1
|
Thyne KM, Camones R, Salmon AB. Sulfur Amino Acid Restriction alters mitochondrial function depending on tissue, sex, and Methionine sulfoxide reductase A (MsrA) status. RESEARCH SQUARE 2023:rs.3.rs-3755231. [PMID: 38196647 PMCID: PMC10775364 DOI: 10.21203/rs.3.rs-3755231/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Methionine restriction (MR) has been shown to affect mitochondrial function including altering oxygen consumption, reactive oxygen species (ROS) generation, Complex expression, and oxidative damage. The sulfur-containing amino acid methionine can become oxidized forming methionine sulfoxide which can lead to changes in protein function and signaling. Methionine sulfoxide reductases are endogenous enzymes capable of reducing methionine sulfoxide, with Methionine sulfoxide reductase A (MsrA) being ubiquitously expressed in mammals. Here we investigated if the effects of MR on mitochondrial function required functional MsrA in the liver and kidney which are the major tissues involved in sulfur biochemistry and both highly express MsrA. Moreover, MsrA is endogenously found in the mitochondria thereby providing potential mechanisms linking diet to mitochondrial phenotype. We found sex-specific changes in oxygen consumption of isolated mitochondria and females showed changes with MR in a tissue-dependent manner - increased in liver and decreased in kidney. Loss of MsrA increased or decreased oxygen consumption depending on the tissue and which portion of the electron transport chain was being tested. In general, males had few changes in either tissue regardless of MR or MsrA status. Hydrogen peroxide production was increased in the kidney with MR regardless of sex or MsrA status. However, in the liver, production was increased by MR in females and only slightly higher with loss of MsrA in both sexes. Mitochondrial Complex expression was found to be largely unchanged in either tissue suggesting these effects are driven by regulatory mechanisms and not by changes in expression. Together these results suggest that sex and MsrA status do impact the mitochondrial effects of MR in a tissue-specific manner.
Collapse
Affiliation(s)
- Kevin M Thyne
- The University of Texas Health Science Center at San Antonio
| | - Raechel Camones
- The University of Texas Health Science Center at San Antonio
| | - Adam B Salmon
- The University of Texas Health Science Center at San Antonio
| |
Collapse
|
2
|
Hirosawa K, Fukami T, Nagaoka M, Nakano M, Nakajima M. Methionine sulfoxide reductase A in human and mouse tissues is responsible for sulindac activation, making a larger contribution than the gut microbiota. Drug Metab Dispos 2022; 50:725-733. [DOI: 10.1124/dmd.122.000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022] Open
|
3
|
Deng H, Kong Y, Zhu J, Jiao X, Tong Y, Wan M, Zhao Y, Lin S, Ma Y, Meng X. Proteomic analyses revealed the antibacterial mechanism of Aronia melanocarpa isolated anthocyanins against Escherichia coli O157: H7. Curr Res Food Sci 2022; 5:1559-1569. [PMID: 36147549 PMCID: PMC9486179 DOI: 10.1016/j.crfs.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
|
4
|
Reiterer M, Bruce L, Milton S. Differential Responses of Methionine Sulfoxide Reductases A and B to Anoxia and Oxidative Stress in the Freshwater Turtle Trachemys scripta. Metabolites 2021; 11:metabo11070458. [PMID: 34357352 PMCID: PMC8304764 DOI: 10.3390/metabo11070458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/23/2023] Open
Abstract
Oxidative stress has been acknowledged as a major factor in aging, senescence and neurodegenerative conditions. Mammalian models are susceptible to these stresses following the restoration of oxygen after anoxia; however, some organisms including the freshwater turtle Trachemys scripta can withstand repeated anoxia and reoxygenation without apparent pathology. T. scripta thus provides us with an alternate vertebrate model to investigate physiological mechanisms of neuroprotection. The objective of this study was to investigate the antioxidant methionine sulfoxide reductase system (Msr) in turtle neuronal tissue. We examined brain transcript and protein levels of MsrA and MsrB and examined the potential for the transcription factor FOXO3a to regulate the oxygen-responsive changes in Msr in vitro. We found that Msr mRNA and protein levels are differentially upregulated during anoxia and reoxygenation, and when cells were exposed to chemical oxidative stress. However, while MsrA and MsrB3 levels increased when cell cultures were exposed to chemical oxidative stress, this induction was not enhanced by treatment with epigallocatechin gallate (EGCG), which has previously been shown to enhance FOXO3a levels in the turtle. These results suggest that FOXO3a and Msr protect the cells from oxidative stress through different molecular pathways, and that both the Msr pathway and EGCG may be therapeutic targets to treat diseases related to oxidative damage.
Collapse
|
5
|
S-methyl-L-cysteine Protects against Antimycin A-induced Mitochondrial Dysfunction in Neural Cells via Mimicking Endogenous Methionine-centered Redox Cycle. Curr Med Sci 2020; 40:422-433. [PMID: 32681247 DOI: 10.1007/s11596-020-2196-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Indexed: 12/26/2022]
Abstract
Mitochondrial superoxide overproduction is believed to be responsible for the neurotoxicity associated with neurodegeneration. Mitochondria-targeted antioxidants, such as MitoQ, have emerged as potentially effective antioxidant therapies. Methionine sulfoxide reductase A (MsrA) is a key mitochondrial-localized endogenous antioxidative enzyme and it can scavenge oxidizing species by catalyzing the methionine (Met)-centered redox cycle (MCRC). In this study, we observed that the natural L-Met acted as a good scavenger for antimycin A-induced mitochondrial superoxide overproduction in PC12 cells. This antioxidation was largely dependent on the Met oxidase activity of MsrA. S-methyl-L-cysteine (SMLC), a natural analogue of Met that is abundantly found in garlic and cabbage, could activate the Met oxidase activity of MsrA to scavenge free radicals. Furthermore, SMLC protected against antimycin A-induced mitochondrial membrane depolarization and alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. Thus, our data highlighted the possibility for SMLC supplement in the detoxication of mitochondrial damage by activating the Met oxidase activity of MsrA.
