA and protein misfolding, we discuss the possibility that NfuA could act as a scaffold/chaperone for damaged Fe/S proteins.
Collapse
Affiliation(s)
- Sandra Angelini
- Laboratoire de Chimie Bactérienne, CNRS, UPR 9043, Marseille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Fontecave M, Ollagnier-de-Choudens S. Iron-sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Arch Biochem Biophys 2007; 474:226-37. [PMID: 18191630 DOI: 10.1016/j.abb.2007.12.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/16/2007] [Indexed: 11/17/2022]
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.
Collapse
|
50
|
Lessner DJ, Ferry JG. The archaeon Methanosarcina acetivorans contains a protein disulfide reductase with an iron-sulfur cluster. J Bacteriol 2007; 189:7475-84. [PMID: 17675382 PMCID: PMC2168450 DOI: 10.1128/jb.00891-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Methanosarcina acetivorans, a strictly anaerobic methane-producing species belonging to the domain Archaea, contains a gene cluster annotated with homologs encoding oxidative stress proteins. One of the genes (MA3736) is annotated as a gene encoding an uncharacterized carboxymuconolactone decarboxylase, an enzyme required for aerobic growth with aromatic compounds by species in the domain Bacteria. Methane-producing species are not known to utilize aromatic compounds, suggesting that MA3736 is incorrectly annotated. The product of MA3736, overproduced in Escherichia coli, had protein disulfide reductase activity dependent on a C(67)XXC(70) motif not found in carboxymuconolactone decarboxylase. We propose that MA3736 be renamed mdrA (methanosarcina disulfide reductase). Further, unlike carboxymuconolactone decarboxylase, MdrA contained an Fe-S cluster. Binding of the Fe-S cluster was dependent on essential cysteines C(67) and C(70), while cysteines C(39) and C(107) were not required. Loss of the Fe-S cluster resulted in conversion of MdrA from an inactive hexamer to a trimer with protein disulfide reductase activity. The data suggest that MdrA is the prototype of a previously unrecognized protein disulfide reductase family which contains an intermolecular Fe-S cluster that controls oligomerization as a mechanism to regulate protein disulfide reductase activity.
Collapse
Affiliation(s)
- Daniel J Lessner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|