Collapse
|
6
|
Ma X, Wang J, Zhao M, Huang H, Wu J. Increased expression of methionine sulfoxide reductases B3 is associated with poor prognosis in gastric cancer. Oncol Lett 2019; 18:465-471. [PMID: 31289518 PMCID: PMC6540363 DOI: 10.3892/ol.2019.10318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/10/2019] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the expression of methionine sulfoxide reductases B3 (MSRB3) in gastric cancer (GC) and its clinical significance. A total of 90 specimens from patients with GC were collected to evaluate MSRB3 protein expression by immunohistochemical staining. The associations between MSRB3 protein expression, clinicopathological characteristics and prognosis of patients with GC were subsequently investigated. The results demonstrated that MSRB3 protein expression in GC tissues samples was significantly higher compared with that in paired adjacent normal tissues (P=0.017). Among the 90 GC cases, 64 (71.1%) exhibited higher MSRB3 expression. In addition, the diagnostic value of MSRB3 for patients with GC was estimated with a sensitivity of 71.1% and a specificity of 46.7%. However, MSRB3 expression was not associated with clinicopathological characteristics of patients with GC. Kaplan-Meier analysis indicated that patients with high MSRB3 expression had significantly shorter overall survival (OS) times compared with those with low expression (P=0.040). Univariate Cox regression analysis indicated that maximum tumor diameter, depth of invasion, lymph node metastasis, Tumor-Node-Metastasis (TNM) stage and MSRB3 expression were significantly associated with OS time. Multivariate Cox regression analysis indicated that MSRB3 was an independent predicting factor for the OS time of patients with GC (P=0.049). In addition, analysis using The Cancer Genome Atlas (TCGA) database validated these results. Kaplan-Meier analysis revealed that higher MSRB3 mRNA expression was associated with poorer OS time in 442 patients with GC (P=0.004). Univariate analysis of the TCGA data indicated that age, depth of invasion, lymph node metastasis, distant metastasis, TNM stage and MSRB3 expression were significantly associated with OS time; however, sex and histological differentiation were not associated with OS time. Multivariate analysis demonstrated that MSRB3 was an independent prognostic factor in patients with GC (P=0.001). In conclusion, these results demonstrated that MSRB3 expression was upregulated in patients GC, which suggests that MSBR3 may serve as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Group Suqian People's Hospital, Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Jian Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Group Suqian People's Hospital, Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Mingzuo Zhao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Group Suqian People's Hospital, Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Hailong Huang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Group Suqian People's Hospital, Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Jianqiang Wu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Group Suqian People's Hospital, Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
7
|
The Oxidized Protein Repair Enzymes Methionine Sulfoxide Reductases and Their Roles in Protecting against Oxidative Stress, in Ageing and in Regulating Protein Function. Antioxidants (Basel) 2018; 7:antiox7120191. [PMID: 30545068 PMCID: PMC6316033 DOI: 10.3390/antiox7120191] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022] Open
Abstract
Cysteine and methionine residues are the amino acids most sensitive to oxidation by reactive oxygen species. However, in contrast to other amino acids, certain cysteine and methionine oxidation products can be reduced within proteins by dedicated enzymatic repair systems. Oxidation of cysteine first results in either the formation of a disulfide bridge or a sulfenic acid. Sulfenic acid can be converted to disulfide or sulfenamide or further oxidized to sulfinic acid. Disulfide can be easily reversed by different enzymatic systems such as the thioredoxin/thioredoxin reductase and the glutaredoxin/glutathione/glutathione reductase systems. Methionine side chains can also be oxidized by reactive oxygen species. Methionine oxidation, by the addition of an extra oxygen atom, leads to the generation of methionine sulfoxide. Enzymatically catalyzed reduction of methionine sulfoxide is achieved by either methionine sulfoxide reductase A or methionine sulfoxide reductase B, also referred as to the methionine sulfoxide reductases system. This oxidized protein repair system is further described in this review article in terms of its discovery and biologically relevant characteristics, and its important physiological roles in protecting against oxidative stress, in ageing and in regulating protein function.
Collapse
|
8
|
Yu Q, Tian X, Shao L, Xu L, Dai R, Li X. Label-free proteomic strategy to compare the proteome differences between longissimus lumborum and psoas major muscles during early postmortem periods. Food Chem 2018; 269:427-435. [DOI: 10.1016/j.foodchem.2018.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
|
9
|
Methionine sulfoxide reductase B3 requires resolving cysteine residues for full activity and can act as a stereospecific methionine oxidase. Biochem J 2018; 475:827-838. [PMID: 29420254 PMCID: PMC6488974 DOI: 10.1042/bcj20170929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/20/2022]
Abstract
The oxidation of methionine residues in proteins occurs during oxidative stress and can lead to an alteration in protein function. The enzyme methionine sulfoxide reductase (Msr) reverses this modification. Here, we characterise the mammalian enzyme Msr B3. There are two splice variants of this enzyme that differ only in their N-terminal signal sequence, which directs the protein to either the endoplasmic reticulum (ER) or mitochondria. We demonstrate here that the enzyme can complement a bacterial strain, which is dependent on methionine sulfoxide reduction for growth, that the purified recombinant protein is enzymatically active showing stereospecificity towards R-methionine sulfoxide, and identify the active site and two resolving cysteine residues. The enzyme is efficiently recycled by thioredoxin only in the presence of both resolving cysteine residues. These results show that for this isoform of Msrs, the reduction cycle most likely proceeds through a three-step process. This involves an initial sulfenylation of the active site thiol followed by the formation of an intrachain disulfide with a resolving thiol group and completed by the reduction of this disulfide by a thioredoxin-like protein to regenerate the active site thiol. Interestingly, the enzyme can also act as an oxidase catalysing the stereospecific formation of R-methionine sulfoxide. This result has important implications for the role of this enzyme in the reversible modification of ER and mitochondrial proteins.
Collapse
|
10
|
Liu Y, Chong L, Li X, Tang P, Liu P, Hou C, Zhang X, Li R. Astragaloside IV rescues MPP +-induced mitochondrial dysfunction through upregulation of methionine sulfoxide reductase A. Exp Ther Med 2017; 14:2650-2656. [PMID: 28962208 DOI: 10.3892/etm.2017.4834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Methionine sulfoxide reductase (Msr) repairs oxidatively damaged proteins through acting as an antioxidant. Oxidative stress has been postulated to cause the mitochondrial dysfunction that is associated with aging and certain diseases, including Parkinson's disease (PD). The present study investigated the protective effects of astragaloside IV (AS-IV) on 1-methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction through MsrA in PC12 cells. This revealed that oxidative stress reduced the expression of MsrA following MPP+ treatment. AS-IV was demonstrated to protect PC12 cells from MPP+-induced oxidative damage through upregulating MsrA. MsrA expression was dependent on the Sirt1-FOXO3a signaling pathway. In addition, knockdown of MsrA reduced the protective effects of AS-IV, indicating that the antioxidant effects of AS-UV occurred through MsrA. These results suggest that AS-IV exerts antioxidant effects and regulates mitochondrial function. Thus, AS-IV may serve as an effective therapeutic agent for aging and PD.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Li Chong
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaoqing Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Tang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chen Hou
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Zhang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Rui Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
11
|
Heo JY, Cha HN, Kim KY, Lee E, Kim SJ, Kim YW, Kim JY, Lee IK, Gladyshev VN, Kim HY, Park SY. Methionine sulfoxide reductase B1 deficiency does not increase high-fat diet-induced insulin resistance in mice. Free Radic Res 2016; 51:24-37. [PMID: 27838938 DOI: 10.1080/10715762.2016.1261133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methionine-S-sulfoxide reductase (MsrA) protects against high-fat diet-induced insulin resistance due to its antioxidant effects. To determine whether its counterpart, methionine-R-sulfoxide reductase (MsrB) has similar effects, we compared MsrB1 knockout and wild-type mice using a hyperinsulinemic-euglycemic clamp technique. High-fat feeding for eight weeks increased body weights, fat masses, and plasma levels of glucose, insulin, and triglycerides to similar extents in wild-type and MsrB1 knockout mice. Intraperitoneal glucose tolerance test showed no difference in blood glucose levels between the two genotypes after eight weeks on the high-fat diet. The hyperglycemic-euglycemic clamp study showed that glucose infusion rates and whole body glucose uptakes were decreased to similar extents by the high-fat diet in both wild-type and MsrB1 knockout mice. Hepatic glucose production and glucose uptake of skeletal muscle were unaffected by MsrB1 deficiency. The high-fat diet-induced oxidative stress in skeletal muscle and liver was not aggravated in MsrB1-deficient mice. Interestingly, whereas MsrB1 deficiency reduced JNK protein levels to a great extent in skeletal muscle and liver, it markedly elevated phosphorylation of JNK, suggesting the involvement of MsrB1 in JNK protein activation. However, this JNK phosphorylation based on a p-JNK/JNK level did not positively correlate with insulin resistance in MsrB1-deficient mice. Taken together, our results show that, in contrast to MsrA deficiency, MsrB1 deficiency does not increase high-fat diet-induced insulin resistance in mice.
Collapse
Affiliation(s)
- Jung-Yoon Heo
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Hye-Na Cha
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Ki Young Kim
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Republic of Korea
| | - Eujin Lee
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Republic of Korea
| | - Suk-Jeong Kim
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Yong-Woon Kim
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Jong-Yeon Kim
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - In-Kyu Lee
- c Department of Internal Medicine, School of Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Vadim N Gladyshev
- d Division of Genetics, Department of Medicine Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Hwa-Young Kim
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Republic of Korea
| | - So-Young Park
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| |
Collapse
|
12
|
Grievink H, Zeltcer G, Drenger B, Berenshtein E, Chevion M. Protection by Nitric Oxide Donors of Isolated Rat Hearts Is Associated with Activation of Redox Metabolism and Ferritin Accumulation. PLoS One 2016; 11:e0159951. [PMID: 27447933 PMCID: PMC4957751 DOI: 10.1371/journal.pone.0159951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022] Open
Abstract
Preconditioning (PC) procedures (ischemic or pharmacological) are powerful procedures used for attaining protection against prolonged ischemia and reperfusion (I/R) injury, in a variety of organs, including the heart. The detailed molecular mechanisms underlying the protection by PC are however, complex and only partially understood. Recently, an ‘iron-based mechanism’ (IBM), that includes de novo ferritin synthesis and accumulation, was proposed to explain the specific steps in cardioprotection generated by IPC. The current study investigated whether nitric oxide (NO), generated by exogenous NO-donors, could play a role in the observed IBM of cardioprotection by IPC. Therefore, three distinct NO-donors were investigated at different concentrations (1–10 μM): sodium nitroprusside (SNP), 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). Isolated rat hearts were retrogradely perfused using the Langendorff configuration and subjected to prolonged ischemia and reperfusion with or without pretreatment by NO-donors. Hemodynamic parameters, infarct sizes and proteins of the methionine-centered redox cycle (MCRC) were analyzed, as well as cytosolic aconitase (CA) activity and ferritin protein levels. All NO-donors had significant effects on proteins involved in the MCRC system. Nonetheless, pretreatment with 10 μM SNAP was found to evoke the strongest effects on Msr activity, thioredoxin and thioredoxin reductase protein levels. These effects were accompanied with a significant reduction in infarct size, increased CA activity, and ferritin accumulation. Conversely, pretreatment with 2 μM SIN-1 increased infarct size and was associated with slightly lower ferritin protein levels. In conclusion, the abovementioned findings indicate that NO, depending on its bio-active redox form, can regulate iron metabolism and plays a role in the IBM of cardioprotection against reperfusion injury.
Collapse
Affiliation(s)
- Hilbert Grievink
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- Anesthesiology and Critical Care Medicine, Hebrew University—Hadassah Medical Center, Jerusalem, Israel
| | - Galina Zeltcer
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Radiology, Hebrew University—Hadassah Medical Center, Jerusalem, Israel
| | - Benjamin Drenger
- Anesthesiology and Critical Care Medicine, Hebrew University—Hadassah Medical Center, Jerusalem, Israel
| | - Eduard Berenshtein
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- Electron Microscopy Unit, The Core Research Facility, Hebrew University, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
13
|
Vanhooren V, Navarrete Santos A, Voutetakis K, Petropoulos I, Libert C, Simm A, Gonos ES, Friguet B. Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 2015; 151:71-84. [DOI: 10.1016/j.mad.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/22/2022]
|
14
|
Hunnicut J, Liu Y, Richardson A, Salmon AB. MsrA Overexpression Targeted to the Mitochondria, but Not Cytosol, Preserves Insulin Sensitivity in Diet-Induced Obese Mice. PLoS One 2015; 10:e0139844. [PMID: 26448611 PMCID: PMC4598006 DOI: 10.1371/journal.pone.0139844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that oxidative stress plays an integral role in the processes by which obesity causes type 2 diabetes. We previously identified that mice lacking the protein oxidation repair enzyme methionine sulfoxide reductase A (MsrA) are particularly prone to obesity-induced insulin resistance suggesting an unrecognized role for this protein in metabolic regulation. The goals of this study were to test whether increasing the expression of MsrA in mice can protect against obesity-induced metabolic dysfunction and to elucidate the potential underlying mechanisms. Mice with increased levels of MsrA in the mitochondria (TgMito MsrA) or in the cytosol (TgCyto MsrA) were fed a high fat/high sugar diet and parameters of glucose homeostasis were monitored. Mitochondrial content, markers of mitochondrial proteostasis and mitochondrial energy utilization were assessed. TgMito MsrA, but not TgCyto MsrA, mice remain insulin sensitive after high fat feeding, though these mice are not protected from obesity. This metabolically healthy obese phenotype of TgMito MsrA mice is not associated with changes in mitochondrial number or biogenesis or with a reduction of proteostatic stress in the mitochondria. However, our data suggest that increased mitochondrial MsrA can alter metabolic homeostasis under diet-induced obesity by activating AMPK signaling, thereby defining a potential mechanism by which this genetic alteration can prevent insulin resistance without affecting obesity. Our data suggest that identification of targets that maintain and regulate the integrity of the mitochondrial proteome, particular against oxidative damage, may play essential roles in the protection against metabolic disease.
Collapse
Affiliation(s)
- JennaLynn Hunnicut
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yuhong Liu
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center and Oklahoma City VA Medical Center, Oklahoma, Oklahoma, United States of America
| | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Szklarczyk R, Nooteboom M, Osiewacz HD. Control of mitochondrial integrity in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130439. [PMID: 24864310 DOI: 10.1098/rstb.2013.0439] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Various molecular and cellular pathways are active in eukaryotes to control the quality and integrity of mitochondria. These pathways are involved in keeping a 'healthy' population of this essential organelle during the lifetime of the organism. Quality control (QC) systems counteract processes that lead to organellar dysfunction manifesting as degenerative diseases and ageing. We discuss disease- and ageing-related pathways involved in mitochondrial QC: mtDNA repair and reorganization, regeneration of oxidized amino acids, refolding and degradation of severely damaged proteins, degradation of whole mitochondria by mitophagy and finally programmed cell death. The control of the integrity of mtDNA and regulation of its expression is essential to remodel single proteins as well as mitochondrial complexes that determine mitochondrial functions. The redundancy of components, such as proteases, and the hierarchies of the QC raise questions about crosstalk between systems and their precise regulation. The understanding of the underlying mechanisms on the genomic, proteomic, organellar and cellular levels holds the key for the development of interventions for mitochondrial dysfunctions, degenerative processes, ageing and age-related diseases resulting from impairments of mitochondria.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Marco Nooteboom
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Heinz D Osiewacz
- Faculty for Biosciences and Cluster of Excellence 'Macromolecular Complexes', Goethe University, Molecular Developmental Biology, 60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Yin C, Zheng L, Zhu J, Chen L, Ma A. Enhancing stress tolerance by overexpression of a methionine sulfoxide reductase A (MsrA) gene in Pleurotus ostreatus. Appl Microbiol Biotechnol 2015; 99:3115-26. [DOI: 10.1007/s00253-014-6365-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/23/2014] [Accepted: 12/25/2014] [Indexed: 02/01/2023]
|
17
|
Kwon TJ, Oh SK, Kim YR, Kim MA, Lee B, Choi KS, Lee J, Kim UK, Lee KY. Methionine sulfoxide reductase A, B1 and B2 are likely to be involved in the protection against oxidative stress in the inner ear. Cells Tissues Organs 2014; 199:294-300. [PMID: 25531578 DOI: 10.1159/000368893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
The methionine sulfoxide reductase (Msr) family of proteins is a class of repair enzymes that reduce methionine-S (MsrA) or methionine-R (MsrB) sulfoxide to methionine. Recent studies have reported that mutations in the MSRB3 gene cause autosomal recessive hearing loss in humans, and in mice MsrB3 deficiency leads to profound hearing loss due to hair cell apoptosis and stereocilia degeneration. However, apart from MsrB3, studies on Msr proteins in the inner ear have not yet been reported. In this study, we identified and characterized Msr expression in the cochlea and vestibule. First, we confirmed RNA expression levels of Msr family members in the cochlea and vestibule using reverse transcription PCR and detected Msr family members in both tissues. We also conducted immunohistochemical staining to localize Msr family members within the cochlea and vestibule. In the cochlea, MsrA was detected in supporting cells, spiral ligament, spiral limbus, Reissner's membrane and the spiral ganglion. MsrB1 was specifically expressed in hair cells and the spiral ganglion. MsrB2 was noted in the spiral ganglion, tectorial membrane and stria vascularis. In the vestibule, MsrA and MsrB1 were detected in hair cells and the vestibular ganglion, while MsrB2 was restricted to the vestibular ganglion. In this study, we identified distinct distributions of Msr family members in the organ of Corti and hypothesized that MsrA, MsrB1 and MsrB2 protect proteins in the organ of Corti from oxidative stress.
Collapse
Affiliation(s)
- Tae-Jun Kwon
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vandermarliere E, Ghesquière B, Jonckheere V, Gevaert K, Martens L. Unraveling the specificities of the different human methionine sulfoxide reductases. Proteomics 2014; 14:1990-8. [PMID: 24737740 DOI: 10.1002/pmic.201300357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/04/2014] [Accepted: 04/08/2014] [Indexed: 01/11/2023]
Abstract
The oxidation of free and protein-bound methionine into methionine sulfoxide is a frequently occurring modification caused by ROS. Most organisms express methionine sulfoxide reductases (MSR enzymes) to repair this potentially damaging modification. Humans express three different MSRB enzymes which reside in different cellular compartments. In this study, we have explored the specificity of the human MSRB enzymes both by in silico modeling and by experiments on oxidized peptides. We found that MSRB1 is the least specific MSRB enzyme, which is in agreement with the observation that MSRB1 is the only MSRB enzyme found in the cytosol and the nucleus, and therefore requires a broad specificity to reduce all possible substrates. MSRB2 and MSRB3, which are both found in mitochondria, are more specific but because of their co-occurrence they can likely repair all possible substrates.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
19
|
Kim JY, Kim Y, Kwak GH, Oh SY, Kim HY. Over-expression of methionine sulfoxide reductase A in the endoplasmic reticulum increases resistance to oxidative and ER stresses. Acta Biochim Biophys Sin (Shanghai) 2014; 46:415-9. [PMID: 24777495 DOI: 10.1093/abbs/gmu011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MsrA and MsrB catalyze the reduction of methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, to methionine in different cellular compartments of mammalian cells. One of the three MsrBs, MsrB3, is an endoplasmic reticulum (ER)-type enzyme critical for stress resistance including oxidative and ER stresses. However, there is no evidence for the presence of an ER-type MsrA or the ER localization of MsrA. In this work, we developed an ER-targeted recombinant MsrA construct and investigated the potential effects of methionine-S-sulfoxide reduction in the ER on stress resistance. The ER-targeted MsrA construct contained the N-terminal ER-targeting signal peptide of human MsrB3A (MSPRRSLPRPLSLCLSLCLCLCLAAALGSAQ) and the C-terminal ER-retention signal sequence (KAEL). The over-expression of ER-targeted MsrA significantly increased cellular resistance to H2O2-induced oxidative stress. The ER-targeted MsrA over-expression also significantly enhanced resistance to dithiothreitol-induced ER stress; however, it had no positive effects on the resistance to ER stresses induced by tunicamycin and thapsigargin. Collectively, our data suggest that methionine-S-sulfoxide reduction in the ER compartment plays a protective role against oxidative and ER stresses.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Korea
| | | | | | | | | |
Collapse
|
20
|
Kim HY. The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxid Redox Signal 2013; 19. [PMID: 23198996 PMCID: PMC3763222 DOI: 10.1089/ars.2012.5081] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Selenium is utilized in the methionine sulfoxide reduction system that occurs in most organisms. Methionine sulfoxide reductases (Msrs), MsrA and MsrB, are the enzymes responsible for this system. Msrs repair oxidatively damaged proteins, protect against oxidative stress, and regulate protein function, and have also been implicated in the aging process. Selenoprotein forms of Msrs containing selenocysteine (Sec) at the catalytic site are found in bacteria, algae, and animals. RECENT ADVANCES A selenoprotein MsrB1 knockout mouse has been developed. Significant progress in the biochemistry of Msrs has been made, which includes findings of a novel reducing system for Msrs and of an interesting reason for the use of Sec in the Msr system. The effects of mammalian MsrBs, including selenoprotein MsrB1 on fruit fly aging, have been investigated. Furthermore, it is evident that Msrs are involved in methionine metabolism and regulation of the trans-sulfuration pathway. CRITICAL ISSUES This article presents recent progress in the Msr field while focusing on the physiological roles of mammalian Msrs, functions of selenoprotein forms of Msrs, and their biochemistry. FUTURE DIRECTIONS A deeper understanding of the roles of Msrs in redox signaling, the aging process, and metabolism will be achieved. The identity of selenoproteome of Msrs will be sought along with characterization of the identified selenoprotein forms. Exploring new cellular targets and new functions of Msrs is also warranted.
Collapse
Affiliation(s)
- Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
21
|
Zhu Q, El-Mergawy RG, Heinemann SH, Schönherr R, Jáč P, Scriba GKE. Stereospecific micellar electrokinetic chromatography assay of methionine sulfoxide reductase activity employing a multiple layer coated capillary. Electrophoresis 2013; 34:2712-7. [DOI: 10.1002/elps.201300147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Qingfu Zhu
- Department of Pharmaceutical Chemistry; Friedrich Schiller University Jena; Jena; Germany
| | - Rabab G. El-Mergawy
- Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Jena; Germany
| | - Stefan H. Heinemann
- Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Jena; Germany
| | - Roland Schönherr
- Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Jena; Germany
| | - Pavel Jáč
- Department of Pharmaceutical Chemistry; Friedrich Schiller University Jena; Jena; Germany
| | - Gerhard K. E. Scriba
- Department of Pharmaceutical Chemistry; Friedrich Schiller University Jena; Jena; Germany
| |
Collapse
|
22
|
Styskal J, Nwagwu FA, Watkins YN, Liang H, Richardson A, Musi N, Salmon AB. Methionine sulfoxide reductase A affects insulin resistance by protecting insulin receptor function. Free Radic Biol Med 2013; 56:123-32. [PMID: 23089224 PMCID: PMC3578155 DOI: 10.1016/j.freeradbiomed.2012.10.544] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays a significant role in the development of insulin resistance; however, the cellular targets of oxidation that cause insulin resistance have yet to be fully elucidated. Methionine sulfoxide reductases reduce oxidized methionine residues, thereby repairing and protecting proteins from oxidation. Recently, several genome-wide analyses have found human obesity to be strongly correlated with polymorphisms near the methionine sulfoxide reductase A (MsrA) locus. In this study, we tested whether modulation of MsrA expression significantly alters the development of obesity and/or insulin resistance in mice. We show that mice lacking MsrA (MsrA(-/-)) are prone to the development of high-fat-diet-induced insulin resistance and a reduced physiological insulin response compared to high-fat-fed wild-type mice. We also show that oxidative stress in C2C12 cell cultures reduces both insulin-stimulated phosphorylation and autophosphorylation of the insulin receptor. Tissues from high-fat-fed mice show similar reduction in insulin receptor function and increase in insulin receptor oxidation, which are further exacerbated by the lack of MsrA. Together, these data demonstrate for the first time that MsrA and protein oxidation play a role in the regulation of glucose homeostasis. In addition, these data support a novel hypothesis that obesity-induced insulin resistance is caused in part by reduced function of insulin signaling proteins arising from protein oxidation.
Collapse
Affiliation(s)
- JennaLynn Styskal
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Florence A. Nwagwu
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Yvonne N. Watkins
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Hanyu Liang
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Division of Diabetes, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Arlan Richardson
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Nicolas Musi
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Division of Diabetes, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| |
Collapse
|
23
|
Jo H, Cho YW, Ji SY, Kang GY, Lim CJ. Protective roles of methionine-R-sulfoxide reductase against stresses inSchizosaccharomyces pombe. J Basic Microbiol 2013; 54:72-80. [DOI: 10.1002/jobm.201200397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Hannah Jo
- Department of Biochemistry; Kangwon National University; Chuncheon Korea
| | - Young-Wook Cho
- Korea Basic Science Institute Chuncheon Center; Chuncheon Korea
| | - Sun-Young Ji
- Department of Biochemistry; Kangwon National University; Chuncheon Korea
| | - Ga-Young Kang
- College of Pharmacy and Division of Life and Pharmaceutical Sciences; Ewha Womans University; Seoul Korea
| | - Chang-Jin Lim
- Department of Biochemistry; Kangwon National University; Chuncheon Korea
| |
Collapse
|
24
|
Sansom FM, Tang L, Ralton JE, Saunders EC, Naderer T, McConville MJ. Leishmania major methionine sulfoxide reductase A is required for resistance to oxidative stress and efficient replication in macrophages. PLoS One 2013; 8:e56064. [PMID: 23437085 PMCID: PMC3577802 DOI: 10.1371/journal.pone.0056064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/04/2013] [Indexed: 12/25/2022] Open
Abstract
Leishmania are protozoan parasites that proliferate within the phagolysome of mammalian macrophages. While a number of anti-oxidant systems in these parasites have been shown to protect against endogenous as well as host-generated reactive oxygen species, the potential role of enzymes involved in the repair of oxidatively damaged proteins remains uncharacterized. The Leishmania spp genomes encode a single putative methionine sulfoxide reductase (MsrA) that could have a role in reducing oxidized free and proteinogenic methionine residues. A GFP-fusion of L. major MsrA was shown to have a cytoplasmic localization by immunofluorescence microscopy and subcellular fractionation. An L. major msrA null mutant, generated by targeted replacement of both chromosomal allelles, was viable in rich medium but was unable to reduce exogenous methionine sulfoxide when cultivated in the presence of this amino acid, indicating that msrA encodes a functional MsrA. The ΔmsrA mutant exhibited increased sensitivity to H2O2 compared to wild type parasites and was unable to proliferate normally in macrophages. Wild type sensitivity to H2O2 and infectivity in macrophages was restored by complementation of the mutant with a plasmid encoding MsrA. Unexpectedly, the ΔmsrA mutant was able to induce normal lesions in susceptible BALB/c indicating that this protein is not essential for pathogenesis in vivo. Our results suggest that Leishmania MsrA contributes to the anti-oxidative defences of these parasites, but that complementary oxidative defence mechansims are up-regulated in lesion amastigotes.
Collapse
Affiliation(s)
- Fiona M. Sansom
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | - Leonie Tang
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie E. Ralton
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Eleanor C. Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
Teixeira PF, Pinho CM, Branca RM, Lehtiö J, Levine RL, Glaser E. In vitro oxidative inactivation of human presequence protease (hPreP). Free Radic Biol Med 2012; 53:2188-95. [PMID: 23041349 PMCID: PMC3589710 DOI: 10.1016/j.freeradbiomed.2012.09.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 01/26/2023]
Abstract
The mitochondrial peptidasome called presequence protease (PreP) is responsible for the degradation of presequences and other unstructured peptides including the amyloid-β peptide, whose accumulation may have deleterious effects on mitochondrial function. Recent studies showed that PreP activity is reduced in Alzheimer disease (AD) patients and AD mouse models compared to controls, which correlated with an enhanced reactive oxygen species production in mitochondria. In this study, we have investigated the effects of a biologically relevant oxidant, hydrogen peroxide (H(2)O(2)), on the activity of recombinant human PreP (hPreP). H(2)O(2) inhibited hPreP activity in a concentration-dependent manner, resulting in oxidation of amino acid residues (detected by carbonylation) and lowered protein stability. Substitution of the evolutionarily conserved methionine 206 for leucine resulted in increased sensitivity of hPreP to oxidation, indicating a possible protective role of M206 as internal antioxidant. The activity of hPreP oxidized at low concentrations of H(2)O(2) could be restored by methionine sulfoxide reductase A (MsrA), an enzyme that localizes to the mitochondrial matrix, suggesting that hPreP constitutes a substrate for MsrA. In summary, our in vitro results suggest a possible redox control of hPreP in the mitochondrial matrix and support the protective role of the conserved methionine 206 residue as an internal antioxidant.
Collapse
Affiliation(s)
- Pedro Filipe Teixeira
- Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
27
|
Wu PF, Long LH, Zeng JH, Guan XL, Zhou J, Jin Y, Ni L, Wang F, Chen JG, Xie N. Protection of l-methionine against H2O2-induced oxidative damage in mitochondria. Food Chem Toxicol 2012; 50:2729-35. [DOI: 10.1016/j.fct.2012.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 12/11/2022]
|
28
|
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16:476-95. [PMID: 21954972 DOI: 10.1089/ars.2011.4289] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The mitochondrial matrix contains much of the machinery at the heart of metabolism. This compartment is also exposed to a high and continual flux of superoxide, hydrogen peroxide, and related reactive species. To protect mitochondria from these sources of oxidative damage, there is an integrated set of thiol systems within the matrix comprising the thioredoxin/peroxiredoxin/methionine sulfoxide reductase pathways and the glutathione/glutathione peroxidase/glutathione-S-transferase/glutaredoxin pathways that in conjunction with protein thiols prevent much of this oxidative damage. In addition, the changes in the redox state of many components of these mitochondrial thiol systems may transduce and relay redox signals within and through the mitochondrial matrix to modulate the activity of biochemical processes. RECENT ADVANCES Here, mitochondrial thiol systems are reviewed, and areas of uncertainty are pointed out, focusing on recent developments in our understanding of their roles. CRITICAL ISSUES The areas of particular focus are on the multiple, overlapping roles of mitochondrial thiols and on understanding how these thiols contribute to both antioxidant defenses and redox signaling. FUTURE DIRECTIONS Recent technical progress in the identification and quantification of thiol modifications by redox proteomics means that many of the questions raised about the multiple roles of mitochondrial thiols can now be addressed.
Collapse
|
29
|
Kwak GH, Lim DH, Han JY, Lee YS, Kim HY. Methionine sulfoxide reductase B3 protects from endoplasmic reticulum stress in Drosophila and in mammalian cells. Biochem Biophys Res Commun 2012; 420:130-5. [PMID: 22405767 DOI: 10.1016/j.bbrc.2012.02.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 01/09/2023]
Abstract
Methionine sulfoxide reductase B3A (MsrB3A), which catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine, is localized to the endoplasmic reticulum (ER). Here, we report a critical role of the ER-targeted MsrB3 in protection against ER stress in Drosophila and in mammalian cells. Flies overexpressing human MsrB3A exhibited significantly increased resistance to ER stress induced by dithiothreitol. These flies also showed slightly enhanced resistance to tunicamycin-induced ER stress. In addition, overexpression of MsrB3A in mammalian cells increased resistance to dithiothreitol- and thapsigargin-induced ER stresses. However, MsrB3A overexpression had no effect on the resistance to tunicamycin-induced ER stress. Knockdown of MsrB3A in mammalian cells led to a significant decrease in the resistance to thapsigargin-induced ER stress, but had no effects on the resistance to either dithiothreitol- or tunicamycin-induced ER stress. Collectively, our data provide evidence that the ER-type of MsrB3 plays an important role in protection against ER stress, suggesting that MsrB3 may be involved in the regulation of ER homeostasis.
Collapse
Affiliation(s)
- Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011; 91:889-915. [PMID: 21742790 DOI: 10.1152/physrev.00018.2010] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California at Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
31
|
Sreekumar PG, Hinton DR, Kannan R. Methionine sulfoxide reductase A: Structure, function and role in ocular pathology. World J Biol Chem 2011; 2:184-92. [PMID: 21909460 PMCID: PMC3163237 DOI: 10.4331/wjbc.v2.i8.184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/03/2011] [Indexed: 02/05/2023] Open
Abstract
Methionine is a highly susceptible amino acid that can be oxidized to S and R diastereomeric forms of methionine sulfoxide by many of the reactive oxygen species generated in biological systems. Methionine sulfoxide reductases (Msrs) are thioredoxin-linked enzymes involved in the enzymatic conversion of methionine sulfoxide to methionine. Although MsrA and MsrB have the same function of methionine reduction, they differ in substrate specificity, active site composition, subcellular localization, and evolution. MsrA has been localized in different ocular regions and is abundantly expressed in the retina and in retinal pigment epithelial (RPE) cells. MsrA protects cells from oxidative stress. Overexpression of MsrA increases resistance to cell death, while silencing or knocking down MsrA decreases cell survival; events that are mediated by mitochondria. MsrA participates in protein-protein interaction with several other cellular proteins. The interaction of MsrA with α-crystallins is of utmost importance given the known functions of the latter in protein folding, neuroprotection, and cell survival. Oxidation of methionine residues in α-crystallins results in loss of chaperone function and possibly its antiapoptotic properties. Recent work from our laboratory has shown that MsrA is co-localized with αA and αB crystallins in the retinal samples of patients with age-related macular degeneration. We have also found that chemically induced hypoxia regulates the expression of MsrA and MsrB2 in human RPE cells. Thus, MsrA is a critical enzyme that participates in cell and tissue protection, and its interaction with other proteins/growth factors may provide a target for therapeutic strategies to prevent degenerative diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- Parameswaran G Sreekumar, David R Hinton, Ram Kannan, Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
32
|
Zhao H, Sun J, Deschamps AM, Kim G, Liu C, Murphy E, Levine RL. Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2011; 301:H1513-8. [PMID: 21841012 DOI: 10.1152/ajpheart.00441.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) catalytically scavenges reactive oxygen species and also repairs oxidized methionines in proteins. Increasing MsrA protects cells and organs from a variety of oxidative stresses while decreasing MsrA enhances damage, but the mechanisms of action have not been elucidated. A single gene encodes MsrA of which ∼25% is targeted to the mitochondria, a major site of reactive oxygen species production. The other ∼75% is targeted to the cytosol and is posttranslationally modified by myristoylation. To determine the relative importance of MsrA in each compartment in protecting against ischemia-reperfusion damage, we created a series of transgenic mice overexpressing MsrA targeted to the mitochondria or the cytosol. We used a Langendorff model of ischemia-reperfusion and assayed both the rate pressure product and infarct size following ischemia and reperfusion as measures of injury. While the mitochondrially targeted MsrA was expected to be protective, it was not. Notably, the cytosolic form was protective but only if myristoylated. The nonmyristoylated, cytosolic form offered no protection against injury. We conclude that cytosolic MsrA protects the heart from ischemia-reperfusion damage. The requirement for myristoylation suggests that MsrA must interact with a hydrophobic domain to provide protection.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Uthus EO, Picklo MJ. Obesity reduces methionine sulphoxide reductase activity in visceral adipose tissue. Free Radic Res 2011; 45:1052-60. [PMID: 21726174 DOI: 10.3109/10715762.2011.591793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visceral obesity is linked to insulin resistance and cardiovascular disease. A recent genetic study indicated that the gene locus for the anti-oxidant defense enzyme methionine sulphoxide reductase A (MsrA) is positively associated with the development of visceral adiposity. This work tested the hypothesis that Msr activity is diminished in visceral fat as a result of obesity. It used two animal models of obesity, wild-type rats fed a high-fat (45% of calories from fat) diet and Zucker rats fed a 10% fat calorie diet. The data indicate that MsrA activity was selectively reduced by ∼ 25% in the visceral adipose, but not subcutaneous adipose or liver, of both rat models as compared to control, wild type rats receiving a 10% fat calorie diet. MsrB activity was similarly reduced only in visceral fat. The data indicate that Msr activity is reduced by obesity and may alter oxidative stress signalling of obesity.
Collapse
Affiliation(s)
- Eric O Uthus
- USDA Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203-9034, USA
| | | |
Collapse
|
34
|
Jia P, Zhang C, Jia Y, Webster KA, Huang X, Kochegarov AA, Lemanski SL, Lemanski LF. Identification of a truncated form of Methionine Sulfoxide Reductase A expressed in mouse embryonic stem cells. J Biomed Sci 2011; 18:46. [PMID: 21696616 PMCID: PMC3143090 DOI: 10.1186/1423-0127-18-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 06/22/2011] [Indexed: 12/29/2022] Open
Abstract
Background Methionine Sulfoxide Reductase A (MsrA), an enzyme in the Msr gene family, is important in the cellular anti-oxidative stress defense mechanism. It acts by reducing the oxidized methionine sulfoxide in proteins back to sulfide and by reducing the cellular level of reactive oxygen species. MsrA, the only enzyme in the Msr gene family that can reduce the S-form epimers of methionine sulfoxide, has been located in different cellular compartments including mitochondria, cytosol and nuclei of various cell lines. Methods In the present study, we have isolated a truncated form of the MsrA transcript from cultured mouse embryonic stem cells and performed eGFP fusion protein expression, confocal microscopy and real time RT-PCR studies. Results Results show a different expression response of this truncated transcript to oxygen deprivation and reoxygenation treatments in stem cells, compared to the longer full length form. In addition, a different subcellular localization pattern was noted with most of the eGFP fusion protein detected in the cytosol. Conclusion One possibility for the existence of a truncated form of the MsrA transcripts could be that with a smaller protein size, yet retaining a GCWFG action site, this protein might have easier access to oxidize methionine residues on proteins than the longer form of the MsrA protein, thus having an evolutionary selection advantage. This research opens the door for further study on the role and function of the truncated MsrA embryonic mouse stem cells.
Collapse
Affiliation(s)
- Pingping Jia
- Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang C, Jia P, Jia Y, Weissbach H, Webster KA, Huang X, Lemanski SL, Achary M, Lemanski LF. Methionine sulfoxide reductase A (MsrA) protects cultured mouse embryonic stem cells from H2O2-mediated oxidative stress. J Cell Biochem 2011; 111:94-103. [PMID: 20506347 DOI: 10.1002/jcb.22666] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methionine sulfoxide reductase A (MsrA), a member of the Msr gene family, can reduce methionine sulfoxide residues in proteins formed by oxidation of methionine by reactive oxygen species (ROS). Msr is an important protein repair system which can also function to scavenge ROS. Our studies have confirmed the expression of MsrA in mouse embryonic stem cells (ESCs) in culture conditions. A cytosol-located and mitochondria-enriched expression pattern has been observed in these cells. To confirm the protective function of MsrA in ESCs against oxidative stress, a siRNA approach has been used to knockdown MsrA expression in ES cells which showed less resistance than control cells to hydrogen peroxide treatment. Overexpression of MsrA gene products in ES cells showed improved survivability of these cells to hydrogen peroxide treatment. Our results indicate that MsrA plays an important role in cellular defenses against oxidative stress in ESCs. Msr genes may provide a new target in stem cells to increase their survivability during the therapeutic applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brennan LA, Lee W, Kantorow M. TXNL6 is a novel oxidative stress-induced reducing system for methionine sulfoxide reductase a repair of α-crystallin and cytochrome C in the eye lens. PLoS One 2010; 5:e15421. [PMID: 21079812 PMCID: PMC2973970 DOI: 10.1371/journal.pone.0015421] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/20/2010] [Indexed: 12/22/2022] Open
Abstract
A key feature of many age-related diseases is the oxidative stress-induced accumulation of protein methionine sulfoxide (PMSO) which causes lost protein function and cell death. Proteins whose functions are lost upon PMSO formation can be repaired by the enzyme methionine sulfoxide reductase A (MsrA) which is a key regulator of longevity. One disease intimately associated with PMSO formation and loss of MsrA activity is age-related human cataract. PMSO levels increase in the eye lens upon aging and in age-related human cataract as much as 70% of total lens protein is converted to PMSO. MsrA is required for lens cell maintenance, defense against oxidative stress damage, mitochondrial function and prevention of lens cataract formation. Essential for MsrA action in the lens and other tissues is the availability of a reducing system sufficient to catalytically regenerate active MsrA. To date, the lens reducing system(s) required for MsrA activity has not been defined. Here, we provide evidence that a novel thioredoxin-like protein called thioredoxin-like 6 (TXNL6) can serve as a reducing system for MsrA repair of the essential lens chaperone α-crystallin/sHSP and mitochondrial cytochrome c. We also show that TXNL6 is induced at high levels in human lens epithelial cells exposed to H(2)O(2)-induced oxidative stress. Collectively, these data suggest a critical role for TXNL6 in MsrA repair of essential lens proteins under oxidative stress conditions and that TXNL6 is important for MsrA defense protection against cataract. They also suggest that MsrA uses multiple reducing systems for its repair activity that may augment its function under different cellular conditions.
Collapse
Affiliation(s)
- Lisa A. Brennan
- Biomedical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Wanda Lee
- Biomedical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Marc Kantorow
- Biomedical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
37
|
Nan C, Li Y, Jean-Charles PY, Chen G, Kreymerman A, Prentice H, Weissbach H, Huang X. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses. Biochem Biophys Res Commun 2010; 402:608-13. [DOI: 10.1016/j.bbrc.2010.10.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/17/2010] [Indexed: 01/18/2023]
|
38
|
Ugarte N, Petropoulos I, Friguet B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 2010; 13:539-49. [PMID: 19958171 DOI: 10.1089/ars.2009.2998] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteins are main targets for oxidative damage that occurs during aging and in oxidative stress situations. Since the mitochondria is a major source of reactive oxygen species, mitochondrial proteins are especially exposed to oxidative modification, and elimination of oxidized proteins is crucial for maintaining the integrity of this organelle. Hence, enzymatic reversal of protein oxidation and protein degradation is critical for protein homeostasis while protein maintenance failure has been implicated in the age-related accumulation of oxidized proteins. Within the mitochondrial matrix, the ATP-stimulated mitochondrial Lon protease is believed to play an important role in the degradation of oxidized protein, and age-associated impairment of Lon-like protease activity has been suggested to contribute to oxidized protein buildup in the mitochondria. Oxidized protein repair is limited to certain oxidation products of the sulfur-containing amino acids cysteine and methionine. Oxidized protein repair systems, thioredoxin/thioredoxin reductase or glutaredoxin/glutathione/glutathione reductase that catalytically reduce disulfide bridges or sulfenic acids, and methionine sulfoxide reductase that reverses methionine sulfoxide back to methionine within proteins, are present in the mitochondrial matrix. Thus, the role of the mitochondrial Lon protease and the oxidized protein repair system methionine sulfoxide reductase is further addressed in the context of oxidative stress and aging.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, Université Pierre et Marie Paris, France
| | | | | |
Collapse
|
39
|
Zhao H, Kim G, Liu C, Levine RL. Transgenic mice overexpressing methionine sulfoxide reductase A: characterization of embryonic fibroblasts. Free Radic Biol Med 2010; 49:641-8. [PMID: 20510353 PMCID: PMC3391185 DOI: 10.1016/j.freeradbiomed.2010.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 01/09/2023]
Abstract
Methionine residues in protein can be oxidized by reactive oxygen species to generate methionine sulfoxide. Aerobic organisms have methionine sulfoxide reductases capable of reducing methionine sulfoxide back to methionine. Methionine sulfoxide reductase A acts on the S-epimer of methionine sulfoxide, and it is known that altering its cellular level by genetic ablation or overexpression has notable effects on resistance to oxidative stress and on life span in species from microorganisms to animals. In mammals, the enzyme is present in both the cytosol and the mitochondria, and this study was undertaken to assess the contribution of each subcellular compartment's reductase activity to resistance against oxidative stresses. Nontransgenic mouse embryonic fibroblasts lack methionine sulfoxide reductase A activity, providing a convenient cell type to determine the effects of expression of the enzyme in each compartment. We created transgenic mice with methionine sulfoxide reductase A targeted to the cytosol, mitochondria, or both and studied embryonic fibroblasts derived from each line. Unexpectedly, none of the transgenic cells gained resistance to a variety of oxidative stresses even though the expressed enzymes were catalytically active when assayed in vitro. Noting that activity in vivo requires thioredoxin and thioredoxin reductase, we determined the levels of these proteins in the fibroblasts and found that they were very low in both the nontransgenic and the transgenic cells. We conclude that overexpression of methionine sulfoxide reductase A did not confer resistance to oxidative stress because the cells lacked other proteins required to constitute a functional methionine sulfoxide reduction system.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Mouse Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
40
|
Kim G, Cole NB, Lim JC, Zhao H, Levine RL. Dual sites of protein initiation control the localization and myristoylation of methionine sulfoxide reductase A. J Biol Chem 2010; 285:18085-94. [PMID: 20368336 PMCID: PMC2878569 DOI: 10.1074/jbc.m110.119701] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine sulfoxide reductase A is an essential enzyme in the antioxidant system, which scavenges reactive oxygen species through cyclic oxidation and reduction of methionine and methionine sulfoxide. In mammals, one gene encodes two forms of the reductase, one targeted to the cytosol and the other to mitochondria. The cytosolic form displays faster mobility than the mitochondrial form, suggesting a lower molecular weight for the former. The apparent size difference and targeting to two cellular compartments had been proposed to result from differential splicing of mRNA. We now show that differential targeting is effected by use of two initiation sites, one of which includes a mitochondrial targeting sequence, whereas the other does not. We also demonstrate that the mass of the cytosolic form is not less than that of the mitochondrial form; the faster mobility of cytosolic form is due to its myristoylation. Lipidation of methionine sulfoxide reductase A occurs in the mouse, in transfected tissue culture cells, and even in a cell-free protein synthesis system. The physiologic role of myristoylation of MsrA remains to be elucidated.
Collapse
Affiliation(s)
- Geumsoo Kim
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis. Anal Biochem 2010; 401:68-73. [DOI: 10.1016/j.ab.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/31/2022]
|
42
|
Abstract
The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of redox signaling events. Methionine sulfoxide reductase B1 reduces methionine sulfoxide back to methionine using thioredoxin as a reductant. Several selenoproteins in the endoplasmic reticulum are involved in the regulation of protein disulfide formation and unfolded protein response signaling, although their precise biological activities have not been determined. The most widely distributed selenoprotein family in Nature is represented by the highly conserved thioredoxin-like selenoprotein W and its homologs that have not yet been assigned specific biological functions. Recent evidence suggests selenoprotein W and the six other small thioredoxin-like mammalian selenoproteins may serve to transduce hydrogen peroxide signals into regulatory disulfide bonds in specific target proteins.
Collapse
Affiliation(s)
- Wayne Chris Hawkes
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| | - Zeynep Alkan
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| |
Collapse
|
43
|
Novoselov SV, Kim HY, Hua D, Lee BC, Astle CM, Harrison DE, Friguet B, Moustafa ME, Carlson BA, Hatfield DL, Gladyshev VN. Regulation of selenoproteins and methionine sulfoxide reductases A and B1 by age, calorie restriction, and dietary selenium in mice. Antioxid Redox Signal 2010; 12:829-38. [PMID: 19769460 PMCID: PMC2864656 DOI: 10.1089/ars.2009.2895] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors.
Collapse
|
44
|
Cole NB, Daniels MP, Levine RL, Kim G. Oxidative stress causes reversible changes in mitochondrial permeability and structure. Exp Gerontol 2010; 45:596-602. [PMID: 20096768 DOI: 10.1016/j.exger.2010.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/01/2010] [Accepted: 01/14/2010] [Indexed: 11/29/2022]
Abstract
Mitochondria are a primary source as well a principal target of reactive oxygen species within cells. Using immunofluorescence microscopy, we have found that a number of mitochondrial matrix proteins are normally undetectable in formaldehyde-fixed cells permeabilized with the cholesterol-binding detergent saponin. However, exogenous or endogenous oxidative stress applied prior to fixation altered the permeability of mitochondria, rendering these matrix proteins accessible to antibodies. Electron microscopy revealed a loss of matrix density and disorganization of inner membrane cristae upon oxidative stress. Notably, the changes in permeability and in structure were rapidly reversed when the oxidative stress was relieved. The ability of reactive oxygen species to reversibly alter the permeability of the mitochondrial membrane provides a potential mechanism for communication within the cell such as between nucleus and mitochondria.
Collapse
Affiliation(s)
- Nelson B Cole
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-8012, USA.
| | | | | | | |
Collapse
|
45
|
Ogawa F, Shimizu K, Hara T, Muroi E, Komura K, Takenaka M, Hasegawa M, Fujimoto M, Takehara K, Sato S. Autoantibody against one of the antioxidant repair enzymes, methionine sulfoxide reductase A, in systemic sclerosis: association with pulmonary fibrosis and vascular damage. Arch Dermatol Res 2009; 302:27-35. [PMID: 19844733 DOI: 10.1007/s00403-009-0996-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/14/2009] [Accepted: 10/05/2009] [Indexed: 11/28/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis and vascular changes in the skin and internal organs with autoimmune background. It has been suggested that oxidative stress plays an important role in the development of SSc. To determine the prevalence and clinical correlation of autoantibody to methionine sulfoxide reductase A (MSRA), one of the antioxidant repair enzymes, in SSc, serum anti-MSRA autoantibody levels were examined in patients with SSc by enzyme-linked immunosorbent assay using recombinant MSRA. The presence of anti-MSRA antibody was evaluated by immunoblotting. To determine the functional relevance of anti-MSRA antibody in vivo, we assessed whether anti-MSRA antibody was able to inhibit MSRA enzymatic activity. Serum anti-MSRA antibody levels in SSc patients were significantly higher compared to controls and this autoantibody was detected in 33% of SSc patients. Serum anti-MSRA levels were significantly elevated in SSc patients with pulmonary fibrosis, cardiac involvement, or decreased total antioxidant power compared with those without them. Anti-MSRA antibodies also correlated positively with renal vascular damage determined as pulsatility index by color-flow Doppler ultrasonography of the renal interlobar arteries and negatively with pulmonary function tests. Furthermore, anti-MSRA antibody levels correlated positively with serum levels of 8-isoprostane and heat shock protein 70 that are markers of oxidative and cellular stresses. Remarkably, MSRA activity was inhibited by IgG isolated from SSc sera containing IgG anti-MSRA antibody. These results suggest that elevated anti-MSRA autoantibody is associated with the disease severity of SSc and may enhance the oxidative stress by inhibiting MSRA enzymatic activity.
Collapse
Affiliation(s)
- Fumihide Ogawa
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Le HT, Chaffotte AF, Demey-Thomas E, Vinh J, Friguet B, Mary J. Impact of Hydrogen Peroxide on the Activity, Structure, and Conformational Stability of the Oxidized Protein Repair Enzyme Methionine Sulfoxide Reductase A. J Mol Biol 2009; 393:58-66. [DOI: 10.1016/j.jmb.2009.07.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 01/19/2023]
|
47
|
Differential expression of the antioxidant repair enzyme methionine sulfoxide reductase (MSRA and MSRB) in human skin. Am J Dermatopathol 2009; 31:427-31. [PMID: 19542914 DOI: 10.1097/dad.0b013e3181882c21] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, the antioxidant repair enzymes methionine-S-sulfoxide reductase A (MSRA) and methionine-R-sulfoxide reductase B (MSRB) were described in human epidermal keratinocytes and melanocytes. Methionine sulfoxide reductases (MSRs) are thought to protect against reactive oxygen species-induced oxidative damage in many organs, including the most environmentally exposed organ, human skin. We sought to examine the expression and distribution of this enzyme family (MSRA, MSRB1, MSRB2, and MSRB3) within the various compartments of healthy and diseased human skin. Expression was assessed using polyclonal MSR antibodies and immunohistochemical staining of human skin biopsies from various anatomical sites. Remarkably, MSRA expression was not only found in the epidermis as previously described but also in hair follicles and eccrine glands and was most pronounced in sebaceous glands. Furthermore, MSRB2 expression was found in melanocytes while MSRB1 and MSRB3 were both expressed within vascular endothelial cells. In conclusion, MSR enzymes are differentially expressed in human skin. Thus, modulation of MSR repair antioxidants may have implications for cutaneous aging and carcinogenesis.
Collapse
|
48
|
Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta Gen Subj 2009; 1790:1471-7. [PMID: 19406207 DOI: 10.1016/j.bbagen.2009.04.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/13/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
Abstract
Methionine sulfoxide reductases (Msrs) are thiol-dependent enzymes which catalyze conversion of methionine sulfoxide to methionine. Three Msr families, MsrA, MsrB, and fRMsr, are known. MsrA and MsrB are responsible for the reduction of methionine-S-sulfoxide and methionine-R-sulfoxide residues in proteins, respectively, whereas fRMsr reduces free methionine-R-sulfoxide. Besides acting on proteins, MsrA can additionally reduce free methionine-S-sulfoxide. Some MsrAs and MsrBs evolved to utilize catalytic selenocysteine. This includes MsrB1, which is a major MsrB in cytosol and nucleus in mammalian cells. Specialized machinery is used for insertion of selenocysteine into MsrB1 and other selenoproteins at in-frame UGA codons. Selenocysteine offers catalytic advantage to the protein repair function of Msrs, but also makes these proteins dependent on the supply of selenium and requires adjustments in their strategies for regeneration of active enzymes. Msrs have roles in protecting cellular proteins from oxidative stress and through this function they may regulate lifespan in several model organisms.
Collapse
|
49
|
Kwak GH, Kim JR, Kim HY. Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae. BMB Rep 2009; 42:113-8. [PMID: 19250613 DOI: 10.5483/bmbrep.2009.42.2.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 protein (MsrB3B) was localized to the cytosol, but not to the mitochondria, of the yeast cells. The mitochondrial MsrB2 protein was detected in the mitochondria and, to a lesser extent, the cytosol of the yeast cells. In this study, we report the first evidence that MsrB3 overexpression in yeast cells protected them against H(2)O(2)-mediated cell death. Additionally, MsrB2 overexpression also provided yeast cells with resistance to oxidative stress, as did MsrA overexpression. Our results show that mammalian MsrB and MsrA proteins perform crucial functions in protection against oxidative stress in lower eukaryotic yeast cells.
Collapse
Affiliation(s)
- Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, Yeungnam University College of Medicine, Daegu 705-717, Korea
| | | | | |
Collapse
|
50
|
Haenold R, Wassef R, Brot N, Neugebauer S, Leipold E, Heinemann SH, Hoshi T. Protection of vascular smooth muscle cells by over-expressed methionine sulphoxide reductase A: role of intracellular localization and substrate availability. Free Radic Res 2009; 42:978-88. [PMID: 19085252 DOI: 10.1080/10715760802566541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methionine sulphoxide reductase A (MSRA) that reduces methionine-S-sulphoxide back to methionine constitutes a catalytic antioxidant mechanism to prevent oxidative damage at multiple sub-cellular loci. This study examined the relative importance of protection of the cytoplasm and mitochondria by MSRA using A-10 vascular smooth muscle cells, a cell type that requires a low level of reactive oxygen species (ROS) for normal function but is readily damaged by higher concentrations of ROS. Adenoviral over-expression of human MSRA variants, targeted to either mitochondria or the cytoplasm, did not change basal viability of non-stressed cells. Oxidative stress caused by treatment with the methionine-preferring oxidizing reagent chloramine-T decreased cell viability in a concentration-dependent manner. Cytoplasmic MSRA preserved cell viability more effectively than mitochondrial MSRA and co-application of S-methyl-L-cysteine, an amino acid that acts as a substrate for MSRA when oxidized, further increased the extent of protection. This suggests an important role for an MSRA catalytic antioxidant cycle for protection of the cytoplasmic compartment against oxidative damage.
Collapse
Affiliation(s)
- Ronny Haenold
- Department of Physiology, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | |
Collapse
|